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INTRODUCTION

~ This analysis is a continuation of the work!? started
by the authors on the vibration of tapered cantilever
ms. This type of beam linearly tapered in either the
izontal or the vertical plane finds wide application
lectrical contacts and for springs in electrome-
cal devices. Occasionally, however, it is advan-
us to use a beam which tapers linearly in the
ontal and in the vertical plane simultaneously,
it is necessary to be able to determine easily and
tely the natural frequencies of vibration.
vibration of tapered cantilever beams has been
ered by many investigators; however, only a few
tudied the case of the beam tapered linearly in
rizontal and the vertical plane simultaneously.
3 in 1956, working on the vibration of turbine
. developed relations expressing the ratios be-
n frequencies of tapered and untapered beams.
ner and Keightley* in 1962 analyzed a rectangular
e-tapered cantilever beam and a conical-shell
Lindberg® in 1963 developed a method of de-
dynamic stiffness matrix for determining the
cy of any nonuniform beam and applied this
hod in general terms to a linearly double-tapered
ever beam. Rao® in 1964 developed a method for
mining the ratio of the frequency of a tapered
o the frequency of a uniform beam. '
methods mentioned above are interesting but
n general too complicated for average design use.
use of this, the present investigation was under-
to provide a quick and accurate method of
ining the first five frequencies of double-tapered
ever beams over a wide range of taper ratios.
differential equation of motion for a vibrating
-tapered cantilever beam has been derived and,
e of its complexity, has been solved on a com-
rom this solution, tables have been developed
ich the fundamental frequency, second, third,
and fifth harmonic can be obtained for various
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The differential equation is developed from the Bernoulli-Euler equation for the free vibrations of a double-
tapered cantilever beam. The beam tapers linearly in the horizontal and in the vertical planes simultaneously.
From a computer solution of this equation, a table has been
quency, second, third, fourth, and fifth harmonic can easily
are plotted for selected taper ratios in the vertical plane to show the effect of taper ratios on frequency.

developed from which the fundamental fre-
be obtained for various taper ratios. Charts

taper ratios. Charts have also been plotted to show the
effect of taper ratios. In this analysis of transverse
vibrations, shear and rotary inertia were neglected.

1. BEAM OF LINEARLY VARIABLE THICKNESS
AND OF LINEARLY VARIABLE WIDTH

For the beam shown in a plan and elevated view of
Fig. 1, the thickness & at a distance x from the free end
is given by

h=h1+ (ho—h1) (x/1) (1)
and the width b is given by
b=bi+ (bo*—bx) {x/l) (2)

The Bernoulli-Euler equation of a vibrating beam is
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Fic. 1. Cantilever beam tapered linearly in horizontal and in
vertical planes simultaneously.
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TasLE I. Factor (&) a=ho/h, B="bo/bs. - where pA/g i
density, 4 cr

Funda- Funda- ; Stapt) , E tilfe 1
mental Second Third  Fourth Fifth mental Second  Third Fourth of inertia. 11 o
B frequency harmonic harmonic harmonic harmonic B8 frequency harmonic harmonic harmonic harm 5 frequency w
«=1.0 1.0 3.5160 22035 6170 1209 199.8 | «=20 2.5 97925 39.931 9809 1846
12 37168 22415 6206  121.2 200.2 3.0 10.2355  40.637  98.88 1854
14 38927 22742 6239 1216 200.5 3.5 10.6061 41247  99.60  186.2
1.6 4.0485 23.029  62.68 1219 200.8 40 109210 41.785  100.24 1869 -
1.8 41886 23286 6295  122.1 201.1 50 11.4291 42700 101.36  188.2 the beam
2.0 43152 23519 6320 1224 201.4 _ For
2.5 45852 24021  63.74  123.0 202.0
3.0 48057 24440  64.24 1235 2025 | «=25 1.0 9.8345 43.713  110.04 2088 1
3.5 49894 24802  64.67  124.0 203.0 1.2 103388  44.462 110.84  209.7 I=—bh?=
40 51456  25.123 65.06 1244  203.5 14 10.7807  45.109  111.53 2104 12
50 5.3977  25.656  67.54  125.2 204.4 1.6 11.1723 45679 11215  211.0 ,
1.8 11.5240  46.188 11270 2116 and
20 11.8419  46.652 11321 2121
a=12 1.0 4.3089 25.032 68.56 133.5 220.2 2.5 12.5217  47.656 114.34 213.3
1.2 4.5501 25.466 68.99 133.9 220.6 3.0 13.0762  48.501 115.28 214.3 ¢ A=bh-
1.4 47607  25.837 69.36 134.3 221.0 3.5 13.5402 49.234  116.14  215.3 ; e
1.6 49484  26.163 69.71 134.7 2214 4.0 139345 49.880 11690  216.1
1.8 51162 26455 70.01 135.0 221.7 50 14.5710 50.982 11824  217.6 L.
20 52684 26719 7029 1353 222.0 ; Substituting
2.5 55928 27289 7091 1360 2227 —x/l (o th:
3.0 58574  27.767 7147 136.5 2233 | =30 10 12.0798 50.740 12526  236.1 W= e
3.5 60787 28179 7196  137.1 223.9 1.2 126871 51.608 126.18  237.0 for numerical
40 62665 28540 7240  137.6 224.4 14 13.2183 52358 12699  237.9
50 6.5695  29.155 7319 1385 225.4 1.6 13.6893  53.019  127.71 2386 f 2d%
. ; 1.8 14.1120 53.612 12837  239.3 /__{____{__
a=14 10 51207 27982 7522 1457 2393 20 lagso. SR 1 188 5 e dw [
12 54019 28463 7572  146.2 240.3 | 0768 : : i S
3.0 159768  56.306 13135  242.5 )
14 56482 23878  76.14 1467 240.8 6d%
[ 3.5 16.5340  57.160  132.34  243.5 ,
1.6 5.8666  29.241 76.53  147.1 241.2 » 4]
4.0 17.0074 57.914 13324 2445 )
1.8  6.0629 29.566 76.88 147.4 241.6 50 17.7721 50.201 134.79 246.2 5 du? [b]
20 62400 29862 7719 1478 2419 : : . : . :
2.5 6.619% 3o.sog ;g.gg 148.5 2427 : (ho -
3.0 69285  31.03 ) 149.2 243.4 -
33 Tlae  Sue o 10d Saro | @35 10 143724 57739 14023 2627 ‘ —
1.2 150823 58725 14130  263.8 Iat-(h
4.0 7.4066 31.904 79.57 150.3 244.6 1.4 15.7030 59.577 142.23 264.8 ] El 0
5.0 77612 32594 8042 1513 245.7 : : : | :
. 1.6 16.2538 60329  143.04 2656
1.8 13.7477 61.004  143.78 geg.%
a=16 10 59492 30.891 8176 157.7  259.0 20 17.1943  61.618 14146 267.
12 62105 31422 8232 1592 2595 25 181476 1051 14393 287
14 65521 31830 8279 1587  260.0 3.0 18. 6t 1ai A L
16 68022 32281 8321 1592 2605 35 19573 65082 1830 2712 To simplify
1.8 70262 32.641  83.59  159.6  260.9 40 201387 65913 14033 2723
20 72291 32966 8396 1599 2613 50 210204 67.388 15107 2743
2.5 7.6624 33.672 8473  160.8  262.1
30 sol@ e EAL o I60S 209 | io 1o ioms ery 15505 2890 Equation 7 ¢
: . : ‘ : : 1.2 17.5167 65826  156.25  290.2
40 85632 35227 8656 1628 264.2
50 89604 35992  87.52 1639 2654 14 18.2278  66.782  157.28 = 2913 n fr o 2d%
1.6 18.8582  67.626 15821  292.3 b= o
1.8 194234 68383  159.04  293.1 . it dut L1
=18 10 6.7912  33.772 83.19  169.4 277.6 20 199344  69.071  159.79 2939 X LH w
1.2 7.1535 34352 88.79  170.0 278.3 2.5 21.0250  70.568 16144  295.7 .
14 74704 34851  89.32 1705 2788 3.0 219146  71.832  162.87  297.2 0d’z
1.6 7.7518  35.291 89.79 1710 - 2793 3.5 22.6576.--.72.074 16412 298.5 —
18 80044 3568 9021 1715 2798 40 23.2803  73.900  165.23  299.7 du? \[1
20 82329 36041  90.59 1719 280.2 50 243079 75560  167.21 3019
2.5 87208 36813 9145 1728 281.1
3.0 91192 37462 9220 173.6 2820 3 3 : , )
3.5 9.4526 38.023 92.85 174.3 282.7 a=35.0 1.0 21.4573 78.682 184.33 340.5
4.0 97356  38.517 9345 1749 283.4 12 224750  80.026  185.80  342.1
50 10.1927  39.358 9450  176.1 284.7 14 233714 81186  187.06  343.4 .
1.6 24.1621 82212  188.18  344.5 Equation
1.8 24.8702  83.132  189.17  345.6 wpered bear
a=20 1.0 7.6469 36632 9452  180.8 2959 20 255096 83.973  190.11  346.5 apel
1.2 80497 37.260 9518 1815 296.6 2.5 268749 85794 192,10 3487 0 give valu
14 84019 37803 9575  182.1 297.2 3.0 279873 87.336  193.82  350.5 558 iollowine bot
1.6 87149 38278 9626  182.6  297.8 3.5 289164  88.678 19533  352.1 5 s
1.8 89958 38705  96.73  183.1 298.3 4.0 29.7047 89.865 19670  353.6 5 ; at 2
2.0 9.2495 39.092 9714  183.6 2987 50 309770 91.895  199.09  356.1 564 .
at a
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Fourth  Fit §
> harmonic harmor.

184.6 2097
185.4 3006
186.2 3015
186.9 3022 ¢
188.2 3036
208.8 3404
209.7 341.3
2104 3420
211.0 3427
211.6 3433
212.1 3438
213.3 345.0
214.3 346.1
215.3 347.1
216.1 348.0
217.6 3495
236.1 383.6
237.0 384.6
237.9 3854
238.6 386.2
239.3 386.9
239.9 3875 |
241.3 3889
242.5 390.2
243.5 391.3
244.5 392.3
246.2 394.1
262.7 425.7
263.8 426.8
264.8 4278
265.6 428.7
266.4 4295
267.1 430.2
268.7 431.8
270.0 433.2
271.2 434.5
2723 435.6
274.3 437.7
289.0 467.0
290.2 468.3
291.3 469.4
2923 470.4
293.1 471.3
293.9 472.1
295.7 473.9
297.2 475.4
298.5 476.8
299.7 478.1
301.9 480.4
340.5 547.9
342.1 549.5
343.4 550.8
344.5 552.0
345.6 553.1
346.5 554.1
348.7 556.2
350.5 558.1
352.1 559.8
353.6 561.3
356.1 564.1
e e e e
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ere pA/g is the mass per unit length (p weight
ity, A cross-sectional area, g gravitational con-

dant), E the modulus of elasticity, and 7 the moment

ertia. If one assumes a sustained free vibration at
frequency o of y(x,t) =z(x) sinwt, Eq. 3 becomes

a? d*z pA
-——(EI———>=(—>oﬂz. @
dx®\  da? g

For the beam tapered in two directions as shown,

; 1 1 x x®

2 I=—"bh3=—[b1+(bo"'b])—:][kl‘l—(ho—hﬂ—:‘ (5)
12 12 l l

and

. X X

A =bh=[bl—i-(bo—bl)l—inihr*-(ho—hl)l—:l (6)

ubstituting Egs. 5 and 6 into Eq. 4 and letting
4=/l (so that » will always be in the interval [0,1]
numerical integration) gives the following equation:

3(ho—h) .l (bo—b1) }
[hat(ho—ha)u]  [bat-(bo—b1)u]
(Bo—"b1) (ho—1t1)
(b1 (bo—br)u ) ka+(ho—h1)u ]
(ho—h1)?
[+ (ho—hl)u:]z}

2d33 {

du?

6d2z {

du?

it 2
= .
Eg l_hr{—(ho—hl)u] = ()

To simplify Eq. 7, let a=/ho/h1, B=bo/b1, and
ké=12pw?/Eghi. @®
ation 7 then becomes
205 3e—1)  p-1
du3[1+(a—1)u' 1+(ﬁ—1)u:\

B—1D(-1)
[1+@—-Du][l+(—1)u]

(@—1)? (Ik)%2
+[1+(a—1)u]2} Tt (a—Da

- Equation 9 is the equation of motion for a double-
pered beam. It was solved by numerical integration

6d%z {

du?

owing boundary conditions:
at =0 or u=0, d?%/du*=0 and z=0,
at =1 or =1, dz/du=0 and z=0.

give values of (Jk) for various taper ratios for the
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Fic. 3. Effect of taper ratios on second, third, fourth, and
fifth harmonic frequencies.
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F16. 4. Effect of factor i*/hy on fundamental frequency.

With these boundary conditions, the solution becomes
that of a double-tapered cantilever beam which is
truncated and tapers from the fixed end only.

An equation for w can be written in terms of (lk)

from Eq. 8 as
(k)*( Eg\}
o= ).
12/hi\12p

Table I was developed from the solution of Eq. 9 to
give values of (Jk)? for various values of a and g for the
fundamental, second, third, fourth, and ffth har-
monics. With the values from this table, frequencies
can easily be calculated using Eq. 10. It should be
mentioned that this table can also be used to calculate
the frequencies of a uniform beam where a=8=1.0 or
for a beam tapered in only one plane.

From Table I, curves were plotted of w(?/hi)
X (12p/Eg)* vs B for a=1.0, 2.0, and 3.0 for the five
harmonics as shown in Figs. 2 and 3. Figure 4 shows
curves for the fundamental frequency of w(12p/Eg)? vs
B for I*/h1= 10, 20, and 30 with a=2.0.

From Figs. 2 and 3 it can be seen that the taper ratio
B in the horizontal plane has much less effect upon
frequency than does the ratio ¢ in the vertical plane.
Also, the effect of 8 decreases as the harmonic increases
so that at the fourth and fifth harmonics 8 has practi-
cally no effect on frequency. It is interesting to note

(10)

Yolume 51
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from Fig. 3 that there is an overlapping of the
for the third and fourth harmonics depending up
value of «. This is also true for the fourth and
harmonics.
Figure 4 was plotted to show the effect of the
I*/hy upon frequency. Several values of */hy are gi
which might be encountered in an actual design,
can be seen, frequencies decrease as this factor incr

A. Example

Determine the fundamental frequency of vibratio,
a beryllium copper cantilever beam with the foﬂowfng’
dimensions: o

h1=0.010 in., b;=0.020 in.,
h0= 0020 iIl., b0= 0060 in.,
1=0.500 in.,

a=ho/li=2, B=bo/b1=3.

From Table I, for a=2 and =3, (lk)*= 10.236.
12/h1=0.5002/0.010=25. For beryllium copper,

p=0.297 Ib/in.3,
E=20X10° psi (heat treated).

(l/’é)z(Eg)i

w= —

2/ \12p
10.236/20><106><386>4

T 25\ 12X0.297

=19 100 rad/sec,
f=19 100/2%=3040 cps.

From Eq. 10,
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