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Abstract

We describe the methods used to calibrate the LIGO interferometer responses for the S3
run, as well as results and an error analysis.

1 Introduction

The third LIGO Scientific Run, S3, consisted of data taken with the three LIGO detectors, from
Friday October 31, 2003 through Friday January 9, 2004. This document is intended as a summary
of the techniques used to calibrate the response of the interferometers and an estimate of associated
uncertainties. Those readers wishing to skip the details can find a convenient summary in Table 9.

As in previous runs[1, 2], we consider the response of the interferometer to an external strain
disturbance (e.g. a gravitational wave) to be that of a single degree of freedom feedback loop on the
difference of arm lengths, characterized by a loop gain functionG(f) (see Figure 1). This loop can
be parameterized by three functions: a “Sensing” functionC(f) which describes the free response
of the error signal IFO:LSC-ASQ to the strain disturbance, in units of ASQcounts/strain; a “Digi-
tal Filter” functionD(f), or the response function of the control signal IFO:LSC-DARMCTRL to
the error signal IFO:LSCAS Q, in units of DARMcounts/ASQcounts; and an “Actuation” func-
tion A(f) which describes the free response of the strain produced by the control signal, in units of
strain/DARMcounts.

These functions are related by

G(f) = C(f)A(f)D(f). (1)

The actuation function,A(f), is essentially the suspension pendulum transfer function, modified
by the actuation electronics chain (with analog and digital filters that compensate each other). We
assume that the functionA(f) does not change during the run.

The sensing functionC(f) is essentially a cavity pole function, scaled by the optical gain in
the detector. Since the optical gain depends on the fluctuating alignment, the sensing function is
a function of time and frequency, which we assume is of the formC(t, f) = α(t)C0(f), where
C0(f) is the sensing function at some reference timet0.

The digital filter functionD(f) is in general a complicated function of frequency with the
appropriate filters for producing a conditionally stable feedback loop with a unity gain frequency
around 150 Hz. In order to keep the feedback loop gain stable, a digital coefficient in the loop
is scaled with measurements of carrier power in the arms, and sideband power in the recycling
cavity. Therefore, the functionD(f) is also dependent on time in the formD(t, f) = β(t)D0(f).
The loop gain is thenG(t, f) = α(t)β(t)G0(f), with G0(f) = C0(f)D0(f)A(f). We assume
the functionsα(t), β(t) vary with time, but with spectral content only at frequencies below 40 Hz,
below the gravitational wave band.

The Fourier transform of the strain sensitivity of the interferometer at a timet, h(f, t) is related
to the Fourier transformASQ(t, f) of the signal IFO:LSC-ASQ by:

h(f, t) = R(t, f)AS Q(t, f) (2)

with

R(t, f) =
1 + G(t, f)

C(t, f)
=

1 + α(t)β(t)G0(f)

α(t)C0(f)
. (3)
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Figure 1: Block diagram of the interferometer

We call R(t, f) the response function for the interferometer. In practice we can obtain di-
rect measurements ofG0(f), A(f), α(t) andβ(t), but not of the sensing functionC0(f). We use
Equation 1 to findC0(f) from our measurements ofG0(f), A(f) andD0(f).

The calibration products posted in the Calibration web page:

http://blue.ligo-wa.caltech.edu/engrun/Calib_Home/

are, for each detector:

• a text file with a lookup table for the reference functions as a function of frequency (C0(f),
G0(f), R0(f))

• a frame file containing the reference functionsR0, C0,

• the actuation functionA(f),

• a text file with the time history of the calibration coefficientsα(t), β(t), and

• a frame file with the calibration coefficientsα(t), β(t).

The reference functionsG0, C0, A, andR0 for each detector are created with a Matlab function
“LSCmodel.m”, first written for S1 and S2 by Rana Adhikari, that reads in parameters for the
detector model and a frequency vector, and creates complex output vectors for the open loop gain,
sensing and actuation functions, and the response function. The parameters used in the detector
model are mostly taken from measurements described later, with a few free parameters that are
used to fit the model open loop gain to a measurements. The matlab models and parameter files
are posted in the calibration web page.

The coefficientsα, β are measured from complex ratios of demodulated time series of the
signals IFO:LSC-ASQ, IFO:LSC-DARM CTRL, and IFO:LSC-DARMCTRL EXC. There are
three calibration lines injected, and we test for consistency of the results from each line, which is a
test of the assumption thatG(t, f) is a real scalar coefficient (α(t)β(t)) times a constant function
of frequencyG0(f).

In the sections that follow, we describe the procedures used to create the calibration products,
and the estimated errors associated with the measurements and models used.
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1.1 The Actuation FunctionA(f)

The actuation chain, from a signal in IFO:LSC-DARMCTRL to a change in the differential arm
length made through the push in the four magnets in each end test mass, is made from the following
components:

• LSC output matrix coefficients, splitting the signal into inputs to the ETMX and ETMY
digital suspension controllers;

• digital filters in the LSC filter bank, in each of the ETMX, ETMY digital suspension con-
trollers;

• coil gain coefficients in the LSC-POS matrix;

• coil digital filters in the (LL, LR, UR,UL)POS filter banks (including force-to-pitch filters)

• coil digital filters in the (LL, LR, UR,UL)COIL filter banks (including the “AntiDewhite”
filters);

• anti-imaging filter;

• digital to analog module;

• coil analog filters (including dewhitening filters);

• analog coil driver “snubber” filters;

• coil-magnet actuation gains;

• suspended mirror transfer function (pendulum).

• for H1 and H2 only, a residual transfer function is included to account for insufficient digital
compensation of the dewhitening filters (the residual is described below)

There is also a time delay due to the light travel time in the arm cavities, plus possibly time
delays in the digital and analog systems, which only affects the phase of the actuation function
(and of the open loop gain). The time delay is one of the parameters we use to fit our measured
open loop gain to the model.

The digital suspension filters “AntiDewhite” for each coil compensate the frequency response
of the analog dewhitening filters, to produce a unity transfer function. Also, the “force to pitch”
filters are tuned to produce a single pendulum response for a piston motion of the mass (rather than
a coupled pendulum-pitch response). The pendulums for both test masses have the same frequency,
and although they don’t necessarily have the same quality factor (appropriate for the damping
in each), the damping function does not affect the pendulum transfer function at frequencies in
the gravitational wave band (40 Hz-2 kHz). Thus, although there are many components to this
function, in principle it all boils down to a simple pendulum transfer function, with a scale factor
that we call the “DC gain”, setting the value of the actuation at zero frequency.

In Matlab, we model the actuation function in “LSCmodel.m” (in the Laplace domain) as a
product of the following functions: a pendulum functionlscpend , an anti-imaging filterai ;
a time delaytdelay ; a snubber filtersnub ; a digital-to-analog filterd2a ; and a function
(hd1+hd2)/2 , wherehdn is the digital filter corresponding to each mass.

page 4 of 35



LIGO-T050059-01

The poles and zeros of the as-built analog dewhitening filters are slightly different than those
of the designed filters. Thus, if the digital compensation of the dewhitening filters is done using
the designed parameters, there will be a frequency dependence in the actuation function due to the
imperfect compensation. In L1, the transfer function for each one of the eight dewhitening filters
(one for each coil in ETMx and ETMY) was carefully measured and properly compensated with
digital filters (see entry by Brian O’Reilly in the LLO elog on Oct 4, 2003). The differences be-
tween design and measurements were up to 5% in magnitude and 5 degrees in phase; the residuals
after the fit were better than 1% in magnitude and 1 degree in phase. In H1, the digital filters had
the poles and zeros of the design, rather than the actual as-built ones. This was taken into account
measuring the transfer function of the filters; modeling them with a single transfer function; cal-
culating the product of the digital filters and a model for the dewhitening filters; and including the
modeled residual in the model for the actuation function.

• Pendulum function:

darm.DCcal * tf(wpˆ2, [1 wp/Qp wpˆ2]);

• Pendulum DC calibration

darm.DCcal = darm.ETMYcal * darm.darm2etmy -...
darm.ETMXcal * darm.darm2etmx;

• Anti-imaging filter:

[z,p,k] = ellip(4,4,60,2*pi*7570,’s’);
misc.ai = zpk(z,p,k*10ˆ(4/20)) * zpk([],-2*pi*13e3,2*pi*13e3);

• Time delay:

[num,den] = pade(lsc.tdelay,4);
tdelay = tf(num,den);

• Coil driver snubber filter:

See LLO elog entry by Brian O’Reilly on Feb 8, 2003.

• Digital to analog filter (as a function of frequency):

d2a(f) =
sin(2πf/fs)

2πf/fs

e−iπf/fs ,

with fs=16384 Hz being the sampling frequency.

• Digital suspension filters are read from the suspension digital filter filesIFOSUS ETM#.txt
used during the science run, selecting the filters that were on at the time.

Table 1 shows the input parameters in the Matlab files “IFOparameters.m” that correspond to
the actuation function.

Figure 1.1 shows the actuation functions for all three detectors.
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Figure 2: Actuation functions for the LIGO detectors during S3.
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Parameter L1 H1 H2
Arm length (m) 3995.1 3995.064 2009.12
Pendulum wp 2π0.761 Hz 2π0.764 Hz 2π0.757 Hz
Pendulum Qp 10 10 10

Output matrix coefficients
darm2etmx, darm2etmy 2.50,-2.50 1.04, -0.90 0.53, -0.50
ETM DC calibrations

ETMX, ETMY (nm/ct) 0.38, 0.40 0.82, 0.90 1.03, 1.05
DARM DC cal (nm/ct) 1.95 1.66 1.07

Time delay (µs) 165 147.5 148.94
ETMX SUS Filters #1(Violin2) #0(TMNotch) #0(TMnotch)

#3(Drumhead) #1(violinSB) #1(violinSB)
#4(Ellip6648) #3(TM6622)

#6(violin2)
ETMY SUS Filters FM1(Violin2) #0(TMnotch) #0(TMnotch)

#3(Drumhead) #1(violinSB) #1(violinSB)
#4(Butterfly) #5(TM6622)

Table 1: Parameters used in the model for the actuation function.

1.2 Error estimates: DC calibration

We can describe the error associated with the actuation function as an overall gain error, due to
the DC calibration, and a frequency-dependent error, arising from imperfect modeling. Since we
do not have a direct measurement of the frequency dependence of the actuation function (other
than the measurement of the open loop gain, containing the actuation function), we will assume a
frequency-independent error equal to the error in the DC calibration. This error depends strongly
on the measurement procedure, described in the following paragraphs.

1.2.1 LLO measurements

As described in [2], the response of the end test masses (ETMs) to an excitation in IFO:LSCDARM CTRL
can be measured in several different ways, to obtain values and error for the model parameters
darm.ETMxcal and darm.ETMYcal.

At LLO, the ITMs were calibrated with a simple Michelson, and then the ETMs were calibrated
against the ITMs with single arm measurements. These measurements have the advantage of
being done in the gravitational wave band, but on the other hand they are sensitive to mismatches
in digital and analog filters in the sensing and actuation chain that imperfectly compensate each
other. In the simple Michelson interferometer, the response of ASQ to ITM excitation should show
a pendulum response; in the single arm measurements, the ratio of the response of ASI to ITM
and of ASI to ETMX should be frequency independent. Two sets of measurements were done,
on November 8 2003 and on January 9 2004. In both cases, the ASQ response to ITM excitation
was consistent with a pendulum response for frequencies above 200 Hz. (At lower frequencies,
the measurement was affected by non-negligible loop gain.) Results from both measurement dates
were indistinguishable within the measurement error. The results obtained for the DC response of
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an ITM pendulum with frequency 0.76 Hz were

dx/d(ITMX EXC) = (0.420± 0.010)nm/ct, and

dy/d(ITMY EXC) = (0.435± 0.010)nm/ct.

The single arm measurements, done to calibrate the ETMs against the ITMs, showed a signifi-
cantly non-flat ratio of (dASI/dETM*EXC) / (dASI/dITM* EXC), with a 10% step between 200
and 500 Hz. This is most likely caused by uncompensated “acquire” filters in the ETMs (since the
measurement could not be done in the “run” mode, for which the filters were well measured and
compensated). The ETM/ITM ratios measured on both dates had the same features, but the mean
values in each case were different by 5-10%.

The standard deviation of the ETM/ITM ratio function in the frequency range where the ITM
measurements were valid is only 5%, but given the uncertainty in the measurement, we adopt a
conservative estimate of 10% for the error in the ETM DC calibration for the values used in the
model. Thus, the values adopted for the DC response of an ETM pendulum with frequency 0.76
Hz were

dx/d(ETMX EXC) = (0.38± 0.04)nm/ct, and

dy/d(ETMY EXC) = (0.40± 0.04)nm/ct.

Fig.1.2.1 show the measurements taken on both dates.

1.2.2 Hanford measurements

A DC calibration method with smaller statistical uncertainty issign-toggling[3]. The calibration
is not made in the gravity-wave band (as in the case of the measurements at LLO described above),
but can achieve high precision through repeated trials. A simple Michelson interferometer is locked
on a (bright) fringe, and the sign of the feedback control loop toggled, so that the controlled mass
then moves throughλ/4 to a neighbouring (dark) fringe. The control signal required to lock this
configuration jumps discretely once the sign is flipped, and the size of the jump reveals a DC
calibration in nm/count. This procedure yields a precision (∼1%) DC calibration for an input test
mass (ITM). However, what is required for a calibration of the DARM loop is a DC calibration
of the end test masses (ETMs), so the ITM calibration must be transferred by using a Fabry-Perot
cavity in a single arm of the detector, and injecting sinusoidal disturbances into the arm (on both
input and end test masses, again, as noted above). The transfer process adds uncertainty and the
ETM DC calibration, which can have a resultant error of 6% [2]. If the ETM is calibrated directly,
the uncertainty associated with the transfer is eliminated.

For S3, an asymmetric Michelson configuration was locked, in which an ITM and an opposing
ETM were aligned (see Figure 4, in which an ITMY and an ETMX are aligned, while masses
ITMX and ETMY are misaligned). The asymmetric Michelson was locked by feeding back to
the ETM; the sign of the control signal was flipped and the DC readout at the antisymmetric
port changed. The result is a∼1% calibration of the H2 ETMs: statistical uncertainty on the H2
ETMX DC calibration was 1%, while H2 ETMY was 2%. This method was also employed on
the H1 ETMX, but the data were noisier (smaller contrast defect with the longer arm), so that the
calibration error was larger: 5% for H1 ETMX. In summary, the improved asymmetric Michelson
DC calibration was performed for the H2 instrument (both X and Y ETMs), and the H1 X arm. The
DC calibration for the Y-arm was obtained through a PZT fine actuator measurement, as described
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Figure 3: DC calibration measurements measurements with a simple Michelson (top row) and
single arms (bottom row). The measurements in the left column were taken on November 8, 2003;
the ones in the the right column were taken on January 9, 2004.
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ETM x

Figure 4: Schematic of an example asymmetric Michelson configuration. The Michelson is locked
via feedback to the ETMX. Light passes twice through the partially-transmitting ITMX, which is
misaligned at some arbitrary angle. DC readout at the antisymmetric port consists predominantly
of the direct reflection off of the ITMY (bright) with a small component of light from the opposing
ETMX added (brighter) or subtracted (darker).
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in [2], and made post-S3 at LHO, with an uncertainty of 6%. DC calibration errors are summarized
below.

1.2.3 DC calibration errors: summary

The DC actuation function measurements and its errors are summarized in Table 2.

IFO ETMX (nm/ct) ETMY (nm/ct) DC cal (nm/ct)
L1 0.38± 0.04 0.40± 0.04 1.95± 0.30
H1 0.82± 0.05 0.90± 0.05 1.66± 0.14
H2 1.03± 0.01 1.05± 0.02 1.07± 0.02

Table 2: Summary of measurements of the DC values of the actuation functions for all three
interferometers.

1.3 The sign of the calibration

The respective IFO signs of the calibration [2] were the same as in S2, since there were no hardware
or software changes in the DARM loop that changed the sign in any detector. This was validated
with drives to the fine actuators in the vacuum chambers at the mid station (for H2), and with
hardware injections performed by the stochastic group (for H1/L1 software/hardware injections).
Sensing signs were also re-measured on H1 and H2. The actuation sign is thus negative for all
three detectors; the sensing sign is positive for the LHO detectors and negative for L1; the input
matrix sign is negative for the LHO detectors, and positive for L1. All three IFOs had negative
DARM gains for S3.

2 The Digital Filter function D(f )

This part of the loop is modeled using the DARM filters in the actual filter files loaded in the LSC
during S3, “IFOLSC.txt”. The only parameters in the parameter file used in the matlab model,
other than the filters chosen from the filter file, are the value of the input matrix and of the LSC
gain at the time of the reference measurement. The value of the input matrix is obtained averaging
it for 10 minutes around the reference time. Table 3 summarizes the filters used in each detector
and the digital function parameters. The only error associated with the digital function is the error
in the estimate for the input matrix, which is averaged near the reference time, when the open loop
gain is measured. The distribution of the measured values in L1 during 500 seconds around the
reference time, shown in Fig.2 is reasonably Gaussian, with a 8% width. The error assigned to the
mean of the distribution, which used 500 points, is 0.3%; however, we estimate the error as the one
scaled to minute trends, which is what we use for calibration coefficients, or 2%.

3 Sensing function C(f)

The sensing function C(f) is the transfer function between a differential strain and the digital signal
in Xn:LSC-AS Q, in the absence of a feedback loop, measured in counts . The frequency depen-
dence of the optical transfer function is just a real pole due to the arm cavities (LIGO-T970084-00).

page 11 of 35



LIGO-T050059-01

Parameter L1 H1 H2
LSC DARM Filters #0(02 : 302) #0 (02 : 202) #0 (0,0:30,30)

#1(1k2 : 10, 90) #1 (1k2 : 10, 100) #1 (2K:10,100)
#2(2kBW) #2 (4kBW) #2 (2kBW)
#3(Boo) #3 (MadBoost) #3 (MadBoost)

#4 (lead150)
#7 (RG12,17.6)

Reference GPS time 753424982 757806384 754686235
Input matrix +0.00128 -0.00065125 -0.00521
DARM gain -1.7 -2.2 -0.545

Table 3: Parameters used in the model for the digital filter function

Figure 5: L1 Input matrix coefficient during the reference time.

We assume the frequency response of the photodiode and of the demodulator board is frequency-
independent. In L1, there was an RC low pass filter after the mixer, modelled with a single real pole
at 16 kHz. The anti-aliasing filter is modelled as an elliptic filter and a pole at twice the sampling
frequency. The analog whitening filter is compensated by a digital anti-whitening filter before the
signal is written to disk as ASQ, so we assume there is no frequency-dependent transfer function.

The overall gain, as well as the frequency dependence of the sensing function, are not di-
rectly measurable; we resort instead to the measurement of the open loop functionG(f) =
D(f)A(f)C(f), described in the following section. We check the consistency of the frequency
dependence ofG(f) with the one assumed in the mdoel; we adjust an overall gain inG(f) to
match the measurement, and then obtain the gain forC(f) from the ratioG(f)/(A(f)D(f)).

The arm cavity poles in L1 were measured and elogged by Andi Gretarsson on July 20, 2003.
The arm cavity poles for H1 and H2 were measured and elogged by Joe Betzwiezer on February
20 2004. In all cases, the measurement error was 1%, about the same as the diffference between
the values for the different arms (in the DARM matlab model, we used a single cavity pole). The
measured values of the cavity poles, the values used in the model, and the measurement errors (not
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including possible systematic errors) are shown in Table 4.
Follow up measurements suggest that the measurements of cavity poles may be subject to a

systematic error of as much as 4 Hz. We show in Fig 3 the differences in magnitude and phase that
can result from such a difference in the pole cavity, for H1/L1 (where the pole is at 83 Hz) and H2
(where the pole is at 160 Hz). The difference in magnitude and phase is frequency dependent, with
the maximum error in magnitude of 5% for L1, H1 and 2.5% in H2 (at frequencies significantly
higher than the pole), and in phase of 1.5deg in L1, H1 and 0.75 deg in H2, at the pole frequencies.

In principle, since we do not have a direct measurement of the sensing function, the conse-
quence of using a wrong cavity pole is a discrepancy in the matching of the model and measure-
ment of the open loop gain functionG(f). As we will show, although there is no evidence of a
discrepancy between model and measurement that can be simply explained by a difference in the
cavity pole used, the measured discrepancies and the measurement errors cannot rule out a sys-
tematic error in the cavity pole of 4 Hz. The discrepancies between model and measurement of the
phase of G(f) are strongly affected by the time delay chosen for the actuation function, so again we
cannot rule out a systematic error in the cavity pole. The error in magnitude of the sensing function
will be accounted in the response function (expressed in terms ofA, D andG) by the error inG.
The error in phase ofC, however, will be accounted by an error inA due to the time delay, which
we estimate at 1.5 deg for H1, L1 and 0.75deg in H2.

Detector X-arm Y-arm DARM Model
L1 83.6 Hz 81.6 Hz 82.6 Hz± 1.2 Hz
H1 84.1 Hz 82.5 Hz 83.3 Hz± 1.2 Hz
H2 160 Hz 157 Hz 160 Hz± 2 Hz

Table 4: Measured cavity poles, and value used in the calibration model for the DARM loop.

We show in Fig.3 the sensing functions resulting from our model, for all three detectors.

4 The Open Loop GainG(f )

The open loop function is measured by injecting a swept sine excitation into the loop and the
IFO:LSC-DARM EXC point, and recording the ratio IFO:LSC-DARMIN2/IFO:LSC-DARM IN1.
The measurement is taken with the instrument set for normal data taking (but not in Science mode),
at the times chosen as reference times, indicated in Table 3.

The Matlab model produces an open loop gain functionG(f) = A(f)D(f)C(f), with the
actuation functions and digital functions described in the previous sections. The modeled open
loop gain function is then compared to the measurement, and the unity gain frequency and the time
delay are adjusted to match the measurement in amplitude and phase, respectively. The adjustment
of the unity gain frequency is an overall gain factor; while the adjustment of the time delay in
the actuation function changes the phase, but not the magnitude, of the model forG(f). The
residual difference in magnitude and phase is taken as the error in the model for the open loop
gain functionG(f). The unity gain frequencies and phase margins of the measured loop gains are
shown in Table5.

The comparisons between model and measurements are shown in Fig 8. Although the differ-
ences show a frequency dependence, we simplify the error analysis using a frequency independent
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Figure 6: Ratios of sensing function using different cavity poles
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Figure 7: Sensing functions for the LIGO detectors during S3.
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IFO GPS ugf, phase margin meast/model(magnitude) meast/model (phase)
L1 753424982 170 Hz, 34 deg (0%, 5%)= 5% (0, 1deg) =1 deg
H1 757806384 166 Hz, 50 deg (2%, 4%) = 4% (0, 2deg)=2 deg
H2 754686235 140 Hz, 39 deg (8%, 6%) = 10% (1.5deg, 1.4deg) = 2 deg

Table 5: Unity gain frequency and phase margin for DARM loop; errors in magnitude
(∆|Gmeas(f)/Gmodel(f)|) and phase (∆Θ(Gmeas(f)/Gmodel(f))) for G(f), between 60 Hz and
2 kHz. The error estimates in brackets are the estimates for systematic and random (measurement)
error.

error forG(f) in magnitude and phase, as indicated in Table 5. The error is the sum, in quadrature,
of the error in the mean (if different from unity) and the standard deviation of the measurements.
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Figure 8: Comparison of model and measurement for open loop gain function G(f), for each
detector
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5 Calibration Coefficientsα, β

In previous runs, the calibration coefficientβ was fixed within a science segment, determined by
the fixed digital values of the input matrix converting ASQ into the error signal DARMERR, and
the loop gain L1:LSC-DARMGAIN. There were a few discrete values during the run, when one or
both of these coefficients were changed. During the commissioning previous to S3, an algorithm
was developed [4] where the input matrix coefficient was “dynamical”, calculated by the front
end computer code from transmitted arm powers and IFO:LSC-LASPOB, a signal proportional
to the sideband power. The goal of this code was to compensate for changes in the optical gain in
the detector (namely, the coefficientα) with an equal and opposite change in the digital gain (the
coefficientβ), to keep the DARM loop gain (the productαβ) constant. The effect is shown in the
narrower distribution ofαβ in S3 than of each ofα, β, as shown in Figs. 14, 16, 18.

In previous science runs, and in versions V1 and V2 of the S3 calibration, we calculated the
calibration coefficients from the results produced by SenseMon, measuring the amplitude of the
calibration line in ASQ. The line amplitude was measured from the power spectrum of ASQ,
averaged every minute.

For the final version V3 of the S3 calibration, the calibration coefficients were calculated dig-
itally heterodyning the error and control signals ASQ and DARMCTRL, and excitation signal
DARM CTRL EXC, with a sinusoid at the frequency used to produce to the calibration excitation.
As can be deduced from Fig 1, if we have complex time series for the calibration line in ASQ,
DARM and EXC, we can calculate the calibration coefficients using the following formulas:

αβ = − 1

g0

DARM − EXC

DARM

α = −d0

g0

ASQ

DARM
(4)

β =
1

d0

DARM − EXC

ASQ

whereg0 is the reference open loop gain function evaluated at the calibration frequency:g0 =
G0(fcal), andd0 is the reference digital filter function evaluated at the calibration frequency:d0 =
D0(fcal). In the absence of any input or noise other than the injected calibration line, the resulting
coefficients are real. At the reference time, they are identically equal to one. In the presence of
noise in ASQ (from any source), with spectral amplitudeS(f) around the calibration line, the
calculated coefficientsα andαβ will have an imaginary part. IfS(f) = S0 is white Gaussian
noise, the imaginary component will be a random variable, with zero mean, and standard deviation
equal to

√
1.5S0fs, wherefs is the sampling frequency for the time series. Theβ coefficient should

be real even in the presence of noise (since DARM and ASQ are related by a digital filter).
We calculate the coefficients taking the real part of the time series obtained from the formulas

shown above. The imaginary part is used to measure the error in the real part. The mean of
the imaginary part, if not zero, represents an error in the phase of the coefficientsd0 and/org0,
which are obtained from the reference models described in previous sections. The magnitude of
the coefficientsd0 andg0 determines the value of the calibration coefficients at the reference time,
which should be unity. Apart from the data in ASQ, DARM and EXC, the value ofd0 determines
the magnitude and phase ofβ, and the value ofg0 determines the magnitude and phase ofαβ.
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Figure 9: Coefficientβ during reference time, calculated from demodulated lines and from input
matrix values.

Of course, the value ofβ can also be obtained from the digital coefficient IFO:LSC-ICMTRX01
which is written to frames; however, it is easier to work withα, β produced in the same format
by the same script, than to use data from frames forβ and from the lalapps code forα. However,
we use the data in frames to validate the production ofβ from the code. We show in Fig5 the
comparison of the time series and distributions forβ calculated both ways.

We use Xavier Siemen’s lalapps code ”ComputeFactors.c” to compute the coefficients at the
reference time, during hardware injection times, and in science segments. The code can be found
in the calibration folder of the CVS repository:

http://www.lsc-group.phys.uwm.edu/cgi-bin/cvs/viewcvs.cgi/lalapps/src/calibration/
The arguments to the code are:

-f FLOAT Calibration line frequency in Hz.
-t FLOAT Time interval to calculate factors

in seconds (>0.0005).
-i FLOAT Real part of the open loop gain at the

calibration line frequency.
-j FLOAT Imaginary part of the open loop gain at the

calibration line frequency.
-k FLOAT Real part of the digital filter at the

calibration line frequency.
-l FLOAT Imaginary part of digital filter at the

calibration line frequency.
-F STRING Name of frame cache file.
-S STRING Name of segment list file.
-A STRING AS_Q channel name (eg, L1:LSC-AS_Q).
-E STRING Excitation channel name (eg, L1:LSC-ETMX_EXC_DAQ)
-D STRING Darm channel name (eg, L1:LSC-DARM_CTRL)
-b STRING Output file for calibration factors.

We used the output files produced by Xavier Siemens for the times requested, and re-calculated
the α, β coefficients using valuesg0, d0 shown in Table 6. We also show in the same table the
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IFO fcal g0 eg (mag, phase) d0 ed (mag,phase)
L1 927.7 Hz 0.06372 + i 0.2299 1%, 0.5deg -1.2107 -i 4.9949 0.2%, 0.01deg
H1 973.3 Hz 0.1667 + i 0.2240 0.002%, deg 1.3419 + i 1.8202 0.2%, 0.001deg
H2 973.8 Hz 0.07682 + i 0.1753 0.4%, 0.06deg 2.3159 +i 4.7527 1%, 0.01 deg

Table 6: Calibration frequencies, and magnitude and phase of the open loop gain functionG(f)
and the digital functionD(f) evaluated at the calibration frequencies.

Figure 10: The left column shows the distribution of magnitude and phase angles of the coefficients
β andαβ during the reference time for L1; the figures on the right shows the phase angles of the
coefficients during all of S3.

estimates for the errors ing0, d0 estimated in magnitude from the means of the real part ofαβ, β
during the reference time; and in phase, from the mean of the imaginary parts ofαβ, β for all of
S3.

We show the data used in each case in Figs. 10,11,12. We can see that even if the mean of the
phase angle ofαβ is slightly different from zero for H1 and H2, the distribution of the measured
values for all of S3 has a Gaussian distribution, as expected. However, the distribution for L1 does
not show such a distribution, and suggests a superposition of several distributions with different
means, which differ by about a degree. A time series of the imaginary part ofαβ shows that there
are not distinct ”epochs”, but rather a slowly drifting mean with time scales of days. We do not
have an explanation for this behavior, other than some element inA(f) or C(f) was changing
its frequency dependence during S3 (or at least, its phase at the calibration frequency, 927.7 Hz).
In other words, this was probably a real (but not critical) problem with the L1 detector, which
was accurately reflected in the measurement. Since this effect only indicates a systematic error
of 0.7 degrees in phase forG0 at 927.7 Hz, and an error 1.4% in the calculated magnitude ofαβ,
we include this in the appropriate error budget, but otherwise believe the calibration procedure is
correct, even in the presence of this unexplained measurement.

We show in Figs 13, 15 and 17 the time series of the calibration coefficients during science
times in S3; and in Figs 14 and 16, 18, the distribution of their real and imaginary parts also during
S3. The coefficients were calculated every 60 seconds (i.e., using 60 sec as the integration time
for each coefficient). From the mean of the distribution of the imaginary parts, we estimate the
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Figure 11: The left column shows the distribution of magnitude and phase angles of the coefficients
β andαβ during the reference time for H1; the figures on the right shows the phase angles of the
coefficients during all of S3.

Figure 12: The left column shows the distribution of magnitude and phase angles of the coeffi-
cientsβ andαβ during the reference time for H2; the right column shows the phase angles of the
coefficients during all of S3.
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systematic error in the corresponding coefficient; from the width of the distribution, we estimate
the random error; these are shown in Table 7. We also show in Table 7 the “spread” of the values of
the coefficients during the run, which is only an error if a fixed coefficient is used for the whole run.
The spread inαβ is significantly smaller than inα, as expected from the successful implementation
of the algorithm calculating the input matrix coefficient (theβ coefficient).

IFO α β αβ
error spread error spread error spread

L1 (1.4%, 0.5%)=1.5% 14% (0,0.01%)=0.01% 13% (1.4%, 0.5%)=1.5% 4%
H1 (0, 0.3%)= 0.3% 3% (0,0.007%)=0.007% 3.5% (0,0.3%)=0.3% 1.3%
H2 (0,0.6%)=0.6% 2.7% (0,0.06%)=0.06% 6.2% (0,0.6%)=0.6% 1.9%

Table 7: Estimated errors for the point estimates of the calibration coefficients (averaged over a
minute), and spread of the calibration coefficients over the S3 run.
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Figure 13: Time series of L1 calibration coefficients during S3. The horizontal axis is in days into
S3. Notice the ”drift” in the imaginary part of theα coefficient during the first half of the run.
Around day 20, after a power outage, the unity gain frequency of the DARM loop was changed, as
indicated in the step in theαβ coefficient.
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Figure 14: Histogram of real and imaginary parts of L1 calibration coefficients during S3.

6 Response function

The response function at a time t, as a function of frequency f, is given by Eq. 3, which we repeat
here again in terms of functions and parameters directly measured:

R(t, f) =
1 + α(t)β(t)G0(f)

α(t)C0(f)
= A(f)D0(f)

1 + α(t)β(t)G0(f)

α(t)G0(f)
.

We post in the calibration web page a frequency series (in text and frame format) for the
response function at the reference time (when the open loop gain is measured, and we assume
α = β = 1). The plots for the reference response functions are shown in Fig19.

6.1 Response functions: errors

If we defineR′ = R + ∆R as a calculated response function different from the true response
functionR, we define the error in magnitude and phase as

∆|R|
|R|

=
|R′| − |R|
|R|

≈ <∆R

R
(5)

∆ΦR =
R′/|R′|
R/|R|

− 1 ≈ =∆R

R
(6)

We estimate errors in the response function assuming independent errors inA(f), D0(f),
G0(f), α(t) andβ(t). We see, for example, that relative errors in magnitude or phase for the
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Figure 15: Time series of H1 calibration coefficients during S3. The horizontal axis is in days into
S3.

page 25 of 35



LIGO-T050059-01

Figure 16: Histogram of real and imaginary parts of H1 calibration coefficients during S3.

actuation functionA(f) or in the digital filter functionD(f) will introduce the same relative errors
in the response function, and the errors will be independent of time.

In order to estimate the errors defined in Eq.5,6, we take logarithmic partial derivatives of∆|R|
and partial derivatives of∆φR with respect to magnitude and phase ofA(f), G(f), D(f), and with
respect toα andβ, and then add the errors in each parameter in quadrature, using the square of the
partial derivatives as weighting functions. We evaluate the partial derivatives at the reference time,
whenα = β = 1.

We begin by calculating the complex function∆R/R:

∆R

R
=

∆A

A
+

∆D0

D0

+
1

1 + αβG0

∆G0

G0

+
1

1 + αβG0

∆α

α
+

αβG0

1 + αβG0

∆β

β

=
∆A

A
+

∆D0

D0

+
1

1 + G0

∆G0

G0

+
1

1 + G0

∆α

α
+

G0

1 + G0

∆β

β

Next, we get a formula for∆|R|/|R| and∆φR from the real and imaginary part of∆R/R:

page 26 of 35



LIGO-T050059-01

Figure 17: Time series of H2 calibration coefficients during S3. The horizontal axis is in days into
S3.
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Figure 18: Histogram of real and imaginary parts of H2 calibration coefficients during S3.

∆|R|
|R|

= <
(

∆R

R

)
= <∆A

A
+ <∆D0

D0

+ < 1

1 + G0

∆G0

G0

+ < 1

1 + G0

∆α

α
+ < G0

1 + G0

∆β

β

=
∆|A|
|A|

+
∆|D0|
|D0|

+

(
< 1

1 + G0

)
<

(
∆G0

G0

)
−

(
= 1

1 + G0

)
=

(
∆G0

G0

)
+<

(
1

1 + G0

)
∆α

α
+ <

(
G0

1 + G0

)
∆β

β

=
∆|A|
|A|

+
∆|D0|
|D0|

+
<(1 + G0)

|1 + G0|2
∆|G0|
|G0|

+
=G0

|1 + G0|2
∆φG0

+
<(1 + G0)

|1 + G0|2
∆α

α
+ <

(
G0

1 + G0

)
∆β

β

=
∆|A|
|A|

+
∆|D0|
|D0|

+ CR
∆|G0|
|G0|

+ CI∆φG0 + CR
∆α

α
+ CRβ

∆β

β
(7)
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Figure 19: Reference response functions for the LIGO detectors during S3.
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Figure 20: CoefficientsCR, CI , CRβ, CIβ calculated with L1 open loop gain function.

∆φR = =
(

∆R

R

)
= =∆A

A
+ =∆D0

D0

+ = 1

1 + G0

∆G0

G0

+ = 1

1 + G0

∆α

α
+ = G0

1 + G0

∆β

β

= ∆φA + ∆φD +

(
< 1

1 + G0

)
=

(
∆G0

G0

)
+

(
= 1

1 + G0

)
<

(
∆G0

G0

)
+=

(
1

1 + G0

)
∆α

α
+ =

(
G0

1 + G0

)
∆β

β

= ∆φA + ∆φD + CR∆φG + CI
∆|G0|
|G0|

+ CI
∆α

α
+ CIβ

∆β

β
(8)
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We have defined weighting functions to simplify the formulas1:

CR = <
(

1

1 + G0

)
CI = =

(
1

1 + G0

)
(9)

CRβ = <
(

G0

1 + G0

)
CIβ = =

(
G0

1 + G0

)
(10)

From Eq. 7,8 we can now easily calculate partial derivatives, and obtain formulas for the error
in the magnitude and phase of the response function:

(
∆|R|
|R|

)2

=

(
∆|A|
|A|

)2

+

(
∆|D0|
|D0|

)2

+C2
R

(
∆|G0|
|G0|

)2

+C2
I (∆φG0)

2+C2
R

(
∆α

α

)2

+C2
Rβ

(
∆β

β

)2

(11)

(∆φR)2 = (∆φA)2 +(∆φD)2 +C2
R (∆φG)2 +C2

I

(
∆|G0|
|G0|

)2

+C2
I

(
∆α

α

)2

+C2
Iβ

(
∆β

β

)2

(12)

The coefficientsCR andCI are plotted in Figure 20 using values from L1. Obviously they
enhance or reduce the effect of some contributions depending on the frequency.

We use the formulas 11,12 with the errors estimated in previous sections to calculate the total
errors in the magnitude and phase of the response function. The parameters used in this calculation
are summarized in Table 8. The individual contributions, and the total error between 40 Hz and
2kHz is shown in Figs21,22,23. A summary table of errors in magnitude and phase is shown in
Table 9.

Error L1 H1 H2
∆|A|/|A| 0.15 0.08 0.02

∆φA 1.5deg 1.5deg 0.75 deg
∆|D|/|D| 0.02 0.02 0.02

∆φD 0 0 0
∆|G|/|G| 0.05 0.04 0.10

∆φG 1deg 2deg 2deg
∆α/α 0.015 0.003 0.006
∆β/β 10−4 0.7× 10−4 6× 10−4

Table 8: Errors used to calculate the total error in response function.

1There is a typo in formulas (9) and (10) used in [2] T040060-01 to define coefficientsCR andCI. The coefficients
defined there are the squares of the coefficients defined here in 9.

page 31 of 35



LIGO-T050059-01

10
2

10
3

10
−2

10
−1

10
0

m
ag

ni
tu

de
 (

fr
ac

tio
na

l e
rr

or
)

L1 error in response function

∆|A|/|A|
∆|D|/|D|
C

R
∆|G|/|G|

C
I
∆φ

G

C
R

∆α/α

C
Rβ

∆β/β

∆|R|/|R|

10
2

10
3

10
−1

10
0

10
1

Hertz

ph
as

e(
de

g)

∆φ
A

∆φ
D

C
I
∆|G|

C
R
 ∆φ

G

C
I
 ∆α

C
Iβ

∆β/β

∆φ
R

Figure 21: Error in magnitude and phase of L1 response function. The error contributions in the
legend, but not visible in the plot are smaller than 1% in magnitude, 0.1 deg in phase.

page 32 of 35



LIGO-T050059-01

10
2

10
3

10
−2

10
−1

10
0

m
ag

ni
tu

de
 (

fr
ac

tio
na

l e
rr

or
)

H1 error in response function

∆|A|/|A|
∆|D|/|D|
C

R
∆|G|/|G|

C
I
∆φ

G

C
R

∆α/α

C
Rβ

∆β/β

∆|R|/|R|

10
2

10
3

10
−1

10
0

10
1

Hertz

ph
as

e(
de

g)

∆φ
A

∆φ
D

C
I
∆|G|

C
R
 ∆φ

G

C
I
 ∆α

C
Iβ

∆β/β

∆φ
R

Figure 22: Error in magnitude and phase of H1 response function. The error contributions in the
legend, but not visible in the plot are smaller than 1% in magnitude, 0.1 deg in phase.
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Figure 23: Error in magnitude and phase of H2 response function. The error contributions in the
legend, but not visible in the plot are smaller than 1% in magnitude, 0.1 deg in phase; except for
∆|A|/|A| which is 2% and hides behind∆|D|/|D|, which is also 2%.
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IFO ∆|R|/|R| ∆φR min ∆|R|/|R| min ∆φR max∆|R|/|R| max∆φR

L1 15.4% 3.3deg 15.3% 1.7deg 18.1% 5.0 deg
@ 100 Hz @127 Hz @1182 Hz @339 Hz @190 Hz

H1 9.6% 3.6deg 8.7% 2.1deg 11.7% 4.4 deg
@ 100 Hz @350 Hz @350 Hz @334 Hz @332 Hz

H2 5.8% 8.1deg 5.4% 1.6deg 20.9% 8.3 deg
@ 100 Hz @111 Hz @350 Hz @335 Hz @166 Hz

Table 9: Errors in magnitude and phase of response functions for the three interferometers, at
100Hz. Also shown are the maxima and minima in error in the range 60Hz-2kHz.

7 Conclusions

We have presented the methods used to obtain the final calibration of the LIGO detectors during
the third Science Run, and estimated errors associated with the calibration.

The calibration files and matlab files with the models used to generate the calibration files are
posted in the calibration home page, for S3(V3):

http://blue.ligo-wa.caltech.edu/engrun/Calib_Home/

The main differences from this calibration with respect to previous runs are:

• improved methods to obtain the DC actuation calibration at LHO, especially for H2;

• a time-varyingβ parameter that reduced the fluctuations in the open loop gain (measured by
the productαβ) due to optical gain fluctuations (orα); and

• the measurement of the calibration coefficients using demodulation of the stored data chan-
nels, rather than from power spectral estimates.
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