
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T050166-00-Z 2007/07/20

Operator Notification of Gamma-Ray Bursts
and other Astrophysical Triggers

Rauha Rahkola

Distribution of this draft:

LIGO Scientific Collaboration

California Institute of Technology Massachusetts Institute of Technology
LIGO Project - MS 51-33 LIGO Project - MS 20B-145

Pasadena, CA 91125 Cambridge, MA 01239
Phone (626) 395-2129 Phone (617) 253-4824

Fax (626) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

Processed with LATEX on 2007/07/20

LIGO-T050166-00

1 Introduction
The External Triggers search team has designed and implemented a system to automatically notify
staff at the detectors when an astrophysical event occurs. This is called the GRB operator notifi-
cation system. With sufficient warning, interruptions such as breaking lock, entering the LVEA,
and starting hardware injections can be moved to time intervals far from the gamma-ray burst trig-
ger times. This is useful because it provides a reference of the state of the detectors around each
gamma-ray burst trigger time.

The GRB operator notification system receives notices of gamma-ray burst events via email
from the Gamma-ray burst Coordinates Network (GCN). The notices are parsed for information
(most importantly the start time of the event) and discarded. The information is recorded in a LIGO
lightweight-formatted file, which is an XML format used for storing data in the LIGO database.
Additionally, if the notice arrives within an hour of the event start time, an alert is sent to the LHO
and LLO control rooms, notifying operators of the event.

The system consists of two Perl scripts. The parsing script (currently running at Caltech)
receives email notices and parses them for information. The receiver script (currently running
at LHO, LLO, and GEO) listens on a TCP/IP port for alerts from the parsing script and passes
them on to the control room via the instrument control software. (At LHO and LLO, the EPICS
instrument control system is used, while at GEO it is the LabVIEW system.) Two-way socket
communication is used by both scripts.

1.1 The role of operator notification
From the standpoint of an operator at the detector, every gamma-ray burst notice should be treated
as a genuine event. In actuality, several of these notices are false alarms, as the satellites may
trigger spuriously or subsequent instrumentation cannot verify the events. It is emphasized here
that these events are not used in the External Triggered searches. The GCN produces two
types of notices: (i) the GCN alerts, which are described in this document, and (ii) the GCN
circulars. The GCN circulars are used to dispense information about validated gamma-ray burst
events, and these are used by the External Triggers team to search for corresponding gravitational
wave events. GCN circulars are normally sent at least several minutes after the gamma-ray burst
event. This is undesirable from an operator standpoint because a decision to interrupt the LIGO
detector data might occur within the intervening minutes between the event and the corresponding
GCN circular.

The GCN alerts are produced automatically by the satellite trigger-processing software, and are
normally received at the LIGO detector sites within five seconds of the trigger. Subsequent alerts
concerning the same event are produced minutes after the trigger, and some alerts contain retraction
statements for false triggers. These retraction statements are currently invisible to operators at the
detector sites.

The events identified by the GCN alerts is not a superset of the events identified in the GCN
circulars. Occasionally a gamma-ray burst may be identified by a satellite which does not produce
GCN alerts. In particular, the Inter-Planetary Network identifies localized gamma-ray burst events
through the triangulation of triggers from several distant satellites.

page 2 of 62

LIGO-T050166-00

2 Parsing script: parse notices.pl

The parsing script runs under the External Triggers username (wk sz) at Caltech. The current envi-
ronment is described here, although several configuration options are available on the command-
line. Incoming email messages are distributed into individual files (suffix .notice) in the IN-
BOX directory (˜/notices/InBox). A corresponding OUTBOX directory tree is present as
well (˜/notices/OutBox), with the following contents:
unparsed/ - a directory containing messages which are not currently parseable.
parsed-GCN alerts/ - a directory containing information (in individual files) parsed from

GCN alert emails.
parsed-GCN circulars/ - a directory for information parsed from GCN circular emails

(currently not used).
parsed-SNEWS/ - a directory for information parsed from emails by the SuperNovae Early

Warning System SNEWS.
triggers.xml - a file containing all trigger information in LIGO Lightweight format.

When the script is running, it generates a LOCKFILE which prevents other copies of the script
from executing by accident (˜/.parse_notices.pl-pid). The LOCKFILE merely contains
the process ID of the original script. Diagnostic output from the parsing script is recorded in a
LOGFILE (parse_notices.log). Any further output is directed to standard output and error.

The parsing script frequently checks the INBOX for new messages. If no messages are present,
a keep-alive signal is sent to the receiver scripts, signifying that a socket connection can still be
completed. This keep-alive signal is important, since the event rate is about once per day. If one
or more messages are present, the parsing script reads the header information from each message
and checks the sender against a list of accepted senders. Once the sender matches an entry in this
list, the subject line is searched for recognized phrases (e.g. “GCN/HETE POSITION”) and a
child process is started, passing the message on to the appropriate message handler. Notices from
different astrophysical detectors have differing formats, so a message handler is created for each
sype of notice. From the standpoint of the parsing script, the most relevant pieces of information
from the notices are the timestamps. Time/Date information is stored in the notices either in a (sec-
onds of day)/Julien date format or in one of the recognized ISO timestamp string formats. These
are converted into GPS timestamps via the tconvert function of the LIGOTools library [1]. In
this manner, the timestamp of the email message can be compared with that of the event contained
within the email. If the differences between these two timestamps are below a threshold (the stand-
down interval), the parsing script will open a connection with each of the receiver scripts in turn
and send an alert signal. The receiver scripts pass the alerts along to the control room, notifying
the operators and scientists that an astrophysical event has recently been observed. Staff are subse-
quently expected to maintain the detector in a good data-taking state until the stand-down interval
has expired.

In addition to notifying operators in the control rooms, the parsing script sends email to the
administrators and interested parties. Diagnostic messages, such as unrecognized emails or socket
connection errors/warnings, are sent to the PARSING SCRIPT ADMINISTRATOR and the RECEIVER

SCRIPT ADMINISTRATOR at each of the sites. A message is sent for each trigger acknowledged by
one or more receiver scripts. Normal termination of the parsing script causes an email to be sent to
all administrators. In the event of normal termination of the program, the LOCKFILE is removed.
A cron job periodically checks for the existence of the LOCKFILE and restarts the program if it is

page 3 of 62

LIGO-T050166-00

missing.

3 Receiver script: grb server MI.pl

Because the receiver script must interface with either the EPICS or LabVIEW control systems, this
dissertation will not detail the interface with either system. Emphasis is placed here on the socket
connection and major functions.

The receiver script runs on a machine which interfaces both with the Internet and with the
control room network, which is usually behind a firewall. It listens on a TCP/IP port agreed
on by the parsing and receiver administrators. Once it receives a connection from the parsing
script, it forks a child process to handle communications while the parent process waits for another
connection. The child process receives two kinds of signals from the parsing script: a keep-alive
signal or an alert signal. Both signals are strings with the same format:

<sig_#> UTC-<YYYY>-<MM>-<DD>-<hh>:<mm>:<ss> UTC-<YYYY>-<MM>-<DD>-<hh>:<mm>:<ss>

where the two UTC timestamps mark the beginning and end of the stand-down interval, respec-
tively. The signal flag (<sig_#>) indicates the type of event, which is one of the following:

1 A keep-alive signal. For this case, the first UTC timestamp is the current date and time, while
the second timestamp is filled with 0’s.

2 A HETE gamma-ray burst alert signal.

3 An INTEGRAL gamma-ray burst alert signal

4 A Swift gamma-ray burst alert signal

5-18 currently unassigned, but reserved for specific gamma-ray burst detectors

19 any other gamma-ray burst signal

20 A SNEWS supernova signal

21-38 currently unassigned, but reserved for specific types of supernova signals

39 any other supernova signal

40+ currently unassigned, but reserved for other astrophysical signals

Upon receiving a signal, the receiver script child process will send an acknowledgement back to
the parsing script:

ACK <receiver_name> <original_signal>

where <receiver_name> is the name of the host machine that the receiver script is running on,
and <original_signal> is the original signal sent by the parsing script. The receiver script
then logs the signal in a file and communicates the information to the control room via the control
system interface. In some cases, the signal is generated from a follow-up observation for the same
GRB as an earlier signal. The receiver script recognizes when this happens and will refrain from
re-alerting the control room.

page 4 of 62

LIGO-T050166-00

4 Known issues and areas for improvement
Although the operator notification system is recognized to be in stable condition, there are some
issues which have been known to interrupt normal communication. These are listed below in no
particular order.

• Occasionally the machine running the parsing script (alterf.ligo.caltech.edu) is shut down
without cleanly killing all processes. When the machine is restarted, the lock file is still
present even though the parsing script is not running. One improvement in the crontab for
wk sz would be to check that the process ID listed in the lock file is actually running at the
time. If not, the lock file should be removed, an entry made in the logfile, and the script be
allowed to restart.

• Socket communication with the receivers is limited to 30 seconds, and each signal is sent
through a different socket. Depending on network traffic at the time, communication with the
GEO site can regularly exceed this time limit. Also, socket communication is discontinued
with the GEO site several hours after the receiver script is restarted for unknown reasons.

• When the CIT machine goes down for maintenance, a backup system should be in place to
continue handling of the GCN alerts.

• The parsing script should accurately keep track of child processes through each cycle of the
loop.

A Script Walkthroughs
Key scripts for the execution of the operator notification system are included here.

A.1 A walkthrough of the parsing script
Below is a listing of the current parsing script running at Caltech. The script begins by declar-
ing global variables, including the important %trig_info hash variable, which will eventually
contain all the information obtained from the email alert.

1 #!/usr/bin/env perl
#
parse_notices.pl parses emails from the Gamma-ray burst ...

Coordinates Network
(GCN) and (soon) the SuperNovae Early Warning System. It ...

extracts
trigger information from the emails and optionally sends ...

notification
6 # to control room operators at LHO, LLO, GEO, and CIT.

#
Author: R. Rahkola
Email: rrahkola@ligo-wa.caltech.edu
Start Date: April 25, 2003

page 5 of 62

LIGO-T050166-00

11 # Date/Ver: $Id: parse_notices.listing.tex,v 1.9 2006/12/06 ...
19:05:13 rrahkola Exp $

...

#########################
Depends on the following Perl modules
use strict qw(refs subs);

16 use vars qw($LOGFILE $TCONVERT $TDELAY $email_to $email_event ...
$inbox $outbox $verbosity $debug

%trig_info %det_info %obs_info %time_info %event_info % ...
notice_info $am_child %IP_INFO

$accepted_senders);
use Getopt::Std;
use Time::Local ’timegm_nocheck’;

21 use Time::HiRes qw(gettimeofday tv_interval);
use IO::Socket;
#use File::Copy;
###:NOTE: RJR 2005.04.26 -- timeout field gets set to IP_TIMEOUT if ...

there is an
###:NOTE: error during the socket connection. This value ...

gets decreased
26 ###:NOTE: every time the script loops through the $INBOX ...

directory looking
###:NOTE: for notices until it reaches 0, then tries to send ...

a keep-alive
###:NOTE: message.
###:NOTE: RJR 2005.11.14 -- timeout field gets set to ...

KEEPALIVE_TIMEOUT if the
###:NOTE: alarm wakes up before the socket connection is ...

complete.
31 ###:NOTE: RJR 2005.11.16 -- alarm is set to ALARM while socket ...

connection is opened.
###:NOTE: It gets reset to 0 once the socket connection is ...

completed.
###:NOTE: RJR 2005.11.21 -- TIME_TCP is a flag used to determine ...

whether to output
###:NOTE: the time it takes for a socket connection to finish ...

. Output is sent
###:NOTE: to STDOUT.

36 use constant IP_TIMEOUT => 3600;
use constant KEEPALIVE_TIMEOUT => 20;
use constant ALARM => 120;
use constant TIME_TCP => 1;

41 my $children =0;
$CENTURY = 2000;
$EPOCH = "J2000";

page 6 of 62

LIGO-T050166-00

The %EVENT_TABLE hash variable customizes some actions the parsing script performs based
on an event alert. Such actions include communicating with the receiver scripts and emailing
interested parties that an event has been detected. The hash uses the name of the detector to
customize the actions.

44 %EVENT_TABLE = (# format: det_name => (event_tag, "GRB"/"SN", ...
event_timeout)

45 FREGATE => [2, "GRB", 3600], # HETE
IBIS => [3, "GRB", 3600], # INTEGRAL
BAT => [4, "GRB", 3600], # Swift GRB
XRT => [4, "GRB", 3600], # Swift GRB follow-up ...

/XRF
UVOT => [4, "GRB", 3600], # Swift GRB follow-up

50 GRB => [19, "GRB", 3600], # Anonymous GRB
SNEWS => [20, "SN", 3600], # SNEWS supernova
SN => [39, "SN", 3600], # Anonymous supernova
OTHER => [40, "UNK", 3600] # Anonymous event

);

The %IP_INFO hash variable contains protocol information for each of the receiver scripts
running at the sites. Beside the IP address/port, and contact information, %IP_INFO keeps track
of the number of consecutive successful connections with the sites (field success) and maintains
a countdown field (timeout) which gets set if an error occurs during communication with a site.
Another attempt at communication will be made when the countdown returns to zero. Contact
information is collected into a variable $remote_contacts for diagnostic messages which
affect all the sites.

55 %IP_INFO = (
LHO => { ip => ’198.129.208.138’, port => 7070, timeout => ...

0, success => 0,
contact => ’barker_d@ligo-wa.caltech.edu’ },

GEO => { ip => ’130.75.117.151’, port => 7070, timeout => ...
0, success => 0,

contact => ’joshua.smith@aei.mpg.de,siohen@aei.mpg ...
.de’ },

60 LLO => { ip => ’130.39.245.3’, port => 7070, timeout => ...
0, success => 0,

contact => ’lisab@ligo-la.caltech.edu’ }

);
CIT => { ip => 0, port => 34512, timeout => 0 }

65 my $remote_contacts = join ’,’, map($IP_INFO{$_}{contact}, sort ...
keys %IP_INFO);

The array @accepted_senders is a list of senders which are officially recognized by the
parsing script. Thus the script will not try to parse spam email or messages from mailer daemons.

66 ###:NOTE: RJR 2004.07.23 -- replaced $my_email with ...
$accepted_senders to only recognize

###:NOTE: senders of External Trigger emails

page 7 of 62

LIGO-T050166-00

#$my_email = ’sn@ligo.caltech.edu’;
@accepted_senders = (’vxw@capella.gsfc.nasa.gov’, ’aavso@aavso.org ...

’);

Next, the parsing script imports the handler modules in parse_GCN.pl and declares all
internal subroutines.

70 #########################
Declare various subroutines here
RJR 2004.08.27 put parsing subroutines in parse_XXX.pl
require "parse_GCN.pl";
#sub handle_NOPARSE;

75 #sub handle_HETE;
#sub handle_IPN;
#sub handle_INTEGRAL;
#sub handle_RXTE;
#sub handle_SWIFT;

80 #sub handle_GCN_circular;
sub get_timestamp;
sub check_times;
sub notify_ops;
sub send_trigger;

85 sub spawn;
sub REAPER;
sub fatal;
sub logmsg {

open LOGFILE or &fatal("Can’t open log file.", 1);
90 print LOGFILE "[", scalar gmtime, " GMT]: @_\n";

close LOGFILE;
}

Various environment-dependent variables are set. Most importantly, the location of the exe-
cutable tconvert, which converts between GPS and UTC timestamps, is defined.

93 #########################
Important environment variables (for tconvert, etc.)

95 # CIT:
$ENV{LIGOTOOLS} ="/ligoapps/ligotools";
backgammon: $ENV{LIGOTOOLS} ="/opt/ligotools";
UofO: $ENV{LIGOTOOLS} ="/home/cern/ligo/ligotools";
$ENV{PATH} = "/ldcg/bin:/lal/bin:$ENV{LIGOTOOLS}/bin:$ENV{PATH ...

}";
100 $ENV{LD_LIBRARY_PATH} = "/ldcg/lib:/lal/lib:$ENV{LIGOTOOLS}/lib";

#$ENV{LD_LIBRARY_PATH} = "/ldcg/lib:/lal/lib:$ENV{LIGOTOOLS}/lib: ...
$ENV{LD_LIBRARY_PATH}";

location of the notice files (raw notices, parsed notices, log ...
file)

#$OUTPUT_DIR = "/home/sn/public_html/triggers/post-s2";
#$RAW_PREFIX = "raw_GRB-";

105 #$PARSED_PREFIX = "parsed_GRB-";

page 8 of 62

LIGO-T050166-00

#$SUMMARY_FILE = "GRB_summary";
location of ’tconvert’-- converts UTC to GPS
$TCONVERT = "$ENV{LIGOTOOLS}/bin/tconvert";
location of ’tdelay’-- converts RA & DEC to a time delay from LHO ...

to LLO
110 $TDELAY = "time_delay";

location of trigger file. This can also be a product of this ...
script.

$TRIGFILE = "triggers.xml";

Various command-line options are available, and are dscribed in the following section of code.
The parsing script will use default values if they are not set on the command-line.

113 #########################
Top-level user variables

115 getopts(’hvd:i:o:l:e:g:s:p:nt’);
Verbosity, Debug levels
$verbosity = ($opt_v) ? $opt_v : 0;
$debug = ($opt_d) ? $opt_d : 0;
File/Directory variables

120 $inbox = ($opt_i) ? $opt_i : "$ENV{HOME}/notices/InBox/";
$outbox = ($opt_o) ? $opt_o : "$ENV{HOME}/notices/OutBox/";
$email_to = ($opt_e) ? $opt_e : ’rrahkola@ligo-wa.caltech.edu ...

’;
$email_event = ($opt_g) ? $opt_g : 0;
$email_event .= ($opt_s) ? ",$opt_s" : "";

125 $LOGFILE = ($opt_l) ? $opt_l : "$ENV{HOME}/notices/ ...
parse_notices.log";

$LOGFILE = ">>$LOGFILE";
$PRODUCT = ($opt_p) ? $opt_p : 0;
$NOTIFY_OPS = ($opt_n) ? (1 - $opt_n) : 1;
$SEND_TRIGGER = ($opt_t) ? (1 - $opt_t) : 1;

130 # Help message
if ($opt_h) {

print <<USAGE;
Usage: $0 [-v] [-d <debug_level>] [-i <inbox_dir>] [-o < ...

outbox_parent_dir>]
[-e <email_addresses>] [-g <email_addresses>] [-s < ...

email_addresses>]
135 [-l <logfile>] [-p <product>] [-n] [-t]

where: inbox_dir = the directory of the incoming emails to be ...
parsed
outbox_parent_dir = the parent directory of the parsed emails (...

must contain
subdirectories ’unparsed’, ’parsed- ...

GCN_alerts’,
140 ’parsed-GCN_circulars’, ’parsed-snews’)

page 9 of 62

LIGO-T050166-00

email_addresses = a comma-separated list of emails addresses ...
(NO SPACES!)

logfile = the full pathname of the file to send ...
messages to

product = one of ’template’,

145 Use option: -h to get this help message
-e to specify email addresses for all notices (...

including diagnostics)
-g to specify email addresses for GRB notices
-s to specify email addresses for Supernovae notices
-n to preclude sending operator notification

150 -t to preclude sending trigger information to ...
metadatabase

-i to specify the location of incoming messages
-o to specify the location of read messages
-l to specify the location of diagnostic output
-v to receive messages on standard out

155 -d to set the debug level
1 - email messages to standard out

USAGE
exit ($opt_h - 1);

160 }

The parsing script next initiates a lock file, a normally-hidden file in the user’s home directory.
The filename is based on the name of the executable— (in this case .parse_notices.pl-pid)—
and prints the current process ID into the file. A crontab entry for the External Triggers username
at Caltech checks every ten minutes that this lock file exists. If it doesn’t exist, the script will be
restarted. Currently the crontab will not verify that the process contained in the lock file is actually
running.

161 #########################
Initialize Files / Variables
Start PID file
if (-e "$ENV{HOME}/.$0-pid" and !$PRODUCT) {

165 print "Unable to start $0. Please remove $ENV{HOME}/.$0-pid\n ...
";

&fatal("Existing process ID for $0", -1);
}
open(OPID, ">$ENV{HOME}/.$0-pid");
print OPID $$;

170 close OPID;
Begin logfile session
&logmsg("vvvv================ Beginning $0");
Change LHO’s IP address to a local one if we’re in debugging ...

mode
$IP_INFO{LHO}{ip} = ’localhost’ if $debug;

page 10 of 62

LIGO-T050166-00

175 ### Reduce the timeout for a receiver if we’re in debugging mode
#$IP_TIMEOUT = 10 if $debug;

In addition to parsing alerts, the script will initialize a LIGO Lightweight trigger file if re-
quested with the -p template option. This is useful because the %trig_info hash vari-
able determines the order of fields in the LIGO Lightweight table. Thus a field can be added to
%trig_info and a new trigger file can be generated automatically. The code below describes
the %trig_info hash variable and, if requested, initialize a LIGO Lightweight trigger file. It
also declares subarrays, or “cuts” of the %trig_info hash.

177 #########################
Output trigger file template: header info
if ($PRODUCT eq "template") {

180 &logmsg("Creating trigger file template in $TRIGFILE.");
open(TRIGGER,">${outbox}/$TRIGFILE")

or &fatal("Can’t open OutBox/$TRIGFILE for writing.", 1);

print TRIGGER <<XML_HEAD;
185 <?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE LIGO_LW SYSTEM "http://www.cacr.caltech.edu/projects/ ...
ligo_lw.dtd">

<LIGO_LW Name="ligo:ldas:file">
<Table Name="external_trigger:table">

XML_HEAD
190 }

#########################
External-Trigger database hash; use as initialization

195 # NOTE: Each trigger MUST HAVE three timestamps: one for the event, ...
one for

the notice (as sent to GCN), and one for the email distributed by ...
the GCN

(or other trigger distribution program).
%trig_info = (event_timestamp => "", event_timefmt => "",

notice_timestamp => "", notice_timefmt => "",
200 email_timestamp => "", email_timefmt => "",

NOTE: Each trigger MUST HAVE an event type (e.g. GRB, XRF, etc.) ...
and an

notice type (e.g. "HETE S/C_Alert", "HETE Gnd Analysis", etc.)
event_type => "", notice_type => "",

NOTE: The ’notice_id’ is only unique for each originator. Other ...
originators

205 # may eventually have the same notice_id. The ’notice_sequence’ is ...
for

updates to the same original notice (e.g. possibly containing ...
direction

information)

page 11 of 62

LIGO-T050166-00

notice_id => "", notice_sequence => "",
NOTE: These are the coordinates of the event. ’Z’ is the ...

redshift of the
210 # event, ’RA’ is the right ascension, ’DEC’ is the declination, and ...

’EPOCH’ is
the epoch for which these coordinates are valid.
!!!WARNING!!! Currently the only valid epoch is J2000. This may ...

be the
!!!WARNING!!! assumed epoch for subsequent scripts, and if no ...

epoch is
!!!WARNING!!! given in the notice.

215 # NOTE: If a direction is obtained for the event, it is possible to ...
calculate

several variables, including attenuation due to the antenna ...
pattern for the

various GW detectors, time delays, altitude and azimuth angles ...
relative to

each IFO, a multi-detector antenna pattern attenuation factor. ...
These will

be generated using an external script.
220 event_z => "", event_z_err => "",

event_ra => "", event_ra_err => "",
event_dec => "", event_dec_err => "",
event_epoch => "", event_err_type => "",
event_status => "", event_number_grb => "",

225 event_number_gcn => "",
NOTE: The detector name is a string (e.g. "WXM", "SXC", etc.) ...

identifying
the main detector used to obtain coordinates for the event. ...

Other detectors
which observed the event are listed in the variable ’det_alts’. ...

Detectors
for gamma-ray bursts usually have a frequency band (’det_band’) ...

associated
230 # with the trigger. Most detectors should have a signal-to-noise ...

ratio
(’det_snr’), a peak flux (’det_peak’), and a time-integrated ...

fluence
(’det_fluence’) as well. The integration times for both the peak ...

flux
(’det_peak_int’) and fluence (’det_fluence_int’) are also given.
’det_fluence_int’ is equivalent to the duration, even if no ...

fluence is
235 # given. Peak flux and fluence may have attached units. No peak ...

flux or
fluence will be given if they do not match the frequency band (if ...

any) of

page 12 of 62

LIGO-T050166-00

the trigger.
det_name => "", det_alts => "",
det_band => "", det_snr => "",

240 det_peak => "", det_peak_int => "",
det_fluence => "", det_fluence_int => "",

NOTE: The ligo fields correspond to values calculated using the ...
LALApps

modules. These include the delay from LHO to LLO (+ means the ...
GRB was seen

by LHO first.), and the average antenna factor for LHO and LLO
245 ligo_fave_lho => "", ligo_fave_llo => "",

ligo_delay => "",
NOTE: The observer location and pointing is important mainly for ...

questions
regarding the field of view. If for instance, the field of view ...

included
the sun or a known source, the trigger may need to be ignored. ...

Observer
250 # location is given in fixed-Earth coordinates; direction of ...

pointing is given
in right ascension and declination coordinates corresponding to ...

the same
epoch as the event.

obs_fov_ra => "", obs_fov_ra_width => "",
obs_fov_dec => "", obs_fov_dec_width => "",

255 obs_loc_lat => "", obs_loc_long => "",
obs_loc_ele => "",

NOTE: ’notice_url’ is the location at which this notice may be ...
retrieved.

’notice_comments’ may be shortened to fit within the allowed ...
database

entry.
260 notice_url => "", notice_comments => "");

#########################
Temporary/partial database hashes. Copy these to store ...

temporary
265 ##### values for comparison with %trig_info without writing over ...

existing
%trig_info entries.
foreach $tmpkey (sort keys %trig_info) {

print "\%trig_info{$tmpkey}\t:",$trig_info{$tmpkey},"\n"
if ($verbosity and $debug > 1);

270 $det_info{$tmpkey} = "" if $tmpkey =˜ /ˆdet/;
$obs_info{$tmpkey} = "" if $tmpkey =˜ /ˆobs/;
$time_info{$tmpkey} = "" if $tmpkey =˜ /time(stamp|fmt)/;

page 13 of 62

LIGO-T050166-00

$event_info{$tmpkey} = "" if $tmpkey =˜ /ˆevent/;
$notice_info{$tmpkey} = "" if $tmpkey =˜ /ˆnotice/;

275
Output key to trigger file if desired
if ($PRODUCT eq "template") {

my $colname = $tmpkey; # defaults to $tmpkey
my $coltype = "lstring";

280 # Special key for event_timestamp -> start_time, ...
start_time_ns

if ($tmpkey =˜ /event_timestamp/) {
print TRIGGER <<EVENT_TIMESTAMP;

<Column Name="external_trigger:start_time" Type="int_4s" />
<Column Name="external_trigger:start_time_ns" Type="int_4s" ...

/>
285 EVENT_TIMESTAMP

next;
Change "*_timestamp" keys to "*_time", except as noted ...

above
} elsif ($tmpkey =˜ /(\w+)_timestamp/) {

$colname = "$1_time";
290 $coltype = "int_4s";

Ignore "*_timefmt" keys
} elsif ($tmpkey =˜ /timefmt/) {

next;
Set $coltype to real_4 for any location values

295 } elsif ($tmpkey =˜ /_(dec|ra|z|ele|lat|long)/) {
$coltype = "real_4";

}
print TRIGGER <<COLUMN;

<Column Name="external_trigger:$colname" Type="$coltype" />
300 COLUMN

}
}

305 #########################
Output trigger file template: stream element
:NOTE: exit when done, as this script was called with the -p ...

argument
if ($PRODUCT eq "template") {

print TRIGGER <<STREAM;
310 <Stream Name="external_trigger:table" Type="Local" Delimiter ...

=",">
STREAM

close TRIGGER or &fatal("Can’t close OutBox/$TRIGFILE.", 1);
&fatal("Finished writing trigger template to $TRIGFILE", 0);

page 14 of 62

LIGO-T050166-00

315 }

Next the parsing script defines actions for various inter-process communication signals. The
usual action is to send an email to the administrators and exit. Some subroutines may not be exe-
cuted, depending on the operating system. The USR1 signal is unique in that it writes a diagnostic
messaage in the LOGFILE. The diagnostic message currently contains the tally of successful com-
munications with each receiver or the number of cycles remaining until another communication
attempt will be made.

316 #########################
Handle various signals using fatal subroutine
This one may not work.
$SIG{KILL} = sub {&fatal("Received kill signal. Shutting down...", ...

0, $remote_contacts)};
320 $SIG{TERM} = sub {&fatal("Received term signal. Shutting down...", ...

0, $remote_contacts)};
$SIG{INT} = sub {&fatal("Received interrupt signal. Shutting down ...

...", 0, $remote_contacts)};
$SIG{ABRT} = sub {&fatal("Received abort signal. Shutting down ...

...", 0, $remote_contacts)};
$SIG{HUP} = sub {&fatal("Received hangup signal. Shutting down ...

...", 0, $remote_contacts)};
$SIG{QUIT} = sub {&fatal("Received quit signal. Shutting down...", ...

0, $remote_contacts)};
325 ###:NOTE: 2005.11.15 (RJR) Tried creating a diagnostic tool which ...

can be used
###:NOTE: to get variable information without killing the ...

process. Add
###:NOTE: your variable to the list of output below. Then ...

restart the
###:NOTE: client, send it a USR1 kill signal, and check the ...

logfile.
$SIG{USR1} = sub {

330 my $diagnostics;
$diagnostics .= "\n\tNumber of child processes: $children.";
foreach $receiver (sort keys %IP_INFO) {

$diagnostics .= "\n\t$receiver: timeout $IP_INFO{$receiver ...
}{timeout}";

$diagnostics .= ",\tconnect_count $IP_INFO{$receiver}{ ...
success}";

335 }
&logmsg("Received usr1 signal. Diagnostic info:", $diagnostics) ...

;
};
This one signifies the child process is done; set to REAPER only ...

upon debug
because it exits erroneously if several files are evaluated at ...

once.

page 15 of 62

LIGO-T050166-00

340 if ($debug > 1) {
$SIG{CHLD} = \&REAPER;

} elsif ($debug) {
&logmsg("Ignoring \$SIG{CHLD} signals.");
$SIG{CHLD} = ’IGNORE’;

345 #} else { $SIG{CHLD} = sub { $children -= 1; } }
} else { $SIG{CHLD} = ’IGNORE’ }

This is the start of the main loop, which will cycle until the process is terminated. The loop
cycles after a keep-alive signal is transmitted to each receiver. The loop begins by resetting the
number of recognized children processes to zero and checking the INBOX directory for messages.

347 #########################
Cycle every second, looking for incoming mail
while (sleep 1 or sleep 2) {

350 #####################
Re-cycle as long as we have children processes (try not ...

to clobber
the socket communication)

next if $children;
Start with baseline-- 0 children (get incremented handling ...

each file)
355 $children=0;

#####################
Read contents of inbox directory
opendir INBOX, $inbox

or &fatal("Could not read directory $inbox: $!", 1);
360 my @allfiles = readdir INBOX;

close INBOX;
print "Files in $inbox: @allfiles\n" if ($verbosity and $debug) ...

;

If any files exist in the INBOX directory, a sub-loop is started which cycles through all the
message files. Any hidden files are ignored, while files which do not end in “notice” generate an
email message, terminating the process. Only files ending in “notice” are considered as potential
alerts and are copied to the OUTBOX/unparsed directory. The “From:” line is compared with
the list of accepted senders. If the sender does not match any of the accpeted senders, the file is
deleted from both the INBOX and the OUTBOX. In particular, if the message file is a self-addressed
message or an error from the sendmail daemon, an entry is made in the LOGFILE before the file is
deleted.

364 #####################
365 ##### If there are any notices, start a handler script

foreach $infile (@allfiles) {
my $success=1;
Ignore any hidden files/directories
if ($infile =˜ /ˆ\.+/) {

370 &logmsg("Encountering hidden file: $infile") if ($debug ...
> 1);

page 16 of 62

LIGO-T050166-00

next; # foreach $infile (@allfiles) ...
Handle any recognized files
} elsif ($infile =˜ /notice$/) {

Copy (link) the new file to the OutBox
375 eval { link "${inbox}/${infile}","${outbox}/unparsed/${ ...

infile}"; }
or &fatal("Could not link file $inbox/$infile: $!", ...

1);

Read the file into an array; check for originator &
subject information; this info assigns the handler

380 open(NOTICE, "${outbox}/unparsed/${infile}");
my @info = <NOTICE>;
close NOTICE;
my %notice = map /ˆ(Date|From|Subject): (.+)/, @info;

print "Notice: @notice\n"
385 print "Notice from $notice{’From’} re: $notice{’Subject ...

’} at $notice{’Date’}\n"
if $verbosity;

Catch all emails not originating from an accepted ...
sender address

unless (scalar(grep { $notice{’From’} =˜ /$_/ } ...
@accepted_senders)) {

390 # Also, just delete messages from MAILER-DAEMON or ...
myself, which indicate email problems
($notice{’From’} =˜ /(MAILER-DAEMON|wk_sz\@ligo\. ...

caltech\.edu)/) ?
&logmsg("Deleting returned/self-addressed ...

message: $infile") :
&fatal("Received unauthorized email; Subject: ...

$notice{’Subject’}", -2);
unlink "${outbox}/unparsed/${infile}", "${inbox}/${ ...

infile}"
395 or &fatal("Could not delete $infile: $!.", 1);

next; # foreach $infile (@allfiles) ...
}

If the message is from an accepted sender, the “Subject:” line is checked against several regular
expressions. Once a match is found, the process is forked, and the child process runs the appro-
priate handler module on the confirmed alert (cf. A.2). If no match is found, an email is sent to
the PARSING SCRIPT ADMINISTRATOR, containing the subject line of the message, indicating the
message is unparseable. Whether or not a match is found, the parent process deletes the message
file in the INBOX. The handler modules are responsible for deleting successfully parsed messages
from the OUTBOX.

398 ### Spawn an appropriate handler
$_ = $notice{’Subject’};

page 17 of 62

LIGO-T050166-00

400 SWITCH: {
#:NOTE: 2005.04.12 RJR-- I’ve expanded the list of emails which get ...

deleted automatically,
#:NOTE: including Swift notices of pointing changes or lightcurve ...

information.
(/ˆBACODINE_POSITION/ or
/ˆGCN\/SWIFT_\w{3,4}_(LIGHTCURVE|IMAGE|SRC)/ or

405 /ˆGCN\/SWIFT_(POINTING_DIR|SC_SLEW|FOM_OBSERVE)/) ...
and do {
$success &= &spawn(\&handle_NOPARSE, $infile,\% ...

notice);
$children +=1;
last SWITCH;

};
410 /ˆGCN\/HETE_POSITION/ and do {

$success &= &spawn(\&handle_HETE, $infile, \% ...
notice);

$children +=1;
last SWITCH;

};
415 /ˆGCN\/IPN_POSITION/ and do {

$success &= &spawn(\&handle_IPN, $infile, \% ...
notice);

$children +=1;
last SWITCH;

};
420 /ˆGCN\/INTEGRAL_POSITION/ and do {

$success &= &spawn(\&handle_INTEGRAL, $infile, ...
\%notice);

$children +=1;
last SWITCH;

};
425 /ˆGCN\/SWIFT_(BAT|XRT|UVOT)_(ALERT|POSITION)/ and ...

do {
$success &= &spawn(\&handle_SWIFT, $infile, \% ...

notice);
$children +=1;
last SWITCH;

};
430 &logmsg("Unable to identify file OutBox/unparsed/ ...

$infile");
&fatal("Can’t parse email-- Subject: $notice{’ ...

Subject’}", -2);
$success &= 1;
last SWITCH;

}
435

page 18 of 62

LIGO-T050166-00

For unrecognized files, produce a fatal error
} else {

&fatal("Improper filename ($infile) in $inbox", 1);
}

440 print "$infile spawned successfully? $success\n" if $debug;

#####################
Delete the file if parsed successfully; otherwise log the ...

error
if ($success) {

445 &logmsg("Deleting file from InBox: $infile");
unlink "${inbox}/${infile}"

or &fatal("Could not delete $infile: $!.", 1);
next; # foreach $infile (@allfiles) {

}
450 else { &logmsg("Could not parse file: $infile") }

} # end of foreach $infile (@allfiles) {

Once all the message files from the INBOX have been deleted, a keep-alive signal is sent to the
receiver scripts running at the detector sites. The keep-alive signal is in the same format as a trigger
(cf. 3). If any sites are currently in timeout, the corresponding timeout field of %IP_INFO is
decremented and no keep-alive signal is sent. Otherwise, a timed subroutine is run which sends
the keep-alive signal to the site (using ¬ify_ops. If the timer expires before the keep-alive
signal is sent, the subroutine exits abnormally with a timeout error. The timeout error is recorded
in the LOGFILE. The duration of the IP communication is printed on standard out if indicated by
the TIME_TCP constant declared at the beginning of the script.

452 #####################
Send keep-alive signal when finished
wait for children processes to start up and handle socket ...

communication
455 # sleep $children if $children;

my @ops_msg = (1);
my @ta = gmtime();
push @ops_msg, sprintf("UTC-%4d-%02d-%02d-%02d:%02d:%02d", ...

(1900 + $ta[5]),
(1 + $ta[4]), $ta[3], $ta[2], $ta[1], ...

$ta[0]);
460 push(@ops_msg, "UTC-0000-00-00-00:00:00");

Loop over each receiver (e.g. LHO, LLO, GEO, CIT, etc.)
###:NOTE: RJR 2005.11.21 -- trying to see if LLO is dropped out ...

because it’s last in the IP list.
foreach $receiver (sort keys %IP_INFO) {

465 foreach $receiver (’LLO’,’LHO’,’GEO’) {
check for a hold on a particular receiver before ...

proceeding
if ($IP_INFO{$receiver}{timeout}) {

page 19 of 62

LIGO-T050166-00

--$IP_INFO{$receiver}{timeout};
} else {

470 eval {
local $SIG{ALRM} = sub {

$IP_INFO{$receiver}{timeout} = ...
KEEPALIVE_TIMEOUT;

die "Timeout over $receiver socket $IP_INFO{ ...
$receiver}{ip}:" .
"$IP_INFO{$receiver}{port}";

475 };
Send a keep-alive signal to receiver
alarm ALARM;
my $start_time = [gettimeofday];
$IP_INFO{$receiver}{timeout} = IP_TIMEOUT,

480 $IP_INFO{$receiver}{success} = -1 if
¬ify_ops($IP_INFO{$receiver}{ip},

$IP_INFO{$receiver}{port},
$IP_INFO{$receiver}{contact}, \ ...

@ops_msg);
print "Time to send keep-alive to $IP_INFO{ ...

$receiver}{ip}: ",
485 &tv_interval($start_time), "\n" if TIME_TCP;

alarm 0;
}; # end of eval {

Log timeout errors; exit on any other error from eval ...
{} statement

490 if ($@) {
chomp $@;
($@ =˜ /Timeout over \w+ socket/) ?

&logmsg("$@ while sending keepalive, after",
$IP_INFO{$receiver}{success}, "successes; ...

counting down from",
495 $IP_INFO{$receiver}{timeout}) :

&fatal("Syntax error over socket while sending ...
keepalive\n$@",

4, $IP_INFO{$receiver}{contact});
$IP_INFO{$receiver}{success} = 0;

} else {
500 # Tally the number of consecutive successful ...

connections.
$IP_INFO{$receiver}{success} = $IP_INFO{$receiver}{ ...

success}+1;
&fatal("Sent keep-alive : $ops_msg[0] $ops_msg[1] ...

$ops_msg[2]",
-2, $IP_INFO{$receiver}{contact}) if $debug ...

> 1;

page 20 of 62

LIGO-T050166-00

} # end of if ($@) {
505 } # end of if ($IP_INFO{$receiver}{ ...

timeout}) {
} # end of foreach $receiver (sort ...

keys %IP_INFO) {
} # end of while (sleep 1 or sleep 2) {

Control of the parsing script should never go outside the while() loop. The following guar-
antees that the script terminates with some debug information passed to standard out.

508 &fatal("Passed through while loop. Some important variables: \$\@: ...
$@, \$!:$!, \$?:$?, \$\$:$$...",

0, $remote_contacts);
510 exit 0;

The &get_timestamp() subroutine follows. It takes as input a timestamp in one of the
recognized formats and returns the equivalent GPS timestamp. It first fills a Perl time array variable
(@ctime) with time fields obtained from the input timestamp. Next it writes a standard format
timestring ($tmptime) and passes it to the LIGOTools tconvert function.

511 ###
get_timestamp(timestring) subroutine
###
sub get_timestamp {

515 my ($timezone, $partial_seconds, $time_out, $time_fmt);
my @ctime = ("undef") x 9;
my $timestamp = shift;
print "Parsing timestamp: $timestamp\n" if ($verbosity and ...

$debug);
Most times are in hh:mm:ss(.ss) format

520 if ($timestamp =˜ m"(\d{1,2}):(\d{1,2}):(\d{1,2})(\.\d+|)") {
arranging array according to localtime() output:
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst)
:NOTE: RJR 2003.12.05 We’ll use $partial_seconds at the ...

end
because gmtime() deals only with integer seconds.

525 $partial_seconds = ($4) ? $4 : 0;
$ctime[0] = $3 + $partial_seconds;
$ctime[1] = $2;
$ctime[2] = $1;

}
530 ### Recognized timezones are [ECMP][SD]T, UTC?, ...

[+\-][012][0-9]00
(We’re going to shift the time to UTC after executing ...

timegm())
$timezone = $1 if ($timestamp =˜ m"\b([ECMP][SD]T)\b" or

$timestamp =˜ m"\b(UTC?)\b" or
$timestamp =˜ m"\d+:\d+:\d+\s ...

+\+?(\-?[012][0-9]00)\b");
535 ### Recognized dates are:

page 21 of 62

LIGO-T050166-00

(DAY,?|) DD MONTH YYYY
(YY)?YY/MM/DD
MM/DD/YY(YY)?
YYYY.MM.DD

540 # Parse (DAY,?|) DD MONTH (YY)YY date string
if ($timestamp =˜ m"(\w{2,9}|),? (\d+) (\w{3,9}) (\d{2}|\d{4}) ...

") {
my %test = ("month" => $3, "day_of_week" => $1);
$ctime[3] = $2;
$ctime[4] = 0;

545 my @test = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov ...
Dec);

foreach (@test) { ($test{month} =˜ /$_/) ? last : $ctime ...
[4]++ }

$ctime[5] = ($4 < 1900) ? ($CENTURY - 1900 + $4) : $4 - ...
1900;

:NOTE: RJR 2003.12.05 Actually, the following effort ...
gets reversed

when elements [6..8] of @ctime are set to 0.
550 $ctime[6] = 0;

@test = qw(Sun Mon Tue Wed Thu Fri Sat);
foreach (@test) { ($test{day_of_week} =˜ /$_/) ? last : ...

$ctime[6]++ }
}
Only determines YY/MM/DD if "TJD;" is found (GRB_DATE string)

555 elsif ($timestamp =˜ /TJD;/ and $timestamp =˜ m"(\d+)/(\d+)/(\d ...
+)") {
$ctime[3] = $3;
$ctime[4] = $2 - 1;
$ctime[5] = ($1 < 100) ? ($CENTURY - 1900 + $1) : $1 - ...

1900;
}

560 # Parse MM/DD/YY(YY)? date string
elsif ($timestamp =˜ m"(\d+)/(\d+)/(\d+)") {

$ctime[3] = $2;
$ctime[4] = $1 - 1;
$ctime[5] = ($3 < 100) ? ($CENTURY - 1900 + $3) : $3 - ...

1900;
565 }

else {
&logmsg("get_timestamp: Can’t determine time format for: ...

$timestamp");
}

570 #####################
Check that the relavant fields in @ctime are filled before ...

continuing

page 22 of 62

LIGO-T050166-00

if (grep /undef/, @ctime[0..5]) {
&logmsg("get_timestamp: Can’t parse timestamp ($timestamp) ...

").
"into ctime array (" .(join ’ ’,@ctime) .")";

575 $time_out = 0;
$time_fmt = "unknown";
return ($time_out, $time_fmt);

} else {
In order to run timegm, we need to clear the rest of the ...

fields
580 @ctime[6..8] = (0,0,0);

#####################
Convert the time to UTC using $timezone
#print "\$timezone: $timezone\n" if ($verbosity and $debug) ...

;
585 if ($timezone =˜ /ˆ\-?\d{4}$/) {

$ctime[2] -= int($timezone / 100);
} elsif ($timezone =˜ /ˆ[ECMP][SD]T$/) {

$ctime[2] += grep /$timezone/,
(0,0,0,0,"EDT","EST|CDT","CST|MDT","MST| ...

PDT","PST");
590 } elsif ($timezone =˜ /ˆUTC?$/) {

It’s okay, we don’t have to do anything here
} else {

It’s not okay-- what could the timezone be?
&logmsg("get_timestamp: Can’t understand timezone ...

$timezone");
595 $time_out = 0;

$time_fmt = "unknown";
return ($time_out, $time_fmt);

}
}

600

#####################
Parse the timestamp into (scalar localtime()) format
print "\@ctime yields (", (join ’,’, @ctime),")\n" if (...

$verbosity and $debug);
605 ### :NOTE: RJR 2003.12.05 The following method doesn’t quite ...

work because
we don’t get the fractions of a second afterward. We’ll ...

add the
fraction after checking the GPS time.
my $tmptime = scalar gmtime(timegm_nocheck(@ctime));
print "Parsed timestamp: $tmptime\n" if ($verbosity and $debug) ...

;

page 23 of 62

LIGO-T050166-00

610
print "Initial value of \$!: $!\n";
We should probably change the response to $SIG{CHLD} here ...

before
forking a system call process
eval {

615 # local $SIG{CHLD} = ’IGNORE’;
local $SIG{CHLD} = ’DEFAULT’;
$tmptime = ‘$TCONVERT $tmptime‘;

};
&logmsg("get_timestamp: eval {tconvert \$tmptime}; returned $@ ...

") if $@;
620

:NOTE: RJR 2003.12.05 Unfortunately, I can’t find a way to ...
successfully

check the return code for TCONVERT. It looks like currently ...
the

backticks are returning -1 : "No child processes".
if ($tmptime and $tmptime =˜ /(\d{9,10})/) {

625 # :NOTE: RJR 2003.12.05 Remember to add partial_seconds on, ...
as

gmtime() deals only with integer seconds.
$time_out = $1 + $partial_seconds; $time_fmt = "GPS ...

";
} else { $time_out = timegm_nocheck(@ctime); $time_fmt = " ...

unknown"; }

630 # Send a fake time; we’re just testing the code here
$time_out = 729000000, $time_fmt = "GPS" if $debug > 1;
return ($time_out, $time_fmt);

}

The &check_times() subroutine follows. It finds the difference between the event times-
tamp and the date of the email and compares this value to the stand-down interval corresponding to
the type of event (found in %EVENT_TABLE). If the email was sent during the defined stand-down
interval, an alert signal is sent to each of the sites, in the same manner that the keep-alive signal
was sent above. The response from each site is recorded in the LOGFILE.

634 ###
635 #### check_times() subroutine

Compares email_ and event_ timestamps (if possible) to see if ...
the email

has been delayed too long to be noteworthy.
:NOTE: It’s difficult to use the current (computer) time, ...

because the
:NOTE: computer time may have been incorrectly set.

640 ###
sub check_times {

page 24 of 62

LIGO-T050166-00

#####################
Check whether timestrings are compareable

645 if ($time_info{email_timefmt} ne "GPS" or
$time_info{event_timefmt} ne "GPS") {
&logmsg("check_times: unknown time format -- cannot compare ...

times.");
return 3;

}
650 my $time_diff = int($trig_info{email_timestamp} -

$trig_info{event_timestamp});
#####################
Look for the detector information in %EVENT_TABLE
my $event_ref;

655 if (exists $EVENT_TABLE{$det_info{det_name}}) {
$event_ref = $EVENT_TABLE{$det_info{det_name}};

} elsif ($trig_info{event_type} =˜ /GRB/) {
$event_ref = $EVENT_TABLE{GRB};

} elsif ($trig_info{event_type} =˜ /SN/) {
660 $event_ref = $EVENT_TABLE{SN};

} else { $event_ref = $EVENT_TABLE{OTHER}; }
print "@{$event_ref}\n" if $verbosity;

#####################
665 ### Check if email timestamp is sufficiently close to event ...

timestamp
if ($time_diff < $$event_ref[2]) {

&logmsg("check_times: Notifying operators of $$event_ref[1] ...
event at GPS " .

"$trig_info{event_timestamp}.");

670 ### Put together the TCP/IP message
my $tmp_time = int($trig_info{event_timestamp});
my @ops_msg = ($$event_ref[0]);
eval {local $SIG{CHLD} = ’IGNORE’; $tmp_time = ‘$TCONVERT ...

$tmp_time‘};
&logmsg("check_times: eval (tconvert \$tmptime); returned ...

$@") if $@;
675

if ($tmp_time =˜ /ˆ(\w+) (\d+) (\d+) ([\d:]+) (UTC)/) {
my $mo =

int((index "JanFebMarAprMayJunJulAugSepOctNovDec", ...
$1)/3 +1);

push @ops_msg, sprintf("%s-%d-%02d-%02d-%s", $5, $3, ...
$mo, $2, $4)

680 } else { &logmsg("check_times: unable to parse $tmp_time") ...
}

page 25 of 62

LIGO-T050166-00

$tmp_time = int ($trig_info{event_timestamp} + ...
$$event_ref[2]);

eval {local $SIG{CHLD} = ’IGNORE’; $tmp_time = ‘$TCONVERT ...
$tmp_time‘};

&logmsg("check_times: eval (tconvert \$tmptime); returned ...
$@") if $@;

685
if ($tmp_time =˜ /ˆ(\w+) (\d+) (\d+) ([\d:]+) (UTC)/) {

my $mo =
int((index "JanFebMarAprMayJunJulAugSepOctNovDec", ...

$1)/3 +1);
push @ops_msg, sprintf("%s-%d-%02d-%02d-%s", $5, $3, ...

$mo, $2, $4)
690 } else { &logmsg("check_times: unable to parse $tmp_time") ...

}
print "Ops message: ", (join ’ ’, @ops_msg), "\n" if ...

$verbosity;

$confirmation-- the list of servers which have ...
acknowledged the event.

my $confirmation = "";
695 ### Loop over each receiver (e.g. LHO, LLO, GEO, CIT, etc.)

foreach $receiver (sort keys %IP_INFO) {
check for a hold on a particular receiver before ...

proceeding
if (!$IP_INFO{$receiver}{timeout}) {

my $start_time = [gettimeofday];
700 eval {

local $SIG{ALRM} = sub {
die "Timeout over $receiver socket ", ...

$IP_INFO{$receiver}{ip}, ":",
$IP_INFO{$receiver}{port};

};
705 ### Notify receiver of event; set timeout on ...

error
alarm ALARM;
$IP_INFO{$receiver}{timeout} = IP_TIMEOUT,
$IP_INFO{$receiver}{success} = -1 if

¬ify_ops($IP_INFO{$receiver}{ip},
710 $IP_INFO{$receiver}{port},

$IP_INFO{$receiver}{contact}, ...
\@ops_msg);

print "Time to send event_$ops_msg[0] to ...
$IP_INFO{$receiver}{ip}: ",
&tv_interval($start_time), "\n" if TIME_TCP ...

;
alarm 0;

page 26 of 62

LIGO-T050166-00

715 }; # end of eval {
Tally the number of consecutive successful ...

connections.
$IP_INFO{$receiver}{success} = ($@) ? 0 : $IP_INFO{ ...

$receiver}{success}+1;
Exit on any error from eval{} statement, since ...

this is a child process
if ($@) {

720 chomp $@;
($@ =˜ /Timeout over \w+ socket/) ?

&fatal("$@ while sending $$event_ref[1] ...
trigger",

-3, $IP_INFO{$receiver}{contact}) :
&fatal("Syntax error over socket while ...

sending $$event_ref[1] trigger\n$@",
725 4, $IP_INFO{$receiver}{contact});

} else {
$confirmation .= "\n\tTime to notify ${receiver ...

}: " . &tv_interval($start_time);
} # end of if ($@) {

Report whether a receiver was in timeout during an ...
event

730 } else {
&logmsg("check_times: receiver",$IP_INFO{$receiver ...

}{ip},
"was in timeout during event. Timeout ...

count:",
$IP_INFO{$receiver}{timeout});

} # end of if (!$IP_INFO{$receiver}{ ...
timeout}) {

735 } # end of foreach $receiver (sort ...
keys %IP_INFO) {

if ($confirmation) {
&fatal("Sent $trig_info{notice_type} $$event_ref[1] ...

notice:\n$ops_msg[0] $ops_msg[1] " .
"$ops_msg[2]\n$trig_info{notice_comments}\n\ ...

nServers responding:$confirmation",
-4, $email_event)

740 unless $debug;
} else {

&fatal("Could not send $trig_info{notice_type} ...
$$event_ref[1] notice:\n$ops_msg[0] " .

"$ops_msg[1] $ops_msg[2]\n$trig_info{ ...
notice_comments}\n\nNo servers responded.",

-4, $email_event)
745 unless $debug;

} # end of if ($confirmation) {

page 27 of 62

LIGO-T050166-00

Email delay was too long
} else {

750 &logmsg("check_times: Will not notify operator of event ...
$trig_info{event_type}: " .

"email sent $time_diff seconds after event.");
} # end of if ($time_diff < $$event_ref[2]) {

755 return 0;
}

The ¬ify_ops() subroutine follows. It is responsible for managing the IP communica-
tion. It first opens a socket connection with the given IP and port. Then it spawns a child process
which is responsible for sending the TCP/IP message. The parent process listens on the connection
for an acknowledgement and returns this to the calling function. The child process normally exits
on its own. Any errors are sent to both the PARSING SCRIPT ADMINISTRATOR and the relevant
RECEIVER SCRIPT ADMINISTRATOR.

757 ###
notify_ops(\@tokens) subroutine
Exit codes:

760 #### 0: Normal termination
1: Function bypassed because $NOTIFY_OPS is unset or zero
2: Function was unable to initiate/complete socket ...

communication
###
sub notify_ops {

765 my $remote_ipaddr = shift;
my $remote_port = shift;
my $remote_contact = shift;
my $ref_tokens = shift;
my ($sock_time, $kidpid, $read_data);

770
&logmsg("notify_ops: Will not send message @$ref_tokens to ...

$remote_ipaddr"),
return 1

unless ($NOTIFY_OPS);

775 #####################
Open socket to server
&logmsg("notify_ops: Opening socket to $remote_ipaddr") if ...

$debug;
$sock_time = scalar times;
my $sock = new IO::Socket::INET (PeerAddr => $remote_ipaddr,

780 PeerPort => $remote_port,
Proto => ’tcp’,
)

page 28 of 62

LIGO-T050166-00

or &logmsg("Could not create socket to $remote_ipaddr"),
&fatal("Could not create socket to $remote_ipaddr", -3, ...

$remote_contact),
785 return 2;

$sock->autoflush(1);

#####################
790 ### Fork socket for read/write

&fatal("Can’t fork socket comm. $!", 3, $remote_contact) unless ...
defined($kidpid = fork());

Parent is in charge of reading data from server
if ($kidpid) {

795 # do domething with server messages
while (defined($read_data = <$sock>)) {

chomp $read_data;
&logmsg("notify_ops: $remote_ipaddr: $read_data")

if ($$ref_tokens[0] != 1 or $debug > 1);
800 }

kill("TERM", $kidpid);

$sock_time = scalar times - $sock_time;

805 ### Child is in charge of sending data to server
} else {

$am_child = 1;
&logmsg(sprintf("notify_ops: sending %s\n", (join ’ ’, ...

@$ref_tokens)))
if $debug;

810 print $sock (join ’ ’,@$ref_tokens), "\n";
close($sock);
exit 0;

}

815 close($sock);
&logmsg("notify_ops: Closed socket connection") if $debug;
return;

}

The &send_trigger() subroutine follows. This subroutine is called from the handler mod-
ules to make an entry in the LIGO Lightweight trigger file. The entry is essentially a dump of the
%trig_info hash variable contents into a file. All fields are written as quoted strings with the
following exceptions. The timestamps are verified to be in GPS format and written in second and
nanosecond integer format. Positions are written as signed ten-character decimal numbers. Com-
ments from the email alerts are truncated to forty characters in the trigger file (however, they are
still printed in full in the parsed notice file).

page 29 of 62

LIGO-T050166-00

819 ###
820 #### send_trigger() subroutine

Sends the trigger information to the metadatabase.
Currently unused
###
sub send_trigger {

825 my $success = 1;

&logmsg("send_trigger: will not send $infile trigger to ...
$TRIGFILE"),

return 1
unless $SEND_TRIGGER;

830
&logmsg("send_trigger: writing $infile trigger to $TRIGFILE");
open(TRIGGER, ">>${outbox}/$TRIGFILE")

or &fatal("Can’t open OutBox/$TRIGFILE for appending.", 1);

835 #####################
print values for each key in %trig_info
foreach $tmpkey (sort keys %trig_info) {

print event_timestamp as <start_time>,<stop_time> ...
integers

if ($tmpkey =˜ /ˆevent_timestamp$/ and
840 $trig_info{event_timefmt} eq "GPS") {

my @tmpval = (int($trig_info{$tmpkey}));
push @tmpval,
int(($trig_info{$tmpkey} - $tmpval[0]) * 1000000000);
printf TRIGGER ’%d,%d,’, @tmpval;

845 next;
print timestamps as integers
} elsif ($tmpkey =˜ /(\w+)_timestamp/) {

($trig_info{"$1_timefmt"} eq "GPS") ?
printf TRIGGER ’%d,’, $trig_info{$tmpkey} :

850 printf TRIGGER ’%d,’, 0;
next;

ignore time formats
} elsif ($tmpkey =˜ /(\w+)_timefmt/) {

next;
855 # print location information as real numbers

} elsif ($tmpkey =˜ /_(dec|ra|z|ele|lat|long)/) {
($trig_info{$tmpkey}) ?

printf TRIGGER ’%10.5e,’, $trig_info{$tmpkey} :
printf TRIGGER ’%10.5e,’, 0.0;

860 next;
limit string lengths for comments and urls
} elsif ($tmpkey =˜ /_(comments|url)/) {

page 30 of 62

LIGO-T050166-00

$trig_info{$tmpkey} =˜ s/,/\\,/; ### LIGO-LW ...
requires commas to be escaped

(printf TRIGGER ’"%-40s",’, substr($trig_info{$tmpkey ...
},0,40)), next

865 unless length($trig_info{$tmpkey}) < 40;
}
print everything else as strings
printf TRIGGER ’"%s",’, $trig_info{$tmpkey};

}
870 # terminate the trigger line

print TRIGGER "\n";

close TRIGGER
or &fatal("Can’t close OutBox/$TRIGFILE.", 1);

875 return $success;
}

The &spawn() and &REAPER() subroutines follows. The &spawn() subroutine starts a
child process and passes it a block of code to execute. The child process exits when it finishes
processing the code block, sending a CHLD signal back to the parent process. This signal causes
the parent process to call the &REAPER() subroutine, which currently only determines the child’s
process ID.

877 ###
spawn(coderef, infile, hashref) subroutine
Spawns a child process which handles the email

880 ###
sub spawn {

###############
Check calling arguments
print "@_\n" if ($verbosity and $debug > 1);

885 my $coderef = shift;
my @argref = @_;
unless ($coderef && ref($coderef) eq ’CODE’) {

&fatal("Spawn process called with incorrect arguments: ...
$coderef, @_", 3);

}
890

###############
Fork the process
my $pid;
if (!defined($pid = fork)) {

895 &fatal("Cannot fork handler script", 3);
return 0;

} elsif ($pid) {
&logmsg("Spawned child PID $pid") if $debug;
return 1;

900 } else { $am_child = 1 }

page 31 of 62

LIGO-T050166-00

###############
Only the child reaches this point
exit &$coderef(@argref);

905 }

sub REAPER {
$waitedpid = wait;
#$SIG{CHLD} = \&REAPER; # if you don’t have sigaction(2)

910 &logmsg("Reaped child PID $waitedpid with exit $?") if $debug;
}

The &fatal() subroutine follows. This subroutine is responsible for sending all diagnostic
and event confirmation emails, as well as possibly terminating the script. The subroutine is given
a message to include in the email, a code identifying the subject of the email, and an optional list
of blind carbon copy recipients. The codes are described in the listing below. Most importantly,
for codes below −1, control will return back to the calling function; and codes at or above −1 will
cause the script to terminate. &fatal() depends on the existence of a mail process handler, in
this case /usr/lib/sendmail.

912 ###
fatal(msg, err) subroutine
Sends email to appropriate users regarding the nature of

915 #### the failure.
Some exit codes:
-4 - Not fatal; GRB message sent to control rooms
-3 - Not fatal; receiving socket is not available
-2 - Not fatal; diagnostic/debug messages

920 #### -1 - Existing process id
0 - Normal or user-prompted termination
1 - File or directory I/O error
2 - Parse error
3 - Fork error

925 #### 4 - Socket syntax error
###
sub fatal {

local $SIG{CHLD} = ’DEFAULT’;
my $msg = shift;

930 my $code = shift;
my $bcc = (scalar @_) ? shift : "";
$bcc = ($bcc) ? "\nBcc: $bcc" : "";
my $prefix = "[$0 ". (scalar gmtime) ." GMT]:";
my $ch_pid = ($am_child) ? "(child process $$)" : "(process ...

$$)";
935 my %err_codes = (-4 => "GRB confirmation message",

-3 => "TCP/IP warning",
-2 => "Diagnostic message",
-1 => "Existing PID",
0 => "Normal termination",

page 32 of 62

LIGO-T050166-00

940 1 => "File or directory I/O error",
2 => "Parse error",
3 => "Fork/Child error",
4 => "TCP/IP error"

);
945 $msg = ($code < -1) ? $msg : "Process terminated.\n$msg";

(($debug) ? open(SENDMAIL, ">&STDOUT") :
open(SENDMAIL, "|/usr/lib/sendmail -t"))

or die "Can’t fork for sendmail: $!\n";
print SENDMAIL <<"EOF";

950 From: External Trigger Subgroup <wk_sz\@acrux.ligo.caltech.edu>
To: $email_to$bcc
Subject: $err_codes{$code} in $0
$prefix $msg $ch_pid
EOF

955 close(SENDMAIL) or warn "sendmail didn’t close nicely; exit ...
status $? (error $!)";

Don’t need to exit if sending a diagnostic message.
if ($code < -1) { return 0 }
Remove PID file (if not terminated with "Existing PID" ...

error)
960 unlink "$ENV{HOME}/.$0-pid" unless ($am_child or $code < 0);

Finish logfile
&logmsg("ˆˆˆˆ================ Ending $0") unless $am_child;
Exit with appropriate code
exit $code;

965 }

A.2 A walkthrough of the parsing script’s handlers
Below is a listing of the handler modules for the parsing script. It currently consists of five sub-
routines. The first subroutine (handle_NOPARSE) deletes GCN emails which are either sent for
testing purposes or have no use in alerting the control room to detected events. These emails are
identified by their subject line.

1 ###
handle_NOPARSE(infile, hashref) subroutine
This handles messages from GCN which are not meant to be ...

parsed. It just
deletes the file from OutBox and returns.
###

6 sub handle_NOPARSE {
my $success = 1;
my $infile = shift;
my $hashref = shift;
if ($$hashref{Subject} =˜ /BACODINE_POSITION/

page 33 of 62

LIGO-T050166-00

11 or $$hashref{Subject} =˜
/SWIFT_(\w{3,4}_LIGHTCURVE|\w{3,4}_IMAGE|\w{3,4}_SRC| ...

POINTING_DIR|SC_SLEW|FOM_OBSERVE)/) {
&logmsg("Deleting file from OutBox/unparsed: ${infile} ...

Subject: $$hashref{Subject}")
if $debug;

unlink "${outbox}/unparsed/${infile}"
16 or &fatal("Can’t unlink ${outbox}/unparsed/${infile ...

}",1);
}
return $success;

}

The next handler parses the HETE alerts. There are four kinds of HETE alerts which are parsed
by this module, but they are not distinguishable from the subject line. The module starts by loading
variables and opening the HETE alert file.

20 ###
handle_HETE(infile, hashref) subroutine
This handles HETE position notices. It records various
information from the notice and puts it into a hash array
(%trig_info) for dumping to the OutBox/parsed-GCN_alerts/

25 #### subdirectory.
####
It also checks the event time to see if operators should
be notified.
###

30 sub handle_HETE {
my (@notice, $i, $infile, $hashref, $success);
$success = 1;
$infile = shift;
$hashref = shift;

35 &logmsg("Parsing file from OutBox/unparsed: ${infile}") if ...
$debug;

open(NOTICE, "${outbox}/unparsed/${infile}")
or &fatal("Can’t open OutBox/unparsed/$infile for reading", ...

1);
@notice = <NOTICE>;
$i = 0;

40 close NOTICE
or &fatal("Can’t close OutBox/unparsed/$infile.", 1);

print "@notice" if ($verbosity and $debug);
foreach $tmpkey (sort keys %trig_info) {

print "\%trig_info{$tmpkey}\t: $trig_info{$tmpkey}\n"
45 if ($verbosity and $debug > 2);

}

The module loops through the lines of the email, passing through five different sections. The
loop consists of a series of tests, trying to match the current line with a regular expression. Once

page 34 of 62

LIGO-T050166-00

the line is matched, the data is passed to a hash variable, and control returns to the top of the loop
with the next line of the email.

The first section deals with timestamps from the Date:, NOTICE_DATE: and GRB_DATE:
and GRB_TIME: entries. Times are entered into the LIGO Lightweight table in GPS format, so
these entries must be converted into that format, using the get_timestamp() subroutine. The
GRB_DATE: and GRB_TIME: entries get combined before being passed to get_timestamp().

47 while (($i < $#notice) and ($_ = $notice[++$i])) {
chomp;
For extra debugging, record the email.

50 &logmsg(" ${infile} | $_") if ($debug > 1);

######################
Handle timestamp entries
email_timestamp, email_timefmt

55 ($trig_info{email_timestamp}, $trig_info{email_timefmt}) =
&get_timestamp($1), next if /ˆDate:\s+(.+)$/;

notice_timestamp, notice_timefmt
($trig_info{notice_timestamp}, $trig_info{notice_timefmt}) ...

=
&get_timestamp($1), next if /ˆNOTICE_DATE:\s+(.+)$/;

60 # event_timestamp, event_timefmt
if (/ˆGRB_(DATE|TIME):\s+(.+)$/) {

$tmpevent{"GRB_$1"} = $2;
($trig_info{event_timestamp}, $trig_info{event_timefmt ...

}) =
&get_timestamp("$tmpevent{GRB_DATE} $tmpevent{ ...

GRB_TIME}")
65 if (defined $tmpevent{’GRB_DATE’} and

defined $tmpevent{’GRB_TIME’});
next;

}

Next, the handler looks for entries identifying the type of notice (one of “HETE S/C Alert”,
“HETE S/C Update”, “HETE S/C Last”, or “HETE Ground Analysis”), and other information
pertaining to the email notice itself. A guess is made as to the URL of the notice on the GCN
website.

69 ######################
70 ### Handle notice entries

notice_type
$trig_info{notice_type} = $1, next if /ˆNOTICE_TYPE:\s ...

+(.*)$/;
notice_id, notice_sequence
$trig_info{notice_id} = $1,

75 $trig_info{notice_sequence} = $2, next
if /ˆTRIGGER_NUM:\s+(\d+),\s+Seq_Num: (\d+)$/;

notice_comments
if (/ˆCOMMENTS:\s+(.*)$/) {

page 35 of 62

LIGO-T050166-00

my $tmp_comments = $1;
80 while ((++$i < $#notice) and

($notice[$i] =˜ /ˆ(COMMENTS:|)\s+(.*)$/)) {
$tmp_comments .= " $2";

}
--$i;

85 $trig_info{notice_comments} = $tmp_comments;
next;

}
Take a guess at notice_url
$trig_info{notice_url} =

90 "http://gcn.gsfc.nasa.gov/other/$trig_info{notice_id}. ...
hete"

if ($trig_info{notice_id} and !$trig_info{notice_url});

The handler next looks for matches on the spacecraft (a.k.a. the “observer”). HETE includes
information about where the spacecraft is pointing, as well as the longitudinal position of the
spacecraft itself. Since HETE’s orbit is roughly about the equator, the latitude position is assumed
to be 0. The module also has hardcoded the spacecraft’s field of view. The altitude of the spacecraft,
necessary for any calculations determining when the gamma-ray burst would arrive at the LIGO
detectors, is not given.

92 ######################
Handle observer entries
obs_fov_ra

95 $trig_info{obs_fov_ra} = $1, next
if /ˆSC_-Z_RA:\s+([\d\-\.]+)(\s+\[deg\]|)/;

obs_fov_dec
$trig_info{obs_fov_dec} = $1, next

if /ˆSC_-Z_DEC:\s+([\d\-\.]+)(\s+\[deg\]|)/;
100 # HETE fov is essentially pi/2; we’ll hardcode this in for ...

now
$trig_info{obs_fov_ra_width} = 180; #degrees
$trig_info{obs_fov_dec_width} = 90; #degrees
HETE is usually around the equater, so obs_loc_lat is 0.
$trig_info{obs_loc_lat} = "0";

105 # obs_loc_long (positive if east, negative if west)
$trig_info{obs_loc_long} = $1, next

if /ˆSC_LONG:\s+(\d+)\s+\[deg East\]/;
$trig_info{obs_loc_long} = -1 * $1, next

if /ˆSC_LONG:\s+(\d+)\s+\[deg West\]/;
110 # No obs_loc_ele (yet)

Next, the handler looks at the detectors listed in the notice. Usually, the first detector to report
a trigger is the FREnch GAmma-ray TElescope (FREGATE), although occasionally, the Wide-
field X-ray Monitor (WXM) may trigger on an exceptionally loud X-ray flash. It is important to
determine which detectors observed the burst, so the module goes to some effort to list all the
detectors involved in observing the event. If a burst is only observed by FREGATE, there is a good
probability that the event is not really a gamma-ray burst at all, but some observed source or some

page 36 of 62

LIGO-T050166-00

noise. Also, the Soft X-ray Camera (SXC) has finer resolution than the WXM, and so can produce
a smaller error circle for the position of the burst. The module accumulates the SNR of the burst
in the detector, as well as the photon fluence and the energy-level for the trigger.

111 ######################
Handle detector entries; for HETE, this is WXM, SXC, ...

and FREGATE
if (/ˆTRIGGER_SOURCE/) {
det_name, det_band

115 $trig_info{det_name} = "FREGATE";
det_band

$trig_info{det_band} = $1 if /([\d\-]+ .?eV)/;
next;

}
120 # det_alts (preliminary)

if (/ˆ(WXM|SXC)/) {
my $tmpdet = $1;
push @dets, $tmpdet if (!@dets or grep !/$tmpdet/, ...

@dets);
}

125 # det_snr
$trig_info{det_snr} = $1, next if (/SIG\/NOISE:\s+([\d\.]+) ...

/);
det_peak, det_peak_int unavailable (yet)
det_fluence, det_fluence_int
if (/ˆGAMMA_RATE/) {

130 $trig_info{det_fluence} = $1 if m"([\d\.]+\s+\[cnts ...
[ˆ\]]*\])";

$trig_info{det_fluence_int} = $1 if m"([\d\.]+\s\[sec ...
.*\])";

next;
}

}
135

det_alts (final)
$trig_info{det_alts} = join ’ ’, @dets;

The last section the module looks for deals with the event itself, namely it’s location in the sky.
The SXC and WXM cameras have essentially the same format for distinguishing the location of
the event. The SXC defines an error box by its center and corners. The WXM defines an error
circle by its center and the corners of its circumscribed square. Coordinates are repeated using
three epochs of equatorial coordinates. Only those coordinates matching the $EPOCH variable
(currently defined in parse_notices.pl as “J2000”) are retained.

138 ######################
Handle event entries

140 ### NOTE: In general, SXC is more accurate than WXM (is more ...
accurate

than FREGATE)

page 37 of 62

LIGO-T050166-00

event_type (always GRB for HETE)
$trig_info{event_type} = "GRB";
no event_z or event_z_err (yet)

145
Handling coordinates
my ($coords_type, $is_in_coords, @ra_error, @dec_error);
SXC camera
if (grep /ˆSXC_CNTR/, @notice) {

150 my @sxc_entries = map {
$coords_type = $1 if /ˆ(SXC_CNTR_\w+:)/;
$is_in_coords=

(/ˆSXC/ or ($is_in_coords and s/ˆ\s+/${coords_type} ...
/)) ? 1 : 0;

$is_in_coords ? $_ : ();
155 } @notice;

foreach (@sxc_entries) {
event_ra

$trig_info{event_ra} = $1, next
if (/ˆSXC_CNTR_RA/ and /$EPOCH/ and m"([\-\d\.]+)d ...

");
160 # event_dec

$trig_info{event_dec} = $1, next
if (/ˆSXC_CNTR_DEC/ and /$EPOCH/ and m"([\-\d\.]+)d ...

");
event_ra_err, event_dec_err (preliminary)

if (m"ˆSXC_CORNER.?:\s+([\-\d\.]+)\s+([\-\d\.]+)\s+\[...
deg\]") {

165 push @ra_error, $1;
push @dec_error, $2;
next;

}
}

170 # event_err_type (Always ’error box’ for SXC, ’error disk’ ...
for WXM)

$trig_info{event_err_type} = "error box";
event_epoch (Always ’J2000’ (or whatever $EPOCH is) for ...

SXC, WXM)
$trig_info{event_epoch} = $EPOCH;
event_ra_err (final)

175 @ra_error = sort {$a <=> $b} @ra_error;
$trig_info{event_ra_err} =

(int (($ra_error[$#ra_error] - $ra_error[1]) * 5000)) / ...
10000

if $trig_info{event_ra};
event_dec_err (final)

180 @dec_error = sort {$a <=> $b} @dec_error;
$trig_info{event_dec_err} =

page 38 of 62

LIGO-T050166-00

(int (($dec_error[$#dec_error] - $dec_error[1]) * 5000) ...
) / 10000

if $trig_info{event_dec};
WXM camera

185 } elsif (grep /ˆWXM_CNTR/, @notice) {
my @wxm_entries = map {

$is_in_coords = (/ˆWXM/ || ($is_in_coords and /ˆ\s+/)) ...
? 1 : 0;

$_ if $is_in_coords;
} @notice;

190 foreach (@wxm_entries) {
event_ra

$trig_info{event_ra} = $1
if (/ˆWXM_CNTR_RA/ and /$EPOCH/ and m"([\-\d\.]+)d ...

");
event_dec

195 $trig_info{event_dec} = $1
if (/ˆWXM_CNTR_DEC/ and /$EPOCH/ and m"([\-\d\.]+)d ...

");
event_ra_err, event_dec_err (preliminary)

if (m"ˆWXM_CORNER.*:\s+([\-\d\.]+)\s+([\-\d\.]+)\s+\[...
deg\]") {
push @ra_error, $1;

200 push @dec_error, $2;
}

}
event_err_type (Always ’error box’ for SXC, ’error disk’ ...

for WXM)
$trig_info{event_err_type} = "error disk";

205 # event_epoch (Always ’J2000’ (or whatever $EPOCH is) for ...
SXC, WXM)

$trig_info{event_epoch} = $EPOCH;
event_ra_err (final)
@ra_error = sort {$a <=> $b} @ra_error;
$trig_info{event_ra_err} =

210 (int (($ra_error[$#ra_error] - $ra_error[1]) * 5000)) / ...
10000

if ($trig_info{event_ra} and scalar(@ra_error));
event_dec_err (final)
@dec_error = sort {$a <=> $b} @dec_error;
$trig_info{event_dec_err} =

215 (int (($dec_error[$#dec_error] - $dec_error[1]) * 5000) ...
) / 10000

if ($trig_info{event_dec} and scalar(@dec_error));
}

Finally, the handler writes the %trig_info hash variable to a file and creates subdivid-
ion hash variables. The event and email timestamps are compared via the check_times()

page 39 of 62

LIGO-T050166-00

subroutine, and an alert is sent to the control rooms if the email was sent soon enough after
the event. Regardless, the %trig_info hash is saved in LIGO Lightweight format via the
send_trigger() subroutine.

218 ######################
Done Handling entries; fill %time_keys

220 open(PARSED, ">${outbox}/parsed-GCN_alerts/${infile}")
or &fatal("Can’t open OutBox/parsed-GCN_alerts/${infile} ...

for writing.",1);
foreach (sort keys %trig_info) {

print " $_\t: $trig_info{$_}\n" if ($verbosity and $debug) ...
;

print PARSED " $_\t: $trig_info{$_}\n";
225 $time_info{$_} = $trig_info{$_} if /time(stamp|fmt)/;

$det_info{$_} = $trig_info{$_} if /ˆdet/;
$obs_info{$_} = $trig_info{$_} if /ˆobs/;
$event_info{$_} = $trig_info{$_} if /ˆevent/;
$notice_info{$_} = $trig_info{$_} if /ˆnotice/;

230 }
close PARSED

or &fatal("Can’t close OutBox/parsed-GCN_alerts/${infile ...
}.",1);

&logmsg("Deleting file from OutBox/unparsed: ${infile}") if ...
$debug;

unlink "${outbox}/unparsed/${infile}"
235 or &fatal("Can’t unlink OutBox/unparsed/${infile}",1);

#####################
Send notification to control room operators if necessary
$success &= &check_times() and &logmsg("$tmpreturn");

240
#####################
Send event to metadatabase
$success &= &send_trigger() and &logmsg("$tmpreturn");

245 return $success;
}

The next handler module is a placeholder for alerts from the InterPlanetary Network project.
These alerts are extremely rare, as they depend on triangulation calculations from multiple gamma-
ray detectors, and data from these detectors is not available in real-time. If any alerts come, they
will be saved in the OUTBOX.

247 ###
handle_IPN(infile, hashref) subroutine
###

250 sub handle_IPN {
my $success=1;
my $infile = shift;

page 40 of 62

LIGO-T050166-00

my $hashref = shift;
if ($$hashref{Subject} =˜ /GCN\/IPN_POSITION/) {

255 &logmsg("Will not delete file from OutBox/unparsed: ${ ...
infile}") if $debug;

unlink "${outbox}/unparsed/${infile}"
or &fatal("Can’t unlink ${outbox}/unparsed/${infile ...

}",1);
}

260 return $success;
}

The following handler parses alerts from the INTErnational Gamma-Ray Laboratory (INTE-
GRAL). The module is based on code from the HETE handler, and only minor differences exist
between INTEGRAL and HETE alerts. Only these differences will be noted in this appendix.

262 ###
handle_INTEGRAL(infile, hashref) subroutine
This handles INTEGRAL position notices. It records various

265 #### information from the notice and puts it into a hash array
(%trig_info) for dumping to the OutBox/parsed-GCN_alerts/
subdirectory.
####
It also checks the event time to see if operators should

270 #### be notified.
###
sub handle_INTEGRAL {
return 0;

my (@notice, $i, $infile, $hashref, $success);
275 $success = 1;

$infile = shift;
$hashref = shift;
&logmsg("Parsing file from OutBox/unparsed: ${infile}") if ...

$debug;
open(NOTICE, "${outbox}/unparsed/${infile}")

280 or &fatal("Can’t open OutBox/unparsed/$infile for reading", ...
1);

@notice = <NOTICE>;
$i = 0;
close NOTICE

or &fatal("Can’t close OutBox/unparsed/$infile.", 1);
285 print "@notice" if ($verbosity and $debug);

foreach $tmpkey (sort keys %trig_info) {
print "\%trig_info{$tmpkey}\t: $trig_info{$tmpkey}\n"

if ($verbosity and $debug > 2);
}

290
while (($i < $#notice) and ($_ = $notice[++$i])) {

chomp;

page 41 of 62

LIGO-T050166-00

For extra debugging, record the email.
&logmsg(" ${infile} | $_") if ($debug > 1);

295
######################
Handle timestamp entries
email_timestamp, email_timefmt
($trig_info{email_timestamp}, $trig_info{email_timefmt}) =

300 &get_timestamp($1), next if /ˆDate:\s+(.+)$/;
notice_timestamp, notice_timefmt
($trig_info{notice_timestamp}, $trig_info{notice_timefmt}) ...

=
&get_timestamp($1), next if /ˆNOTICE_DATE:\s+(.+)$/;

event_timestamp, event_timefmt
305 if (/ˆGRB_(DATE|TIME):\s+(.+)$/) {

$tmpevent{"GRB_$1"} = $2;
($trig_info{event_timestamp}, $trig_info{event_timefmt ...

}) =
&get_timestamp("$tmpevent{GRB_DATE} $tmpevent{ ...

GRB_TIME}")
if (defined $tmpevent{’GRB_DATE’} and

310 defined $tmpevent{’GRB_TIME’});
next;

}

######################
315 ### Handle notice entries

notice_type
$trig_info{notice_type} = $1, next if /ˆNOTICE_TYPE:\s+(.*) ...

$/;
notice_id, notice_sequence
$trig_info{notice_id} = $1,

320 $trig_info{notice_sequence} = $2, next
if /ˆTRIGGER_NUM:\s+(\d+),\s+Sub_Num: (\d+)$/;

notice_comments
if (/ˆCOMMENTS:\s+(.*)$/) {

my $tmp_comments = $1;
325 while ((++$i < $#notice) and

($notice[$i] =˜ /ˆ(COMMENTS:|)\s+(.*)$/)) {
$tmp_comments .= " $2";

}
--$i;

330 $trig_info{notice_comments} = $tmp_comments;
next;

}
Take a guess at notice_url
$trig_info{notice_url} =

page 42 of 62

LIGO-T050166-00

335 "http://gcn.gsfc.nasa.gov/other/$trig_info{notice_id}. ...
integral"

if ($trig_info{notice_id} and !$trig_info{notice_url});

The field of view for INTEGRAL’s burst detector is much smaller than HETE’s, and is marked
accordingly. Also, INTEGRAL’s orbit is highly elliptical and spacecraft position information is
not present in the alerts.

337 ######################
Handle observer entries
obs_fov_ra

340 $trig_info{obs_fov_ra} = $1, next
if (/$EPOCH/ and m"ˆSC_RA:\s+([\d\-\.]+)(\s+\[deg\]|)") ...

;
obs_fov_dec
$trig_info{obs_fov_dec} = $1, next

if (/$EPOCH/ and m"ˆSC_DEC:\s+([\d\-\.]+)(\s+\[deg\]|) ...
");

345 # INTEGRAL’s IBIS fov is 9-by-9 degrees; we’ll hardcode ...
this for now

obs_fov_ra_width
obs_fov_dec_width
$trig_info{obs_fov_ra_width} = 9; #degrees
$trig_info{obs_fov_dec_width} = 9; #degrees

350 # INTEGRAL’s orbit is highly elliptical, ranging from 9E3 ...
to 155E3 km

obs_loc_lat (positive if north, negative is south)
obs_loc_long (positive if east, negative if west)
obs_loc_ele

Only one detector appears in INTEGRAL alerts. Additionally, very little detector information
is present in the alerts. Namely, fluence and peak flux is not present.

354 ######################
355 ### Handle detector entries; for INTEGRAL, it’s IBIS, SPI, ...

JEM-X, OMC
det_name, det_band
$trig_info{det_name} = "IBIS";
det_band
det_alts

360 # det_snr
$trig_info{det_snr} = $1, next

if (/ˆGRB_INTEN:/ and m"([\d\-\.]+)(\s+\[sigma\]|)");
det_peak, det_peak_int
det_fluence, det_fluence_int

365
######################
Handle event entries
event_type (always GRB for INTEGRAL)
$trig_info{event_type} = "GRB";

page 43 of 62

LIGO-T050166-00

370 # no event_z or event_z_err (yet)

Handling coordinates
my ($coords_type, $is_in_coords, @ra_error, @dec_error);

event_ra
375 $trig_info{event_ra} = $1, next

if (/ˆGRB_RA/ and/$EPOCH/ and /([\d\-\.]+)d/);
event_dec
$trig_info{event_dec} = $1, next

if (/ˆGRB_DEC/ and/$EPOCH/ and /([\d\-\.]+)d/);
380 # event_ra_err, event_dec_err

$trig_info{event_ra_err} = $trig_info{event_dec_err} = $1, ...
next
if (/ˆGRB_ERROR:/ and m"([\d\-\.]+)(\s+\[arcmin|)");

event_err_type (Always ’error box’ for SXC, ’error disk’ ...
for WXM)

$trig_info{event_err_type} = "error disk";
385 # event_epoch (Always ’J2000’ (or whatever $EPOCH is) for ...

SXC, WXM)
$trig_info{event_epoch} = $EPOCH;

}

390 ######################
Done Handling entries; fill %time_keys
open(PARSED, ">${outbox}/parsed-GCN_alerts/${infile}")

or &fatal("Can’t open OutBox/parsed-GCN_alerts/${infile} ...
for writing.",1);

foreach (sort keys %trig_info) {
395 print " $_\t: $trig_info{$_}\n" if ($verbosity and $debug) ...

;
print PARSED " $_\t: $trig_info{$_}\n";
$time_info{$_} = $trig_info{$_} if /time(stamp|fmt)/;
$det_info{$_} = $trig_info{$_} if /ˆdet/;
$obs_info{$_} = $trig_info{$_} if /ˆobs/;

400 $event_info{$_} = $trig_info{$_} if /ˆevent/;
$notice_info{$_} = $trig_info{$_} if /ˆnotice/;

}
close PARSED

or &fatal("Can’t close OutBox/parsed-GCN_alerts/${infile ...
}.",1);

405 &logmsg("Deleting file from OutBox/unparsed: ${infile}") if ...
$debug;

unlink "${outbox}/unparsed/${infile}"
or &fatal("Can’t unlink OutBox/unparsed/${infile}",1);

#####################

page 44 of 62

LIGO-T050166-00

410 ### Send notification to control room operators if necessary
$success &= &check_times() and &logmsg("$tmpreturn");

#####################
Send event to metadatabase

415 $success &= &send_trigger() and &logmsg("$tmpreturn");

return $success;
}

The next handler module parses alerts from the Swift project. Swift generates over twenty dif-
ferent alerts, but only a handful are suitable for automatically obtaining information about an event.
The first alert generated by Swift following an event is usually the “SWIFT BAT POSITION”, but
sometimes the X-Ray Telescope (XRT) may generate the initial alert.

Again, this code is based on the HETE handler module, so only differences will be explained
below.

419 ###
420 #### handle_SWIFT(infile, hashref) subroutine

This handles SWIFT position notices. It records various
information from the notice and puts it into a hash array
(%trig_info) for dumping to the OutBox/parsed-GCN_alerts/
subdirectory.

425 ####
It also checks the event time to see if operators should
be notified.
###
sub handle_SWIFT {

430 # return 0;
my (@notice, $i, $infile, $hashref, $success);
$success = 1;
$infile = shift;
$hashref = shift;

435 &logmsg("Parsing file from OutBox/unparsed: ${infile}") if ...
$debug;

open(NOTICE, "${outbox}/unparsed/${infile}")
or &fatal("Can’t open OutBox/unparsed/$infile for reading", ...

1);
@notice = <NOTICE>;
$i = 0;

440 close NOTICE
or &fatal("Can’t close OutBox/unparsed/$infile.", 1);

print "@notice" if ($verbosity and $debug);
foreach $tmpkey (sort keys %trig_info) {

print "\%trig_info{$tmpkey}\t: $trig_info{$tmpkey}\n"
445 if ($verbosity and $debug > 2);

}

page 45 of 62

LIGO-T050166-00

while (($i < $#notice) and ($_ = $notice[++$i])) {
chomp;

450 ### For extra debugging, record the email.
&logmsg(" ${infile} | $_") if ($debug > 1);

######################
Handle timestamp entries

455 # email_timestamp, email_timefmt
($trig_info{email_timestamp}, $trig_info{email_timefmt}) =

&get_timestamp($1), next if /ˆDate:\s+(.+)$/;
notice_timestamp, notice_timefmt
($trig_info{notice_timestamp}, $trig_info{notice_timefmt}) ...

=
460 &get_timestamp($1), next if /ˆNOTICE_DATE:\s+(.+)$/;

event_timestamp, event_timefmt
if (/ˆ(GRB|IMG_START)_(DATE|TIME):\s+(.+)$/) {

$tmpevent{"GRB_$2"} = $3;
($trig_info{event_timestamp}, $trig_info{event_timefmt ...

}) =
465 &get_timestamp("$tmpevent{GRB_DATE} $tmpevent{ ...

GRB_TIME}")
if (defined $tmpevent{’GRB_DATE’} and

defined $tmpevent{’GRB_TIME’});
next;

}

Swift describes their notices using the project name and detector name (one of “BAT”, “XRF”
or “UVOT”), e.g. “Swift-BAT Position”. HETE and INTEGRAL just use the project name, e.g.
“HETE S/C Alert”.

470 ######################
Handle notice entries
notice_type
$trig_info{notice_type} = "Swift-$1 $2",

$trig_info{det_name} = $1, next if /ˆNOTICE_TYPE:\s+ ...
Swift-(\w+) ([\w\s\-]*)$/;

475 # notice_id, notice_sequence
$trig_info{notice_id} = $1,
$trig_info{notice_sequence} = $2, next

if /ˆTRIGGER_NUM:\s+(\d+),\s+Seg_Num: (\d+)$/;
notice_comments

480 if (/ˆCOMMENTS:\s+(.*)$/) {
my $tmp_comments = $1;
while ((++$i < $#notice) and

($notice[$i] =˜ /ˆ(COMMENTS:|)\s+(.*)$/)) {
$tmp_comments .= " $2";

485 }
--$i;
$trig_info{notice_comments} = $tmp_comments;

page 46 of 62

LIGO-T050166-00

next;
}

490 # Take a guess at notice_url
$trig_info{notice_url} =

"http://gcn.gsfc.nasa.gov/other/$trig_info{notice_id}. ...
swift"

if ($trig_info{notice_id} and !$trig_info{notice_url});

Swift gamma-ray burst alerts do not include information about the spacecraft. This information
is instead put into a separate alert, which is currently ignored by the parsing script. Unlike INTE-
GRAL, Swift’s orbit is nearly circular, with an elevation about 600 km from the earth’s surface.

494 # ######################
495 # ### Handle observer entries

obs_fov_ra
$trig_info{obs_fov_ra} = $1, next
if (/$EPOCH/ and m"ˆSC_RA:\s+([\d\-\.]+)(\s+\[deg\]|) ...

");
obs_fov_dec

500 # $trig_info{obs_fov_dec} = $1, next
if (/$EPOCH/ and m"ˆSC_DEC:\s+([\d\-\.]+)(\s+\[deg\]|) ...

");
SWIFT’s BAT fov is 100x60 degrees (1.4sr); we’ll hardcode ...

this for now
obs_fov_ra_width
obs_fov_dec_width

505 $trig_info{obs_fov_ra_width} = 100; #degrees
$trig_info{obs_fov_dec_width} = 60; #degrees
SWIFT’s orbit is nearly circular, at around 600km
obs_loc_lat (positive if north, negative is south)
obs_loc_long (positive if east, negative if west)

510 # obs_loc_ele
$trig_info{obs_loc_ele} = 600; #km

Like HETE, Swift uses several detectors to observe gamma-ray bursts. Unlike HETE, Swift
puts information from other detectors into separate alerts.

512 ######################
Handle detector entries; for SWIFT, it’s BAT, XRT, or ...

UVOT
det_name, det_band

515 #:NOTE: det_name is given in notice_type
det_band

###:NOTE: RJR- Stopped here 2005.02.01 ###
det_alts
det_snr

520 $trig_info{det_snr} = $1, next
if (/ˆGRB_INTEN:/ and m"([\d\-\.]+)(\s+\[sigma\]|)");

det_peak, det_peak_int
det_fluence, det_fluence_int

page 47 of 62

LIGO-T050166-00

Swift can assign a style to a GRB, called a “TRIGGER INDEX”. This index gets included into
the event_type field of the %trig_info hash variable if present.

524 ######################
525 ### Handle event entries

event_type (always GRB for SWIFT)
$trig_info{event_type} = "GRB" if !$trig_info{event_type};
$trig_info{event_type} = "$trig_info{event_type} $1", next

if /ˆTRIGGER_INDEX:\s+(.*)$/;
530 # no event_z or event_z_err (yet)

Handling coordinates
:NOTE: RJR 2005.02.01 -- Trying to handle a multi-line ...

coordinate
:NOTE: listing correctly. We may not always be using ...

J2000 for the
535 ## :NOTE: epoch, or GCN may not always list J2000 as the ...

first epoch.
event_ra
if (/ˆGRB_RA/) { $i--; # reset our iterator to read the ...

GRB_RA line again
Keep reading the next line until we reach the current ...

$EPOCH
while ($_ = $notice[++$i]) {

540 chomp;
Quit if we’ve left the GRB_RA coordinate lines
:NOTE: Our iterator will be moved forward again ...

in the
:NOTE: larger loop.
$i--, last if ($_ !˜ /ˆ(GRB_RA|\s+)/);

545 # This is the line we’re looking for-- parse out ...
the degrees

$trig_info{event_ra} = $1, next
if (/$EPOCH/ and /([\d\-\.]+)d/);

}
next; # iterate through the larger loop

550 }
event_dec
if (/ˆGRB_DEC/) { $i--; # reset our iterator to read the ...

GRB_DEC line again
Keep reading the next line until we reach the current ...

$EPOCH
while ($_ = $notice[++$i]) {

555 chomp;
Quit if we’ve left the GRB_RA coordinate lines
:NOTE: Our iterator will be moved forward again ...

in the
:NOTE: larger loop.

page 48 of 62

LIGO-T050166-00

$i--, last if ($_ !˜ /ˆ(GRB_DEC|\s+)/);
560 # This is the line we’re looking for-- parse out ...

the degrees
$trig_info{event_dec} = $1, next

if (/$EPOCH/ and /([\d\-\.]+)d/);
}
next; # iterate through the larger loop

565 }
event_ra_err, event_dec_err
$trig_info{event_ra_err} = $trig_info{event_dec_err} = $1, ...

next
if (/ˆGRB_ERROR:/ and m"([\d\-\.]+)(\s+\[arcmin|)");

event_err_type (Always ’error disk’ for SWIFT
570 $trig_info{event_err_type} = "error disk";

event_epoch (Always ’J2000’ (or whatever $EPOCH is) for ...
SWIFT)

$trig_info{event_epoch} = $EPOCH;
}

575
######################
Done Handling entries; fill %time_keys
open(PARSED, ">${outbox}/parsed-GCN_alerts/${infile}")

or &fatal("Can’t open OutBox/parsed-GCN_alerts/${infile} ...
for writing.",1);

580 foreach (sort keys %trig_info) {
print " $_\t: $trig_info{$_}\n" if ($verbosity and $debug) ...

;
print PARSED " $_\t: $trig_info{$_}\n";
$time_info{$_} = $trig_info{$_} if /time(stamp|fmt)/;
$det_info{$_} = $trig_info{$_} if /ˆdet/;

585 $obs_info{$_} = $trig_info{$_} if /ˆobs/;
$event_info{$_} = $trig_info{$_} if /ˆevent/;
$notice_info{$_} = $trig_info{$_} if /ˆnotice/;

}
close PARSED

590 or &fatal("Can’t close OutBox/parsed-GCN_alerts/${infile ...
}.",1);

&logmsg("Deleting file from OutBox/unparsed: ${infile}") if ...
$debug;

unlink "${outbox}/unparsed/${infile}"
or &fatal("Can’t unlink OutBox/unparsed/${infile}",1);

595 #####################
Send notification to control room operators if necessary
$success &= &check_times() and &logmsg("$tmpreturn");

page 49 of 62

LIGO-T050166-00

#####################
600 ### Send event to metadatabase

$success &= &send_trigger() and &logmsg("$tmpreturn");

return $success;
}

A.3 A walkthrough of the receiver script
Below is a listing of a test receiver script, based on the current version of the script at LHO [2]. For
clarity of reading, the EPICS control interface commands have been replaced with pseudocode.

The receiver script starts by including some standard Perl header information: some comments
about the script’s function, a list of Perl modules to use, any necessary environment variables, and
hard-coded internal variables.

1 #!/usr/bin/env perl
#
Gamma Ray Burst Notification Server Test Code.

4 #
Parses received string for the syntax:
<TYPE> <EVENT TIME> <STANDDOWN TIME>
Where:
<TYPE> is one of

9 # 1 = KEEP ALIVE
2-19 GRB (2=HETE,3=INTEGRAL,4=SWIFT)
20-39 SN (20=SNEWS)
#
<TIME> syntax is UTC-2003-11-03-03:08:44 for 03:08:04 on nov ...

3rd 2003
14 #

use strict;
BEGIN { $ENV{PATH} = ’/usr/ucb:/bin’;

}
use IO::Socket;

19 use Carp;

############################
Local, Modifiable Variables
############################

24 # This is the host port to use
my $port = shift || 34512;
This is the host interface to use
my $host_ip = shift || "localhost";
This is the log file filehandle to use

29 my $logfile = ">>gamma_ray_burst.log";
This is the command to interface with the control room
my $ezcawrite = "echo";

page 50 of 62

LIGO-T050166-00

Determines whether debug info is printed or not
my $DEBUG = 1;

34
define event types
my $KEEPALIVE = 1;
Ranges of event ids
my $GRB_LOW = 2;

39 my $GRB_HIGH = 19;
my $SN_LOW = 20;
my $SN_HIGH = 39;
Event sources:
my $GRB_HETE = 2;

44 my $GRB_INTEGRAL = 3;
my $GRB_SWIFT = 4;
my $SN_SNEWS = 20;

Next, the various subroutines in this file are declared or defined. Note that the subroutines
initialize_epics, keep_alive, epics_alarm and epics_error are pseudocode to
communicate with the control room.

47 ### List of subroutines
Performs any initialization routines needed for EPICS or LabView
sub initialize_epics;

50 # Sends a keep-alive signal to the control room via EPICS or ...
LabView

sub keep_alive;
Sends an alarm to the control room via EPICS or LabView
sub epics_alarm;
Sends an error message to the control room via EPICS or LabView

55 sub epics_error;
Writes a message to the logfile
sub logmsg {
open(LOG,$logfile) or print "Cannot open logfile $logfile\n";
print LOG " ".scalar gmtime," UTC | @_ \n";

60 close LOG;
}

Next a TCP/IP socket is opened on the local machine, and any initialization script is executed.

62 ############################
Open a server socket
############################

65 #:NOTE: This variable is present to allow file comparisons with ...
previous CVS

#:NOTE: versions. The variable was changed to $new_sock to conform ...
with

#:NOTE: the server on red.
my ($new_client);
my $sock = new IO::Socket::INET (

70 LocalHost => $host_ip,

page 51 of 62

LIGO-T050166-00

LocalPort => $host_port,
Proto => ’tcp’,
Listen => 1,
Reuse => 1,

75 Timeout => 1200,
) or die "cannot create socket";

$port = $sock->sockport();
logmsg "server started on port $port";
Initialize controls interface

80 my $eventcounter = &initialize_epics();

The receiver script starts waiting for connections initiated by the parsing script. If no con-
nections occur before the twenty-minute timeout period, the receiver script will assume there is
an error with the TCP/IP connection and alert the control room (cf. below). When a connection
occurs, this test script logs the event and sends some preliminary information to the parsing script.
The receiver script next reads a line of text from the parsing script. A ten-second time limit is set
to finish reading the text.

81 ############################
Wait for clients
############################
my $line;

85 my $type;
my $eventtime;
my $auxtime;
my $new_sock;
while (1) { # loop over waiting for TCP/IP packets

90 while ($new_sock = $sock->accept()){
Log initial details.
$new_sock->autoflush(1);
$remote_host = gethostbyaddr($new_sock->peeraddr,AF_INET) || ...

$new_sock->peerhost;
$remote_port = $new_sock->peerport;

95 logmsg "connect from $remote_host, port $remote_port";
#logmsg "connection from ".$new_sock->peerhost()." sock ". ...

$new_sock->peerport();

Send opening info to client
print $new_sock "Connected to $0 at $host_ip, port $port\tat ",

100 scalar gmtime, "\r\n";

Handle input from client; set an alarm to wakeup if hung
eval {

local $SIG{ALRM} = sub {
105 logmsg "alarm clock restart";

die "alarm clock restart";
};
alarm 10;

page 52 of 62

LIGO-T050166-00

110 ### Read data from socket; untaint automatically
$line = <$new_sock>;
chomp $line;

alarm 0;
115 };

if($DEBUG){print "RECEIVED: $line\n";}

Next, the receiver script parses the text into three fields: the event type, the time at which the
event was detected, and the time at which staff may resume maintenance or commissioning (the
stand-down time). Based on the type of event, two possible signals can be communicated with the
control room; either a keep-alive signal can be communicated as, e.g., a toggled icon, or an alarm
signal can be communicated audibly or inaudibly. Currently only gamma-ray bursts will trigger an
audible alarm.

118 # split out line
($type,$eventtime,$auxtime) = split / /,$line,3;

120 if($DEBUG){print "TYPE = $type\n";}
if($DEBUG){print "EVENTTIME = $eventtime\n";}
if($DEBUG){print "AUXTIME = $auxtime\n\n";}

decode type
125 if ($type == $KEEPALIVE) {

KEEP-ALIVE EVENT
if($DEBUG){print "keep alive Event\n";}
&keep_alive($type,$eventtime,$auxtime);

} elsif (($type >= $GRB_LOW)&&($type <= $GRB_HIGH)) {
130 # GRB EVENT

raise alarm (will clear at end of processing cycle)
Go to EPICS alarm subroutine

$eventcounter = &epics_alarm($type, $eventtime, $auxtime);
135

logmsg "$line";

} elsif (($type >= $SN_LOW)&&($type <= $SN_HIGH)) {
SN EVENT

140 if($DEBUG){print "Supernovae Event, not yet implemented\n";}
if($DEBUG){print "Full message \n";}
if($DEBUG){print "$line\n";}

} else {
INVALID EVENT

145 print "Invalid Event type $type\n";
print "Full message \n";
print "$line\n";

}

page 53 of 62

LIGO-T050166-00

The communication with the control room finished, the receiver script is free to acknowledge
the signal to the client and close the socket connection. If the script process falls between the two
while() loops, it signifies that the socket connection has timed out and an error is flagged to the
control room (via epics_error).

149 # send acknowledgment to client
150 print $new_sock "ACK RED ".$line."\n";

Close the client connection (child process)
close $new_sock;

155 } # end while ($new_sock = $sock->accept()){
accept call has timed out, we have not received a keepalive
packet. Raise alarm and go back into accept loop.
&epics_error("TCP/IP timeout error");

160 } # end while(1)

B GCN alerts
This section contains examples of GCN alerts sent via email to the parsing script during the S4
run. The header information has been somewhat abridged for readability, but the content of the
notices are reproduced in full. The messages represent the four different sources which the parsing
script currently recognizesin full: i) the HETE-2 project, ii) the Swift project, iii) the INTEGRAL
project and iv) GCN internally-generated test messages. The email format for these sources are
described within the GCN website [3].

This first set of messages are from the HETE-2 project. Three of the four messages con-
cerning a trigger (3689) are shown. This is the initial message which was sent. As with all
emails which the parsing script processes, the senders address is checked first. Only addresses
from the official GCN and SNEWS mail agents are currently accepted; other emails are deleted
from the INBOX without further processing. The parsing script then identifies the subject line
(GCN/HETE_POSITION) and finds the appropriate handler defined in parse_GCN.pl. The
handler, in turn, uses the content of the message to fill a Perl hash variable describing the trig-
ger. Three different timestamps are translated into GPS: i) the email timestamp (from the Date:
header), ii) the NOTICE_DATE: timestamp and iii) the GRB_DATE: and GRB_TIME: times-
tamps, which must be combined into the event timestamp. Note that in this case, the email was
generated less than thirty seconds after the event was detected by the spacecraft. This is typical for
the first alerts for a given trigger.

From vxw@capella.gsfc.nasa.gov Sat Mar 5 22:28:39 2005
Return-Path: <vxw@capella.gsfc.nasa.gov>
Date: Sun, 6 Mar 2005 01:28:31 -0500
From: Bacodine <vxw@capella.gsfc.nasa.gov>
To: wk_sz@ligo.caltech.edu
Subject: GCN/HETE_POSITION

page 54 of 62

LIGO-T050166-00

TITLE: GCN/HETE BURST POSITION NOTICE
NOTICE_DATE: Sun 06 Mar 05 06:28:18 UT
NOTICE_TYPE: HETE S/C_Alert
TRIGGER_NUM: 3689, Seq_Num: 1
GRB_DATE: 13435 TJD; 65 DOY; 05/03/06
GRB_TIME: 23293.72 SOD {06:28:13.72} UT
TRIGGER_SOURCE: Trigger on the 6-80 keV band.
GAMMA_RATE: 426 [cnts/s] on a 1.300 [sec] timescale
SC_LONG: 272 [deg East]
SUN_POSTN: 346.91d {+23h 07m 40s} -5.61d {-05d 36’ 18"}
MOON_POSTN: 291.97d {+19h 27m 53s} -27.12d {-27d 07’ 05"}
MOON_ILLUM: 22 [%]
COMMENTS: No s/c ACS pointing info available yet.
COMMENTS: Probable GRB.

The next email shown is actually third in the series. This now contains information from
HETE’s wide-field X-ray monitor (WXM) detectors, namely direction information, within a half-
degree error circle.

From vxw@capella.gsfc.nasa.gov Sat Mar 5 22:31:27 2005
Return-Path: <vxw@capella.gsfc.nasa.gov>
Date: Sun, 6 Mar 2005 01:31:19 -0500
From: Bacodine <vxw@capella.gsfc.nasa.gov>
To: wk_sz@ligo.caltech.edu
Subject: GCN/HETE_POSITION

TITLE: GCN/HETE BURST POSITION NOTICE
NOTICE_DATE: Sun 06 Mar 05 06:31:06 UT
NOTICE_TYPE: HETE S/C_Last
TRIGGER_NUM: 3689, Seq_Num: 3
GRB_DATE: 13435 TJD; 65 DOY; 05/03/06
GRB_TIME: 23293.72 SOD {06:28:13.72} UT
TRIGGER_SOURCE: Trigger on the 6-80 keV band.
GAMMA_RATE: 426 [cnts/s] on a 1.300 [sec] timescale
SC_-Z_RA: 167 [deg]
SC_-Z_DEC: 7 [deg]
SC_LONG: 272 [deg East]
WXM_CNTR_RA: 163.619d {+10h 54m 29s} (J2000),

163.690d {+10h 54m 46s} (current),
162.929d {+10h 51m 43s} (1950)

WXM_CNTR_DEC: +31.608d {+31d 36’ 28"} (J2000),
+31.580d {+31d 34’ 49"} (current),
+31.875d {+31d 52’ 28"} (1950)

WXM_MAX_SIZE: 28.00 [arcmin] diameter
WXM_LOC_SN: 4 sig/noise (pt src in image)
WXM_IMAGE_SN: X= 3.0 Y= 3.0 [sig/noise]
WXM_LC_SN: X= 7.2 Y= 6.5 [sig/noise]
SUN_POSTN: 346.91d {+23h 07m 40s} -5.61d {-05d 36’ 18"}
SUN_DIST: 153.85 [deg]

page 55 of 62

LIGO-T050166-00

MOON_POSTN: 291.97d {+19h 27m 53s} -27.12d {-27d 07’ 05"}
MOON_DIST: 135.11 [deg]
MOON_ILLUM: 22 [%]
GAL_COORDS: 195.88,64.21 [deg] galactic lon,lat of the burst
ECL_COORDS: 152.31,22.66 [deg] ecliptic lon,lat of the burst
COMMENTS: Probable GRB.
COMMENTS: WXM error box is circular; not rectangular.

The parsing script converted the information from the previous email into the following two
formats. The first format is a parsed notice, which resides in its own file in the OUTBOX directory
tree. The second format is a LIGO lightweight table entry, which consists of a single line. The
entry shown here has been divided into 95-character lines. Fields which are blank in the parsed
notice are translated into either empty strings or 0’s in the table entry.

det_alts : WXM
det_band : 6-80 keV
det_fluence : 426 [cnts/s]
det_fluence_int : 1.300 [sec]
det_name : FREGATE
det_peak :
det_peak_int :
det_snr :
email_timefmt : GPS
email_timestamp : 794125892
event_dec : 31.608
event_dec_err :
event_epoch : J2000
event_err_type : error disk
event_ra : 163.619
event_ra_err :
event_timefmt : GPS
event_timestamp : 794125706.72
event_type : GRB
event_z :
event_z_err :
notice_comments : WXM error box is circular; not ...

rectangular.
notice_id : 3689
notice_sequence : 3
notice_timefmt : GPS
notice_timestamp : 794125879
notice_type : HETE S/C_Last
notice_url : http://gcn.gsfc.nasa.gov/other/3689.hete
obs_fov_dec : 7
obs_fov_dec_width : 90
obs_fov_ra : 167
obs_fov_ra_width : 180
obs_loc_ele :
obs_loc_lat : 0

page 56 of 62

LIGO-T050166-00

obs_loc_long : 272

"WXM","6-80 keV","426 [cnts/s]","1.300 [sec]","FREGATE ...
","","","",794125892,3.16080e+01,0.00000

e+00,"J2000","error disk","","",1.63619e+02,0.00000e ...
+00,"",794125706,720000028,"GRB",0.00000e+0

0,0.00000e+00,"","","","WXM error box is circular; not rectangul ...
","3689","3",794125879,"HETE S/

C_Last","http://gcn.gsfc.nasa.gov/other/3689.hete",7.00000e ...
+00,9.00000e+01,1.67000e+02,1.80000e

+02,0.00000e+00,0.00000e+00,2.72000e+02,

Finally, the fourth email issued a retraction statement. This is general practice among the
gamma-ray burst detector projects, but is not required. This retraction occured over forty minutes
after the burst was initially detected.

From vxw@capella.gsfc.nasa.gov Sat Mar 5 23:11:44 2005
Return-Path: <vxw@capella.gsfc.nasa.gov>
Date: Sun, 6 Mar 2005 02:11:36 -0500
From: Bacodine <vxw@capella.gsfc.nasa.gov>
To: wk_sz@ligo.caltech.edu
Subject: GCN/HETE_POSITION

TITLE: GCN/HETE BURST POSITION NOTICE
NOTICE_DATE: Sun 06 Mar 05 07:11:20 UT
NOTICE_TYPE: HETE Ground Analysis
TRIGGER_NUM: 3689, Seq_Num: 4
GRB_DATE: 13435 TJD; 65 DOY; 05/03/06
GRB_TIME: 23293.72 SOD {06:28:13.72} UT
TRIGGER_SOURCE: Trigger on the 6-80 keV band.
GAMMA_RATE: 426 [cnts/s] on a 1.300 [sec] timescale
SC_-Z_RA: 167 [deg]
SC_-Z_DEC: 7 [deg]
SC_LONG: 272 [deg East]
SUN_POSTN: 346.91d {+23h 07m 40s} -5.61d {-05d 36’ 18"}
MOON_POSTN: 291.97d {+19h 27m 53s} -27.12d {-27d 07’ 05"}
MOON_ILLUM: 22 [%]
COMMENTS: Definitely not a GRB.
COMMENTS: There is no position known for this trigger at this ...

time.
COMMENTS: Burst_Invalidity flag is true.
COMMENTS: Particle event.

The next sequence of emails is from the Swift project. The text has many fields in common
with the HETE-2 alerts, but an important difference is that direction information is provided nearly
immediately, in several different coordinate systems.

From vxw@capella.gsfc.nasa.gov Wed Mar 9 02:45:56 2005
Return-Path: <vxw@capella.gsfc.nasa.gov>
Date: Wed, 9 Mar 2005 05:45:48 -0500

page 57 of 62

LIGO-T050166-00

From: Bacodine <vxw@capella.gsfc.nasa.gov>
To: wk_sz@ligo.caltech.edu
Subject: GCN/SWIFT_BAT_POSITION

TITLE: GCN/SWIFT NOTICE
NOTICE_DATE: Wed 09 Mar 05 10:45:40 UT
NOTICE_TYPE: Swift-BAT GRB Position
TRIGGER_NUM: 107873, Seg_Num: 0
GRB_RA: 182.622d {+12h 10m 29s} (J2000),

182.682d {+12h 10m 44s} (current),
182.033d {+12h 08m 08s} (1950)

GRB_DEC: +77.591d {+77d 35’ 27"} (J2000),
+77.562d {+77d 33’ 43"} (current),
+77.869d {+77d 52’ 08"} (1950)

GRB_ERROR: 4.00 [arcmin radius, statistical only]
GRB_INTEN: 200545 [cnts] Peak=1241 [cnts/sec]
TRIGGER_DUR: 26.880 [sec]
TRIGGER_INDEX: 493 E_range: 50-350 keV
BKG_INTEN: 303166 [cnts]
BKG_TIME: 38488.00 SOD {10:41:28.00} UT
BKG_DUR: 64 [sec]
GRB_DATE: 13438 TJD; 68 DOY; 05/03/09
GRB_TIME: 38601.53 SOD {10:43:21.53} UT
GRB_PHI: 170.09 [deg]
GRB_THETA: 21.16 [deg]
SOLN_STATUS: 0x83
RATE_SIGNIF: 20.85 [sigma]
IMAGE_SIGNIF: 6.00 [sigma]
MERIT_PARAMS: +1 +0 +0 +5 +3 +7 +0 +0 +28 +1
SUN_POSTN: 349.85d {+23h 19m 25s} -4.37d {-04d 22’ 00"}
SUN_DIST: 106.48 [deg]
MOON_POSTN: 339.53d {+22h 38m 08s} -12.60d {-12d 36’ 13"}
MOON_DIST: 113.98 [deg]
GAL_COORDS: 125.76, 39.31 [deg] galactic lon,lat of the burst ...

(or transient)
ECL_COORDS: 119.50, 64.15 [deg] ecliptic lon,lat of the burst ...

(or transient)
COMMENTS: SWIFT-BAT GRB Coordinates.
COMMENTS: This is a rate trigger.
COMMENTS: A point_source was found.
COMMENTS: This does not match any source in the on-board ...

catalog.
COMMENTS: This does not match any source in the ground ...

catalog.
COMMENTS: This is a GRB.
COMMENTS: Since the IMAGE_SIGNIF is less than 7 sigma, this ...

is a questionable detection.

page 58 of 62

LIGO-T050166-00

The following are headers from subsequent emails sent from Swift. The parsing script currently
ignores these, as they describe the intent of the spacecraft to slew its x-ray and ultraviolet cameras
into position to look for an afterglow transient. Another email provides a URL for the lightcurve
detected by the Burst Alert Telescope (BAT).

Date: Wed, 9 Mar 2005 05:45:44 -0500
From: Bacodine <vxw@capella.gsfc.nasa.gov>
To: wk_sz@ligo.caltech.edu
Subject: GCN/SWIFT_FOM_OBSERVE

Date: Wed, 9 Mar 2005 05:49:09 -0500
From: Bacodine <vxw@capella.gsfc.nasa.gov>
To: wk_sz@ligo.caltech.edu
Subject: GCN/SWIFT_BAT_LIGHTCURVE

Date: Wed, 9 Mar 2005 06:11:13 -0500
From: Bacodine <vxw@capella.gsfc.nasa.gov>
To: wk_sz@ligo.caltech.edu
Subject: GCN/SWIFT_SC_SLEW

Date: Wed, 9 Mar 2005 06:27:40 -0500
From: Bacodine <vxw@capella.gsfc.nasa.gov>
To: wk_sz@ligo.caltech.edu
Subject: GCN/SWIFT_SC_SLEW

Date: Wed, 9 Mar 2005 06:33:05 -0500
From: Bacodine <vxw@capella.gsfc.nasa.gov>
To: wk_sz@ligo.caltech.edu
Subject: GCN/SWIFT_SC_SLEW

Date: Wed, 9 Mar 2005 06:33:09 -0500
From: Bacodine <vxw@capella.gsfc.nasa.gov>
To: wk_sz@ligo.caltech.edu
Subject: GCN/SWIFT_SC_SLEW

This is a retraction notice for the same Swift trigger. Note that the retraction was issued nearly
four hours after the event.

From vxw@capella.gsfc.nasa.gov Wed Mar 9 06:29:36 2005
Return-Path: <vxw@capella.gsfc.nasa.gov>
Date: Wed, 9 Mar 2005 09:29:27 -0500
From: Bacodine <vxw@capella.gsfc.nasa.gov>
To: wk_sz@ligo.caltech.edu
Subject: GCN/SWIFT_BAT_POSITION

TITLE: GCN/SWIFT NOTICE
NOTICE_DATE: Wed 09 Mar 05 14:29:20 UT
NOTICE_TYPE: Swift-BAT GRB Position RETRACTION
TRIGGER_NUM: 107873, Seg_Num: 0

page 59 of 62

LIGO-T050166-00

GRB_RA: 182.622d {+12h 10m 29s} (J2000),
182.682d {+12h 10m 44s} (current),
182.034d {+12h 08m 08s} (1950)

GRB_DEC: +77.591d {+77d 35’ 27"} (J2000),
+77.562d {+77d 33’ 43"} (current),
+77.869d {+77d 52’ 09"} (1950)

GRB_ERROR: 9.99 [arcmin radius, statistical only]
GRB_INTEN: 200545 [cnts] Peak=1241 [cnts/sec]
TRIGGER_DUR: 26.876 [sec]
TRIGGER_INDEX: 493 E_range: 50-350 keV
BKG_INTEN: 303166 [cnts]
BKG_TIME: 38488.00 SOD {10:41:28.00} UT
BKG_DUR: 64 [sec]
GRB_DATE: 13438 TJD; 68 DOY; 05/03/09
GRB_TIME: 38601.52 SOD {10:43:21.52} UT
GRB_PHI: 170.08 [deg]
GRB_THETA: 21.15 [deg]
SOLN_STATUS: 0xA3
RATE_SIGNIF: 20.85 [sigma]
IMAGE_SIGNIF: 6.00 [sigma]
MERIT_PARAMS: +1 +0 +0 +5 +3 +7 +0 +0 +28 +1
SUN_POSTN: 349.85d {+23h 19m 25s} -4.37d {-04d 22’ 00"}
SUN_DIST: 106.48 [deg]
MOON_POSTN: 339.53d {+22h 38m 08s} -12.60d {-12d 36’ 13"}
MOON_DIST: 113.98 [deg]
GAL_COORDS: 125.76, 39.31 [deg] galactic lon,lat of the burst ...

(or transient)
ECL_COORDS: 119.50, 64.15 [deg] ecliptic lon,lat of the burst ...

(or transient)
COMMENTS: SWIFT-BAT GRB Coordinates.
COMMENTS: This is a rate trigger.
COMMENTS: A point_source was found.
COMMENTS: This does not match any source in the on-board ...

catalog.
COMMENTS: This does not match any source in the ground ...

catalog.
COMMENTS: This is not a GRB.
COMMENTS: Since the IMAGE_SIGNIF is less than 7 sigma, this ...

is a questionable detection.
COMMENTS: This is a RETRACTION of a previous notice that ...

identified this as a GRB --
it is NOT a GRB.

COMMENTS: This Notice was ground-reprocessed from flight- ...
data.

COMMENTS:
COMMENTS: This is NOT a real GRB -- it is a noise ...

fluctuation on the edge of the SAA.

page 60 of 62

LIGO-T050166-00

COMMENTS: The questionable aspect of the low detection ...
significance has been confirmed

by ground analysis.
COMMENTS: The non-astrophysical origin of this trigger is ...

further confirmed by the XRT
non-detection of a source.

COMMENTS: REPEAT: This trigger is NOT a GRB.

The next email is the initial alert provided by the INTEGRAL project for a trigger. INTEGRAL
also provides direction information in its alerts. However, INTEGRAL is not a dedicated gamma-
ray burst detector, as it has several targets it observes.

From vxw@capella.gsfc.nasa.gov Thu Feb 24 08:25:28 2005
Return-Path: <vxw@capella.gsfc.nasa.gov>
Date: Thu, 24 Feb 2005 11:25:19 -0500
From: Bacodine <vxw@capella.gsfc.nasa.gov>
To: wk_sz@ligo.caltech.edu
Subject: GCN/INTEGRAL_POSITION

TITLE: GCN/INTEGRAL NOTICE
NOTICE_DATE: Thu 24 Feb 05 16:25:08 UT
NOTICE_TYPE: INTEGRAL Wakeup
TRIGGER_NUM: 2321, Sub_Num: 0
GRB_RA: 258.1845d {+17h 12m 44s} (J2000),

258.2715d {+17h 13m 05s} (current),
257.3401d {+17h 09m 22s} (1950)

GRB_DEC: -36.8670d {-36d 52’ 00"} (J2000),
-36.8729d {-36d 52’ 21"} (current),
-36.8080d {-36d 48’ 28"} (1950)

GRB_ERROR: 2.70 [arcmin, radius, statistical only]
GRB_INTEN: 16.79 [sigma]
GRB_TIME: 59094.67 SOD {16:24:54.67} UT
GRB_DATE: 13425 TJD; 55 DOY; 05/02/24
SC_RA: 253.32 [deg] (J2000)
SC_DEC: -37.79 [deg] (J2000)
SUN_POSTN: 337.93d {+22h 31m 44s} -9.25d {-09d 14’ 58"}
SUN_DIST: 76.22 [deg]
MOON_POSTN: 164.38d {+10h 57m 31s} +10.43d {+10d 25’ 32"}
MOON_DIST: 99.32 [deg]
GAL_COORDS: 349.58, 1.36 [deg] galactic lon,lat of the burst
ECL_COORDS: 260.29,-13.83 [deg] ecliptic lon,lat of the burst
COMMENTS: INTEGRAL GRB Coordinates.
COMMENTS: Possibly real GRB event

The following is a test notice sent by the GCN system. “BACODINE” is a remnant of the
BATSE project, which initiated this real-time gamma-ray burst alert system. Test notices are sent
roughly every four hours. A handler in parse_GCN.pl essentially ignores the text of the email
message, which allows the notice to be deleted and recorded in the LOGFILE.

From vxw@capella.gsfc.nasa.gov Fri Dec 9 16:34:24 2005

page 61 of 62

LIGO-T050166-00

Return-Path: <vxw@capella.gsfc.nasa.gov>
Date: Fri, 9 Dec 2005 19:34:27 -0500
From: Bacodine <vxw@capella.gsfc.nasa.gov>
To: wk_sz@ligo.caltech.edu
Subject: BACODINE_POSITION

TITLE: BACODINE BURST POSITION NOTICE
NOTICE_DATE: Sat 10 Dec 05 00:34:22 UT
NOTICE_TYPE: Original
TRIGGER_NUM: -1
GRB_RA: 35.91d {+02h 23m 38s} (J2000),

36.00d {+02h 24m 00s} (current),
35.16d {+02h 20m 38s} (1950)

GRB_DEC: +34.97d {+34d 58’ 24"} (J2000),
+35.00d {+35d 00’ 00"} (current),
+34.75d {+34d 44’ 48"} (1950)

GRB_ERROR: 5.0 [deg radius, statistical only]
GRB_INTEN: 1000 [cnts] Peak=1000 [cnts/sec]
GRB_TIME: 2062.00 SOD {00:34:22.00} UT
GRB_DATE: 13714 TJD; 344 DOY; 05/12/10
GRB_SC_AZ: 0.00 [deg] {XScan=0.00}
GRB_SC_EL: 0.00 [deg] {Zenith_angle=90.00} {Scan=90.00}
SC_X_RA: 0.00 [deg] (J2000)
SC_X_DEC: 0.00 [deg]
SC_Z_RA: 0.00 [deg]
SC_Z_DEC: 0.00 [deg]
SUN_POSTN: 257.01d {+17h 08m 02s} -22.90d {-22d 54’ 01"}
SUN_DIST: 142.43 [deg]
MOON_POSTN: 8.33d {+00h 33m 19s} +3.35d {+03d 21’ 15"}
MOON_DIST: 40.73 [deg]
PROG_VERSION: 9.73
PROG_LEVEL: 3
COMMENTS: Test Coordinates.

References
[1] Peter Shawhan librarian. http://www.ldas-sw.ligo.caltech.edu/ligotools/, (retrieved November

2005). A collection of general LIGO/LSC software tools.

[2] Dave Barker and Rauha Rahkola. grb_server_MI.pl. Perl script in CDS software repos-
itory, (retrieved November 2005).

[3] Scott Barthelmy. GRB Coordinates Network. http://gcn.gsfc.nasa.gov/, (retrieved November
2005).

page 62 of 62

http://www.ldas-sw.ligo.caltech.edu/ligotools/
http://gcn.gsfc.nasa.gov/

	Introduction
	The role of operator notification

	Parsing script: parse_notices.pl
	Receiver script: grb_server_MI.pl
	Known issues and areas for improvement
	Script Walkthroughs
	A walkthrough of the parsing script
	A walkthrough of the parsing script's handlers
	A walkthrough of the receiver script

	GCN alerts

