10 sped

r Piston a

s

nee /£

value

LETTERS TO

CIRCLE

RECTANGLE

i
|
|
10 100 1000
a/b

. Variation of the accession to inertia of a rectangle at low fre-
, as a function of its aspect ratio a/b; with the value for a circular
serted for comparison.

%' being the distances from one end of the rectangle to
ve source and field points, and varying from zero to a.
these points are on the same side of the rectangle,
#’| ; if they are on opposite sides, then 2= [x—z'|24-b%
sufficient to consider source points on one of the pair of
sides, and double the result to take into account those on
osite side. Also, it is clear that if both x and &’ are allowed
e from zero to a, every pair of distances will be counted
with equal contributions due to the symmetry of Eq. 2
‘ce and field. The computation is simplified by only con-
pairs of points such that &’ <«, so that the range of inte-
ver x’ is now only from zero to x, and the absolute-value
s can be dropped from the expressions for 7; then this
s once again doubled.
is point Za, the contribution to Z of the first pair of sides
rectangle, is given by

[/ / [(x—a’)2+b*Jidv"dx
o Jo
—/ / (x—x’)dx'dxl. (3)
o Jo J

integration is made easy by the change X =ux—u,
%' —q and interpretation in rectangular coordinates. The
d is not a function of ¥, and the resulting single integrals
d in standard tables.
he result of the final integration must be added the con-
on of the other pair of sides, which is obtained by simply
anging a and b. Thus we get finally:

Z~ (jup/2m)A3f(a/b), (4)

%) =25t sinh ™1z 4257 sinh s 34§75 a5 (5)
=ab, the area of the piston.
result coincides with that obtained by H. Stenzel in
The function here called f(z) is, except for a factor, the
f his Eq. (54) for n=0. The value of Stenzel’s expansion
eral # can be derived through computation of the more
| integral & #'r"1dl'-dl by the method explained in this

aph of the nondimensional equivalent mass, i(a/b), is

in Fig. 1. It is clearly seen how the accession to inertia
hes as the rectangle becomes more elongated. The asymp-
ue for z tending to infinity is

J(s)~s"H1421n(2:)] (6)

alue of f(a/b), except for a numerical factor, is the slope
brigin of Stenzel’s graph for the reactance ratio Py, Fig. 20
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of Ref. 1. He also exhibits curves for a circular piston. The circle,
as the most compact shape, is expected to have the maximum
possible accession to inertia; its value (Ref. 3) 16/(3#1), is shown
for comparison in Fig. 1. The square, however, has a value that
comes very close, 2.9732096- - - as against 3.0090111- ..,
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Transverse Vibrations of Tapered Cantilever Beams
with End Support

H. H. MaBie

Virginia Polylechnic Institute, Blacksburg, Virginia 24061
C. B. ROGERS

Sandia Corporation, Albuquerque, New Mexico 87115

Free vibrations of nonuniform cantilever beams with an end support have
been investigated, using the equations of Bernoulli-Euler. Two configura-
tions of interest are treated: (a) constant width and linearly variable
thickness; and (b) constant thickness and linearly variable width. Charts
have been plotted for each case from which the fundamental frequency, the
second harmonic, and the third harmonic can be easily determined for
various taper ratios. The Tables from which these charts were plotted are
also included.

OUTLINED BELOW IS A BRIEF SUMMARY OF AN ANALYSIS OF TRANS-
verse vibrations of tapered cantilever beams with end support.
This analysis is a continuation of the work? started by the authors
on the vibration of cantilever beams as used for electrical contacts
and springs in electromechanical devices. This work is similar to
that published by Conway and Dubil,? but it is more applicable
to design because of the way the results are presented (tables and
charts) and because of the large number of taper ratios considered.
Moreover, two cases are considered: (1) taper in vertical plane
and (2) taper in horizontal plane. Thus, the free vibrations of a
cantilever beam with end support and (a) constant width and
linearly variable thickness and (b) constant thickness and linearly
variable width have been investigated using the Bernoulli-Euler
equations. These equations neglect the effects of rotary inertia
and shear and give accurate results for cases in which the wave-
length under consideration is large as compared with the lateral
dimension of the beam. The equations were solved on a computer,
and curves were plotted from which fundamental frequency,
second harmonic, and third harmonic can be determined for
various taper ratios. The method presented yields accuracies to
five significant figures in the Tables.

Beam of Constant Width and Linearly Variable Thickness.
For the beam shown in Fig. 1 the thickness / at a distance x from
the supported end is given by

=+ (ho— i)/l [€))]

4 P
N T
Fie. 1. Ca(;uhile\'e(r] tieam ?1 I \WT\—%
constant width and linearly _’_ﬂ_’/ 3
variable thickness with end P A ’—z;r
| pum—

support.

The Journal of the Acoustical Society of America 1739



R

TasLe L. Factor [2k+/ (k)¥a—1)/2]%

Fundamental Second Third
a frequency harmonic harmonic
1.05 15.907 51.307 106.94
1.1 16.392 52.636 109.60
1.2 17.349 55.260 114.85
1.4 19.222 60.386 125.09
1.6 21.049 65.378 135.03
1.8 22.841 70.262 144.74
2.0 24.600 75.055 154.24
2.5 28.891 86.722 177.32
3.0 33.062 98.045 199.66
3.5 37.143 109.10 221.42
4.0 41.150 119.96 242.74
4.5 45.099 130.65 263.70
5.0 48.999 141.20 284.35
6.0 56.675 161.96 324.94

The Bernoulli-Euler equation of a vibrating beam is

32 2 AN\ 92
P () ()2
R Ix? g/ ot

where pd /g is the mass per unit length. For a cantilever beam with
end support, the following boundary conditions hold:

at v=0, y=0and d%/dx*=M=0
atx=I] y=0and dy/9x=6=0.

Assuming a sustained free vibration at a frequency w of y(x,0)
=3z(x) sinwt, Eq. 2 becomes

d? ( 4% (pA ,
— | EI—=)={— . 3
dx? lexz) g )w ? @)

For the beam tapered as shown
I =250l = 35b[ i+ (o — T} /U F
A =bh=b[l+ (ho—N)w/l],

where I is the moment of inertia and 4 is the cross-sectional area.
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~ Fic. 2. Fundamental, second hprmonic. and third l}armonip frequency
for cantilever beam of constant width and linearly variable thickness with
end suppori.
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Substituting these values for I and A into Eq. 3 and lettiﬁg :
X =i+ (ho— )/l 5

and
k= 12p0M8/ Eg (o—111)4,
IEq. 3 becomes

~
5 i

X&i_{_() \'3&_{,(, \2 = PN )
: Saxr T 4)

Xt ax?
Equation 4 has the general solution
S(X) = X" A4T,(2k/X)+BY 1 (2kv'X)
+CI,(2k/ X)+ DK (2k0/X)],

where J, and Y are first-order Bessel functions of the first a
second kind, and I, and K, are first-order modified Bessel function;
of the first and second kind. e
Imposing the boundary conditions, the determinantal equation
that resulted was solved for the factor 2k (/;)? for various values
of taper ratios (@=/o/In) for the fundamental, second harmonic,
and third harmonic frequencies. L
Solving i
k= 120044/ Eg (lo— k1)t S

2,

for w and making the substitution a= ho/hi, gives

[
YO

Knowing the values of 2k ()} for various values of @ from the
solution of the determinant, Table I was developed to give the
factor [2k (1)} (@—1)/20% From this Table,

w[12p/Eg P/ 0]

versus « was plotted in Tig. 2 for the fundamental frequency,
second harmonic, and third harmonic.

or

Beam of Constant Thickness and Linearly Variable Width.

IFor a beam tapered in the horizontal plane as shown in Fig. 3, the
width b at a distance x from the supported end is given by

b=‘-b1+ (bo—‘bl)\/l (7

TasLe 11. Factor (IK)™

Fundamental Second Third
I frequency harmonic harmonic
1.0 15.417 49.964 104.24
1.2 15.604 50.139 104.43
1.4 15.751 50.275 104.55
1.6 15.867 50.386 104.67
1.8 15.963 50.477 104.78
2.0 16.044 50.555 104.86
2.5 16.195 50.702 105.00
3.0 16.299 50.807 105.12
3.5 16.374 50.884 105.23
4.0 16.431 50.944 105.29
5.0 16.507 51.024 105.39
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FiG. 4. Fundamental, second harmonic, and third harmonic frequency
T cantilever beam of constant thickness and linearly variable width with
d support. -

sing Eq. 7 to determine the equations for moment of inertia
) and area (4) and substituting into Eq. 3 and letting u= (1/)x,
e following equation results:

bo ] iz bo diz
+(b1_1)” a2\ e

_12l4pw2 bo ]
= Fait |:1+ 5, 1>u 2. (8)

B=bo/by and KAi=12p0%/ g2,

king the substitutions

8 becomes

d's 261 &,
(71:;+[1+(6—1)u] dud Gk ©)

T} the following boundary conditions:

at ¥=0or u=0, d%/du*=0 and :=0
at x=loru=1, ds/du=0 and =0.

?’ation 9 was solved by numerical integration. For various
tes of B, the values of (IK) corresponding to the funda-
al frequency, second harmonic, and third harmonic were
nd. Solving
Kt=12pw?/Igh*
w gives
: w=N"RK*(lig/12p)}

w(12p/Eg)¥(I13/ ) = (1K)~ (10)

wing the values of (IK) for various values of 8 from the
n of Eq. 9, Table IT was developed to give the factor (IK)2.

n this Table,
w(12p/EQ¥ (/1)

vs 8 was plotted in Fig. 4 for the fundamental frequency, second

harmonic, and third harmonic.
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Measurements of the Particle Velocity and
Pressure of the Ambient Noise in a Shallow Bay*

ArNOLD BANNER
Institute of Marine Sciences, University of Miami, Miami, Florida 33149

Sound perception by marine animals may be affected by the particle velocity
or the pressure of ambient noise. Levels of ambient noise measured with a
velocity hydrophone in very shallow water were found to be considerably
above the associated pressure levels, particularly at low frequencies. This
difference is probably due to nearfield components of ambient particle
motion and may be important in acoustic signal detection by mechano-
receptor organs.

THOSE WORKING IN MARINE BIOACOUSTICS HAVE RECENTLY BEEN
made aware of two important phenomena; masking by ambient
noise!'? and detection of particle motion.3=5 On the basis of these
findings, further investigations of hearing in an aquatic environ-
ment should take into account both the pressure and the particle
velocity of noise. The author is not aware of any such field-
velocity measurements, and this is understandable, considering
the state of the art in measuring this parameter.

Velocity and pressure measurements of the ambient noise were
made at shallow-water test sites during experiments on the use of
hearing by sharks. These sites, in Biscayne Bay, Florida, were in
25 to 45 cm of water over a soft mud bottom. Snapping shrimp
were not abundant, and individual snaps could be easily distin-
guished. Fishes were constantly foraging in the area, producing
frequent swimming and jumping sounds. The sensitive axis of the
velocity hydrophone was set perpendicular to tidal currents, when
present. All velocity measurements were in a horizontal plane.
Wind speeds were 6 to 15 mph, creating a rippled surface, but no
breaking waves. Three series of recordings were made at approxi-
mately high tide between 10 A.M. and 7 p.M., May to July 1968.

The velocity hydrophone consisted of a Geo Space HS-1 refrac-
tion geophone, 4.5-Hz resonant frequency, mounted on a PVC
plate that was suspended from an outside housing.? Although
this choice of resonant frequency necessitated careful leveling of
the geophone, it permitted working at frequencies down to 20 Hz.
The nearfield directional characteristics of this hydrophone were
found to be typically dipole. Response at 20, 40, 80, and 160 Hz
was down 3 dB at 45° and 22 dB at 90° to the sensitive axis; while

MATCHING
TRANSFORMER

STEP *_0
[OSC'LLATOR HATTENUATOR |
- L
PRESSURE
HYDROPHONE

VELOCITY
HYDROPHONE

FIELD RECORDING

VARIABLE

TAPE RECORDER{> BAND PASS OSCILLOSCOPE
FILTER

LAB PLAYBACK

Fi1G. 1. Equipment for field recording and laboratory analysis of noise
samples.

The Journal of the Acoustical Society of America 1741



