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1 Introduction

The internal thermal noise of the test masses is one of the most important noise source
limiting the sensitivity of advanced interferometric gravitational-wave detectors [4] in
the frequency range from ∼ 40Hz to ∼ 200Hz (Cf. Fig. 1): a fluctuational redistri-
bution of thermal energy inside the mirrors produces a fluctuational change of test
mass’s shape and a change of the position of its reflecting surface, which is undistin-
guishable from a gravity-wave-induced motion of the test mass’s center of mass. This
is one of the fundamental limits of gravitational waves detector interferometers.

Figure 1: Advanced LIGO design sensitivity (sapphire substrate) and fundamental
limitations.

There are various types of internal thermal noise, each one associated with a spe-
cific dissipation mechanism. The relative importance of one with respect to the other
is determined by the mechanical and thermodynamical properties of the test mass
materials.
Homogeneous thermal noise [11] is due to intrinsic losses in the substrate material
and is associated with all forms of dissipation that are describable by an imaginary
part of the Young’s modulus as long as dissipation is uniform inside the substrate of
the test masses.
Thermoelastic noise [9] is created by the stochastic flow of heat within each test mass,
producing fluctuations of temperature; due to the thermal expansion coefficient, the
test-mass material expands in the hot spots and contract in the cold spots, creating
fluctuating bumps and valleys on the mirror faces.
It has been recently pointed out that it is critically important how the losses are
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distributed inside the test masses. Losses far from the beam spot contribute little
to the total thermal noise, whereas losses near the spot, in the dielectric coating for
example, contribute more.
Coating thermal noise [12] due to internal losses or to thermoelastic-damping [13]
is thought to be the dominant contribution to the thermal noise for mirrors with a
SiO2/Ta2O5 coating on a fused silica substrate, whereas the thermoelastic noise of
the substrate is the dominant contribution for sapphire mirrors.
The position of the mirror’s surface is measured with interferometric techniques. The
surface fluctuations produced by thermal noise are averaged by the intensity distribu-
tion of the laser beam over the mirror surface. The standard design of interferometers
uses light beams with a Gaussian distribution of power, which are eigenfunctions of
cavities with spherical mirrors, a well-developed and understood technology. Many
authors analyzed the influence of the beam radius r0 (radius at which the power drops
down by a factor 1

e
) on the different types of thermal noise for Gaussian beams. They

found the following scaling rules for the noise spectral densities when the mirror is
considered as an infinite half-space:

STE−s
h ∝ 1

r3
0

Substrate thermoelastic noise

STE−c
h ∝ 1

r2
0

Coating thermoelastic noise

SB−s
h ∝ 1

r0

Substrate Brownian noise

SB−c
h ∝ 1

r2
0

Coating Brownian noise

The larger is the beam radius r0, the better is the averaging of the fluctuations and
thus lower will be the noise. However the beam size is constrained by the diffraction
losses requirement (∼ ppm). It has been argued [1],[2],[3] that a significant reduction
in mirror’s thermal noise can be achieved by using modified optics that reshape the
beam from a conventional Gaussian profile into a Flat-Top (“mesa-beam”) profile. A
large-radius, flat-topped beam with steep edges (necessary to keep small diffraction
losses) will lead to a better sampling of the fluctuating surface and this will result
in a lower noise in the determination of the mirror surface position. This in its turn
leads to larger sensitivity of the gravitational waves detector.

2 Duality relation between non-spherical cavities

In this section I present a work done in collaboration with Erika D’Ambrosio about
a generalization of the duality relation between optical resonators with non spherical
mirrors [8], [7]. We demonstrate that there is a one-to-one correspondence between the
eigenstates and the eigenvalues of cavities obtained modifying flat mirror cavities by
h(~r ) and cavities modified from concentric mirrors by −h(~r ) . This unique mapping
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is useful for studying practical issues related to advanced interferometers using non-
Gaussian optics, but also in a variety of other applications of Fabry-Perot cavities.
Let’s focus on the propagator K from the surface of one mirror to the surface of
the other to find the eigenvalues γ and eigenmodes v(~r) (field distribution over the
mirror surface) of a symmetric cavity. The integral equation defining the modes of this
system can be derived from Fresnel-Kirchhoff diffraction theory. Our development is
based on the general formalism defined in [5] and [6]. We start with

γv(~r) =

∫

Mirror

d2~r ′K(~r, ~r ′)v(~r ′) (1)

where the 2-D vectors ~r and ~r ′ are the coordinates of the projections of mirror-surface
points on planes orthogonal to the cavity axis at the mirrors positions. The kernel

K(~r, ~r ′) =
ik

4πρ
(1 + cos θ)e−ikρ k =

2π

λ

depends on the distance ρ between any pair of points on the two surfaces (see fig. 8).
Such distance depends on both the surface profiles, which are assumed to be the same
throughout our analysis

ρ =
√

δ2 + |~r − ~r ′|2 δ = L − h(~r ) − h(~r ′) (2)

where the reference surface from which the mirror height h(~r )is measured, is flat
and orthogonal to the optical axis of the cavity, and the origin passes through the
centers of the mirrors.

h(    )

h(   ) ρ
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r’

r
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(a) Nearly flat mirrors

L

ρ
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r’h(    )

rb(   )

L
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(b) Nearly concentric mirrors

Figure 2: Geometric constructions for the propagators (3) and (5).

For nearly flat surfaces with profile h(~r ) like in Fig. 2(a), using the paraxial
approximation we have

Kh
f (~r, ~r

′) =
ik

2πL
e−ikLeikh(~r)e−

ik
2L

|~r−~r ′|2eikh(~r ′) (3)
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Since the mirror heights are measured with respect to flat surfaces, we shall call
this the nearly-flat propagator, marked by a subscript f. We now consider two de-
formed concentric mirrors in Fig. 2(b) so that the mirrors height with respect to the
flat reference surface is

h(~r ) = r2/L + b(~r ) ; (4)

note that concentric spherical mirrors have their radii of curvature equal to L/2,
and thus a surface height r2/L. Inserting Eq. (4) into Eq. (2), we obtain another
propagator,

Kb
c(~r, ~r

′) =
ik

2πL
e−ikLeikb(~r)e+ ik

2L
|~r+~r ′|2eikb(~r ′) (5)

where b(~r ) is the deviation from the concentric spherical mirror; this is called the
nearly-concentric propagator, marked by a subscript c.
Although we use the terms nearly-flat and nearly-concentric, it is really not necessary
for h and b to be small; in fact, they can give substantial corrections to the mirror
shapes with respect to flat and concentric spherical mirrors as long as the resulting
mirror surface still satisfies the constraints given by the paraxial approximation.

We consider configurations that are invariant under 180◦ rotation along the cavity
axis. Thus

h(~r) = h(−~r) , b(~r) = b(−~r) .

The kernels Kf, c are invariant under the transformation

{~r, ~r ′} ↔ {−~r,−~r ′} (6)

or in other words, we have
PK = KP , (7)

where P is the parity operator:

[Pv] (~r) = v(−~r) . (8)

Equation (7) implies that all eigenstates can be put into forms with definite parity.
The equivalence relation between a nearly concentric cavity and a nearly flat one

is identified by [
Kh

f (−~r, ~r ′)
]∗

= −e2ikLK−h
c (~r, ~r ′) , (9)

or
P

[
Kh

f

]∗
= −e2ikLK−h

c . (10)

Now suppose we have an eigenstate vf of Kh
f , i.e., an eigenstate of a cavity with (+h)

correction from flat, with eigenvalue γ and parity (−1)p:

Kh
f vf = γf vf , (11)

Pvf = (−1)pvf . (12)

Inserting Eqs. (11) and (12) into Eq. (9), we have

K−h
c v∗

f = e−2ikL(−1)p+1γ∗
f v

∗
f . (13)
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Nearly Flat Nearly Concentric
Kernel Kh

f K−h
c

Eigenstate vf v∗
f

Parity (−1)p (−1)p

Half-trip eigenvalue γf e−2ikL(−1)p+1γ∗
f

Round-trip eigenvalue ηf e−4ikLη∗
f

Table 1: Correspondences of propagation kernels, eigenstates, parities, and eigenval-
ues between dual configurations.

This means, vc ≡ v∗
f is an eigenstate of K−h

c , and thus an eigenstate of a cavity with
(−h) correction from concentric — the dual configuration; the eigenvalue is γc ≡
e−2ikL(−1)p+1γ∗

f , and the parity is still (−1)p. In this way we have established a one-
to-one correspondence between the eigenstates of mutually conjugate configurations
(See Table 1).

It is also important to note that the corresponding eigenstates, vf and v∗
f , have

the same intensity profiles (on the mirror surfaces) and therefore the same thermal
noise averaging properties.

Now for the full propagator, from Eqs. (9) and (7), we have

[[
Kh

f

]2
]∗

= e4ikL
[
K−h

c

]2
(14)

which, from the reasoning above, means that the same duality correspondence exists
between eigenstates of the full propagator, and that their eigenvalues are related by

ηc = e−4ikLη∗
f (15)

These results can be generalized to the case where the two mirror shapes are not
equal , but simply symmetric under 180◦ rotation. When the field distributions over
the mirror surfaces are not equal, we have to define an eigenvalue problem using
the round-trip propagator instead of the propagator from one surface to the other.
However we can still use the propagators Eq. (3) and Eq. (5) to build a system of
integral equations which relate the field distributions v1(~r1) and v2(~r2) over the two
mirrors (where the subscript one or two labels the two mirrors) and combine them
in round-trip equations. Omitting the cumbersome but straightforward calculations
that can be found in [7] I will quote here just the resulting duality relation between
the eigenmodes and eigenvectors of the two cavities:

v1c = v∗
1f ; v2c = v∗

2f

ηc = e−4ikLη∗
f

This is the generalization of the results found above for the symmetric case; for each
mirror we have a duality relation between the nearly-flat and the nearly-concentric
configuration if the mirrors profiles calculated with respect to flat reference surfaces
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orthogonal to the cavity axis and passing through the centers of the mirrors fulfill
this relation:

hAc(~r ) =
r2

L
− hAf (~r ) A = 1, 2

3 Mexican Hat cavities supporting mesa beams

In this section I give a short introduction to mesa-beams [1],[2],[3] and focus on
the work I have done solving numerically the eigenvalue problem for Mexican-Hat
cavities in the case of cylindrically symmetric mirrors. The mesa-beam must have
an intensity distribution that is nearly flat across the light beam, and then falls as
rapidly as possible (to minimize diffraction losses) at the beam’s edges. The fastest
possible falloff on the mirror surface, for light in an optical cavity of length L, is given
by the minimal-Gaussian beam whose radius increases by a factor

√
2 in going from

the beam waist (at the cavity’s center plane) to the cavity’s end mirrors. We therefore
superimpose minimal-Gaussian fields whose axes are parallel to the cavity axis and
lie within a cylinder of radius D centered on the cavity axis. The non-normalized
field distribution over the mirror surface is

U(r) =

∫

r′≤D

d2~r ′e
−

(~r −~r ′)2(1−i)

2w2
0 = 2π

∫ D

0

e
−(r2+r′2)(1−i)

2w2
0 I0

[rr′(1 − i)

w2
0

]
r′ dr′ (16)

where I0 is the modified Bessel function of zero order and w0 =
√

L
k

is the waist

of the minimal-Gaussian. To construct the mirror shape which will reflect this mesa
beam back to itself (propagating in the opposite direction) we must impose that the
surfaces of the mirror coincide with the mesa field’s surfaces of constant phase (this is
true for infinite mirrors, but also a quite good approximation for finite mirrors if the
diffraction losses are small). The resulting height distribution as a function of radius
r is given by

hMH(r) =
Arg[U(r)] − Arg[U(0)]

k

The resulting mirror’s radial profile is shown in fig. 3(b) along with the spherical
(nearly-flat) mirror profile which support a Gaussian beam with the same diffraction
losses; notice the shallow bump in the middle and the flaring outer edges which
resemble a Mexican hat (sombrero) and give the mirror its name.

Once we have the mirror profile for the optical cavity which can support a mesa
beam as its fundamental mode, we can solve the eigenmodes equation (1) and (3)
to find the higher modes of this cavity. This is useful in the characterization of this
cavity since most of the properties like sensitivity to tilt of the mirrors and stability
of the cavity depend on the eigenvalues and field distribution of the modes of the
cavity. We will use these results in the next section in the estimation of the impact
of the optical torque on the alignment of a Fabry-Perot resonator with non-spherical
mirrors. As long as cavity mirrors have cylindrical shapes, we use h(~r ) = h(|~r |) in
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Figure 3: Comparison between a Gaussian beam and a mesa beam.
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the kernel expression Eq. (3). This allows an easy separation of radial and azimuthal
degrees of freedom, and simplifies the search for eigenmodes. We adopt the cylindrical
coordinate system: ~r = r(cos ϕ, sin ϕ). Since K is now invariant under rotation along
the cavity axis, all eigenmodes can be written in the form of

v(r, ϕ) = R(r)e−imϕ , m = integer .

Inserting this into the eigenequation Eq. (1), and performing analitically the angular
integration, we have the radial eigenequation

γnmRnm(r) =

∫ a

0

Kh
f(m)(r, r

′)Rnm(r′)r′dr′ , (17)

where for each angular number m we have indexed the eigenstates by n.

Kh
f(m)(r, r

′) =
im+1k

L
Jn

(
krr′

L

)
e

ik
[
−L+h(r)+h(r′)− r2+r′2

2L

]

(18)

is a symmetric radial kernel, in the nearly-flat description 1. Since Kh
f(m)(r, r

′) is
symmetric, we obtain orthogonality relations between radial eigenfunctions:

∫ a

0

Rn1m(r)Rn2m(r)rdr = δn1n2 .

We have thus reduced the problem to a series of one-dimensional integral equation,
one for each m. These are homogeneous Fredholm equations of the second kind
and there are well documented standard techniques for their numerical solutions.
Prominent among these is the Nystrom method, which requires the choice of some
approximate quadrature rules in order to reduce the integral equation to a matrix
eigenvalue problem of dimension equal to the number of integration points N . It
is certainly possible to use low-order quadrature rules like trapezoidal, mid-point or
Simpson’s rules, but since we are looking for a quite accurate solution of the eigenvalue
problem (the modulus of the eigenvalues must be calculated with a precision of at
least 10−7 for a realistic estimation of the diffraction losses) this would require a large
number of integration points and therefore a lot of computation time. I used instead,
the Gaussian quadrature rule in order to have a greater accuracy with fewer points.
If wj are the weights of the quadrature rule and the N points xi are the grid’s points
on the mirror radius, the equation (17) for a certain m can be written as

γR(xi) =
N∑

j=1

K(xi, xj)xjwjR(xj)

Defining Ri the vector R(xi) and K̃ij the matrix K(xi, xj)xjwj we have trans-
formed the integral eigenvalue problem Eq. (17) to a matrix eigenvalue problem

1Here we have used Jn(z) =
1

2πin

∫ 2π

0
eiz cos ϕeinϕdϕ, in which Jn(z) is the nth order

Bessel function of the first kind.
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γR = K̃R which can be solved for γ and R by any standard mathematical package
(I used Mathematica 5.0). Fig. 4 and Table 2 display some results of this numeri-
cal analysis which are used in the stability study that I present in the next section.
The frequency distribution of the cavity modes can be calculated using the formula
∆νpq = arg(γp)−arg(γq)

π
νFSR, where p and q are the mode indexes and νFSR = c

2L
is the

cavity free spectral range. The eigenmodes are not distributed regularly within each
free spectral range and from the comparison with the distribution of the eigenmodes
for the Gaussian-beam cavity, we expect the mesa beam cavity to be slightly more
sensitive to perturbation than the Gaussian-beam counterpart.

γnm m=0 m=1

n=0 0.759686-0.650276i 0.835873-0.548830i
n=1 0.979892-0.199425i 0.984207+0.175787i

Table 2: First eigenvalues for a nearly flat Mexican Hat cavity with L = 4Km,
a = 16cm, λ = 1.064µm and D = 4w0.
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Figure 4: First Mexican Hat cavity modes (power distributions in a.u.): they replace
the Gauss-Laguerre modes of the spherical cavities.
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4 Radiation Pressure driven instability in MH cav-

ities

This thesis, when completed, will also address dynamical stability issues of Mexi-
can Hat Fabry-Perot cavities, which will include beam profile evolution for changing
alignment conditions, evolving radiation pressure effects and other control issues.
It has been recently pointed out [15],[16] that the force induced by radiation pressure,
when the end mirrors of an optical resonator are misaligned, can induce a positive
feedback and further increase the tilt. This effect is obviously power dependent and
increases with power. In the case of anti-symmetric tilt, the coupling between the
laser radiation pressure and the misalignment makes the mirrors tilt further, while
in the symmetric case the torque induced by the light beam impinging on the mir-
rors, counteracts the tilt. Although control systems are designed to keep the mirrors
aligned, they have limited authority, and minimized coupling between radiation pres-
sure and cavity misalignment is desirable, when there is positive feedback. Quanti-
tative assessments of the problem (that depends on the geometry of the resonator)
have shown that optical cavities with almost flat mirrors are more prone to this in-
stability with respect to almost concentric cavities (where the comparison is done
between geometrical configurations that correspond to the same transverse distribu-
tion of the fundamental mode on the reflective surface of the mirrors). In Fig.5 there
is a geometrical explanation of this phenomenon for the spherical mirror case.

Because of this issue, the current baseline design for Advanced LIGO has been
changed from nearly flat to nearly concentric. It is important to evaluate the radiation
pressure problem also for mesa beams. We do so using the results of the two previous
sections. We will use our proved duality-relation to show that, in the quasi-concentric
Mexican-Hat configuration, the cavity is less prone to become unstable and therefore
easier to control [8]. For general, non-spherical cavities, a perturbative approach
must be used to calculate the tilt instability. The torque due to radiation pressure
is expressed in terms of numerically found eigenvalues and intensity profiles of the
cavities’s spatial eigenmodes. In particular, we write the fundamental mode of the
tilted cavity as a superposition of the lowest order modes of the unperturbed cavity
vtilt = v00 +αv01 (in the first order approximation) where the coupling parameter α is
a function of the unperturbed quantities γ00, γ01, v00, v01. Then the radiation pressure
torque itself can be written as a function of the unperturbed quantities introduced
above. Without going into the details of the calculations I quote just the final results.
Using the numerical work done for the mesa beam in the nearly flat configuration,
and using the mapping of eigenvalues and eigenmodes between the nearly flat and
nearly concentric cavities (to obtain the estimation of the tilt instability for nearly
concentric Mexican-Hat cavities without having to solve the eigenvalue problem again)
we proved that the nearly concentric MH configuration is much more stable than the
nearly flat MH one, and even slightly more stable than the corresponding nearly
concentric spherical configuration proposed for Advanced LIGO.
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Figure 5: Each of these optical resonators is formed by two identical spherical mir-
rors, with radius of curvature much larger (nearly flat cavity) and smaller (nearly
concentric) then the distance between the optics. When the mirrors are tilted in a
common mode (on the left) by an angle θ the optical axis shifts by Rθ. The result-
ing torque is smaller in nearly concentric cavities than in nearly flat resonators. The
torque restores the cavity alignment when the mirrors are tilted in a differential mode
(on the right). The change in the optical axis is a rotation θ/(1 − L

2R
) around the

center of the cavity. The resonating beam is displaced by Lθ
2

/(1 − L
2R

) on the optics.
This displacement occurs in opposite directions and tends to restore the correct align-
ment. Since this rotation is larger in nearly concentric cavities, these benefit more
from the restoring torque. Quantitative assessments can be found in literature and
substantiate these considerations [15, 16]
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5 Thermal noise: finite mirrors

In this section I present my ongoing work [14] on a precise comparative estimation of
the various thermal noise contributions (Brownian and thermoelastic for both coating
and substrate) for finite sized mirrors. It is essential to evaluate accurately the bal-
ance of these effects to optimize the sizes of the substrates, and make suitable choices
of material for the advanced detectors. Moreover we make a detailed analysis of the
suppression of the thermal noises we can achieve using the Flat Top beam instead
of the Gaussian beam. In literature there are partial studies on thermal noise for
finite mirrors and almost nothing about the actual improvements we can obtain by
switching to Mexican Hat cavities.
My analysis is based on the Levin’s direct approach to calculate the mirror’s thermal
noise. My calculations are based on the analytical solution for the elastic problem
of a cylindrical mirror with the appropriate boundary conditions, found by Liu and
Thorne in their study of thermoelastic and Brownian thermal noise in finite sized
mirrors [10]. I used their solution for the displacement field for the test masses sub-
strate in order to extend the analysis of the coating thermal noise done by G.Harry
et al. [12] to the case of finite sized mirrors.
The importance of an analytical formula, which enters in the noise calculation through
the strain tensor, the stress tensor and the expansion (for coating and substrate), is
that we can more easily study the realistic behavior of all the thermal noises as we
change the mirror aspect ratio, its mass, and/or the beam radius.
I conducted a comparative study of the thermal noise in different mirror configu-
rations, both for Fused Silica and Sapphire, which are the two candidates for the
substrate of the Advanced LIGO test masses. I kept fixed the mirror mass to 40 Kg,
the requirement for Advanced LIGO to reduce the impact of radiation pressure noise.
I built a Mathematica notebook in which all the functions that enter in the thermal
noise calculation are written as functions of the mirror radius: the mirror thickness
is dynamically adjusted as a function of the mirror radius to maintain the total mass
fixed and the Gaussian beam radius is also dynamically calculated as function of the
mirror radius to maintain a fixed diffraction loss (I chose 10−6 and used the clipping
approximation for the calculation of diffraction losses). I made the calculation for
the noise spectral densities at the frequency of 100 Hz, and, assuming the quasi-
static approximation for the oscillations of stress and strain in the test masses and
material properties independent from frequency (not bad approximations in the Ad-
vanced LIGO detection band), we have that the strain sensitivity for the substrate
thermoelastic noise scales as 1/f while the strain sensitivity for substrate and coating
Brownian thermal noise scales as 1/

√
f . In the calculations we used the present most

probable values for the material’s physical constants (losses, thermal conductivity,
Young modulus,...)[14]. Since the formulas are long and complicated I skip the de-
tails of the calculations and I will present only the results in the following graphics,
where h is the strain sensitivity (equivalent noise) calculated for one mirror of a 4 Km
long optical cavity. In the first two graphs 6(a),6(b) I kept the different contributions
to thermal noise separated and plotted the corresponding behavior for the infinite
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mirror case (dashed lines) as a comparison; the infinite mirror plots are calculated
using the beam radius chosen for the finite mirror case to satisfy the 1ppm diffraction
loss constraint.

As expected, the dominant contribution for Fused Silica test masses comes from
the coating thermal noise, whereas for Sapphire substrate the dominant noise source
is the thermoelastic effect. To calculate the optimized mirror’s aspect ratio and beam
radius we added quadratically the three noise sources.
The results for Gaussian beams are shown in Fig.7(a) and Fig.7(b): the two curves
present a minimum for different values of the mirror radius and, although the Ad-
vanced LIGO baseline mirror aspect ratio choice for Sapphire (15.7 cm mirror radius)
is well optimized, the optimized geometry for Fused Silica would require a radius of
about 18.3 cm; this would correspond to a gain of about 8% in h and ∼ 24% in
detection rate.
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(a) Different thermal noise contributions for Fused Silica substrate and
Ta2O5 + SiO2 coating
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(b) Different thermal noise contributions for Sapphire substrate and
Ta2O5 + SiO2 coating

Figure 6: Thermal noises for Gaussian beam: substrate thermolelastic (red), sub-
strate Brownian (blue) and coating Brownian (green)
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(a) Dependence of “total” thermal noise on the mirror radius
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Figure 7: Mirror’s aspect ratio optimization for Gaussian beams.
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5.1 Thermal noise for mesa beam

In this section I present some preliminary results I have obtained during the last
weeks on the calculation of thermal noise in finite sized mirror when using a mesa
beam to sample the surface of the test mass. This work is particularly important for
further improvements of the Advanced LIGO project because there are no complete
calculations of the amount of noise reduction that can be achieved by implementing
a mesa beam, for the different types of thermal noises. Since the construction of
Advanced LIGO will freeze its mirror’s aspect ratio, it is important to understand
early on if the mesa beam requires drastically different mirror aspect ratios. I used
the same techniques described for the Gaussian beam case, dynamically changing the
mirror radius and the mesa beam profile in order to keep the diffraction losses at
1 ppm (this allows a meaningful comparison between the two optical systems) and
adjusting the mirror thickness in order to maintain the total mass fixed. In this
case the calculations are somewhat more complicated than in the Gaussian beam
case because, as shown in equation Eq. 16, the beam profile has the form an integral
equation (not analytically integrable) and this slows down all the processes for the
calculation of thermal noises. I decided to make the calculations only for a discrete
set of mirror radius ranging from 12cm to 21cm (step 1cm). The results are shown
in the graphs 8(a) and 8(b).

The total thermal noise for Gaussian beam and Flat Top beam are shown in
Fig. 9. The comparison between the two, points out a considerable improvement in
sensitivity for the gravitational wave detector if the mesa beam is used in place of the
standard Gaussian beam; since the improved sensitivity is of about a factor 1.6 for
Sapphire and 1.7 for Fused Silica (at the minima), the Flat Top beam configuration
is in any case a very interesting option for the future interferometers. It should also
be noted that a wider thinner mirror optimizes the performances of Mexican Hat
mirrors.

This work is still in progress and still receiving many inputs from the Advanced
LIGO community which is very interested in this type of analysis. Future develop-
ments include the addition of the thermoelastic coating noise, sensitivity optimization
allowing larger diffraction losses (i.e. 5-10 ppm and estimate the impact of this in
the thermal noise calculations for Gaussian and Flat Top beam), extend the analysis
to the case in which the loss angle and the elastic properties of the coating are not
isotropic. It is important to stress, however, that the choice of appropriate material
parameters for the multi-layer coatings is a difficult subject since the thermo-physical
properties of their materials in a film form are not well characterized and this intro-
duces limitations to the quantitative statements about the resulting thermal noises.
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(a) Different thermal noises for Fused Silica substrate and Ta2O5 + SiO2

coating
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(b) Different thermal noises for Sapphire substrate and Ta2O5 + SiO2

coating

Figure 8: Thermal noises for mesa beam: substrate thermolelastic (red), substrate
Brownian (blue) and coating Brownian (green)
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Figure 9: Gaussian beam (solid line) vs. Mesa beam (dots) “total” thermal noise.
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6 Flat-Top beam cavity prototype test

This work is a collaboration with E. D’Ambrosio, R. DeSalvo, J.M. Mackowski, M.
Mantovani, A. Remillieux, B. Simoni, M. Tarallo and P. Willems, colleagues at Uni-
versity of Pisa, the LIGO Laboratory at Caltech and LMA in Lyon. The main moti-
vation of this project is to demonstrate the feasibility of building a Fabry-Perot cavity
which can support a Flat-Top beam [17]. This cavity prototype has been designed
to study how efficiently a Mexican Hat cavity can transform an incoming Gaussian
beam into a Flat-Top beam profile and represents a scaled down version of the Ad-
vanced LIGO cavities. The prototype is a 7.3m long, rigid, folded cavity, with finesse
100, suspended under vacuum. The mechanics is built using INVAR, a material with
low thermal expansion coefficient. Since ground vibrations can excite resonances in
our interferometer structure and disturb the operation, the cavity is suspended by
a system of four maraging wires for horizontal isolation and GAS (Geometric-Anti-
Spring) blades for vertical isolation. For optical stability and thermal isolation the
entire system is enclosed in a vacuum tank. The production of the Mexican Hat
mirror is under the responsibility of our colleagues at LMA-Lyon. The mechanical
part of this experiment works properly; tests made with spherical optics show that
our device is working as designed. Mexican Hat mirrors are expected to be delivered
in the next future.

(a) Picture of the apparatus. (b) Schematic diagram of the cavity prototype

Figure 10: Flat Top beam cavity prototype.

My main contributions to this project are [18](as well as sporadic lab assistance)
the theoretical predictions, using the same techniques I explained in Sec. 3, of the
cavity modes we will observe in the Mexican Hat configuration (as soon as the Mex-
ican Hat mirror will be available) and the theoretical analysis about the sensitivity
of the cavity to misalignments effects. I did these evaluations using two different ap-
proaches: the first is a perturbation theory based on the definition of an unperturbed
and a perturbed eigenvalue problem, and the second is a dynamical simulation of
what really happens in an optical cavity when an initially launched field is reflected
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back and forth between the misaligned mirrors until a steady-state field distribution
is obtained (this technique was already used in the past to study the resonant modes
in aligned and misaligned spherical resonator). As soon as data will be available we
will proceed to a detail comparison between data and my predictions.
Making actual tests of radiation pressure effects (Cf. Sec. 4) on suspended masses
would require to build a very expensive high power interferometer, with a price com-
parable with a LIGO interferometer. Simulations will be of limited reliability, due to
the complexity of the problem.
We will attempt to use the prototype to perform an hybrid simulation in which the
larger mesa beam will be replaced by our small one. We will then use the beam profile
monitors to calculate in real time the radiation pressure corresponding to large, high
power, beams, and its effect on large, suspended and controlled test masses. Then
we would calculate a scaled actuation response to apply to the piezos controlling our
mirrors. This configuration will allow the fixed mirrors in our rigid cavity, to “fly”
as if they were real suspended masses under high power conditions. Monitoring the
beam evolution under different (simulated) power and control conditions may pro-
duce a credible simulation of real interferometers. This ambitious program, based on
my simulations, may either fall inside or outside the time constraints of my graduate
studies.
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