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Theoretical bias of parameters estimates for the stochastic background search

Albert Lazzarini 2004.06 .0¢

Statement of the problem

In estimating the stochastic background parameter, Qgw , estimates of power spectra and cross-power spectra are calculated
using finite stretches of data. Consequently, these estimates necessarily have some level of measurement uncertainty or error
associated with them. In the literature of stochastic background estimation with gravitational wave data, it is assumed that
noise power spectra and cross-correlation spectra are known a priori. In practice, these quantities are estimated by suitably
averaging periodograms. In considering the effect of these measurement uncertainties on estimation of parameters, it is useful
to start from the definitions of spectral estimates and their statistical properties and then to apply these results to the case of
stochastic background estimation.

= Power spectrum estimation and it statistical properties

Consider time series data streams x[i],y[i] containing NM samples and partitioned into N groups of M samples each. For
each partition of M points (of duration T), the discrete Fourier transform (DFT) of the time series data is given by,

M Kl
X,[f] = Zx[iM +kle2mw ;i={0, ..,N=1} ¢ = {1, ., M}

k=1
where i is an index over epoch; { is an index over frequency. Periodogram estimates of power, cross — power, etc. follow.
- 2

Polrl = =1 | Xile1 1 BB 1] = Pl/]

Var[P, [41] = B[P, [¢1'] - Pul(F = P[;

For a single instance of a power spectrum estimate or periodogram, the standard deviation equals the mean. In order to obtain
suitably precise estimates of power, it is necessary to average a large number of periodograms taken over different epochs.

N

1 . 2
E;Px.[(] = WZ

i=1

Pyl4] 2 and

Xi[f]

Var[P[/]] = — P[P,

1
N

Similar expressions hold for Y;[/].

= Cross-power spectrum estimation and it statistical properties

Similarly, the cross-power spectrum is given by,
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2 -
Pixy [(] = ﬁ Xf [(] Yi [(] ; E[Pixy [(]] = ny [(]

Var[Pyy [41] = E[ [P, [/1 P]1 = | Py [£1P = P[£1Py[¢] + | Py [117 .

By averaging over many epochs, an estimate of cross-power is attained,

m Covariance between power and cross power estimates

Clearly, cross-power spectrum estimates and power spectrum estimates made from the same data set are correlated. The
correlation is quantified by considering covariance of variance pairs of measurements,

n ~ ~ ~ 1
Cov|[Pyy [/1P,[1]] = E[Py [1D[4]] — Py [£1Ps[¢] = ~ (Pw[/1Px[(]) and

A A 1
Cov[Py [£1 Py [£]] = T (Puy[IPy[4D).

Covariance between power estimates may be written as,

Cov[Py [(1Pyy [/]] = E[Pi[/1P;, [£]] — P[f1Py[¢] = E[P[/1Py[f1] — [Py [/]1* + (I Pylf]1* — P[£1Py[(])
= 6 (B[ | Piy [/1 P] = | Py [/1 P + (| Pylf] P — Pe[f1Py[£]))

= &y (Var[Piy [£1] + (| Py [f1F = Pc[£]Py[(]))

= 62 | Pylf11* and,

Cov|[P,[71Py[1] =E[Py[¢]1Py[¢]] — Pi[f1Py[/]

N
2+ (I Pylf1F = PPy [f])

I
A,

Py ]

1
Nz GNPy l] I + NP[/]Py[/] + N(N = D) P[£]Py[]) = Py[(]Py[]

2 o}
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Application to estimation of bias in E[ XT— ]

m CASE A:

Consider first a simplified analysis in which PSDs are estimated from N discrete segments, including the one for which the
cross-correlation statistic, (CC), is also calculated. For simplicity in tracking the statistics in the analysis, assume further that
no coarse graining of overlapping Hann PSD estimation is applied. The inclusion of such details will change the coefficients
of the expansion results, but not the conclusions.

Now consider the statistic used in the stochastic background search,

N DS [M5(]
r=1 P [/]P,[r
N L PP
Gl/]
=1 P [01P,[]
yIf] » Yl . . . . .
where D[/] = f_3 and G[/] =D[/]° = o are filter functions. T is the duration of the epochi, T o« M.
¢ ¢

The quantity being estimate is normalized so that theoretically its mean value is exactly the quantity of interest, Qgw .
However, we want to determine the effect of measurement uncertainty in the estimates of power and cross-power.
We want to determine E[Y; / T ] given that the estimators 3] [¢] 8, [/] = % Pio[f] , Pi[f] and P,[f] each have statistical
fluctuations and correlations among themselves.

N

: : D155 1] 5i[f 1
To proceed, let MC; = M n= —_— > then
P11 P, [1] Z _Diz

=1 =1 P 1B,[1]

Y;/T = NC; . Assume that with sufficient number of averages the fluctuations in
the denominators are sufficiently small to allow Taylor series expansion. Now consider first IT,

_ 1 1
ZM % M D[l]2

-1 PiP,le E ; ;
r=1 Pi[{]1P,[/] — le(H (Pl[gl—[zl[rl))Pz[[,](H (Pz[gz}zm))
M

| / Z D)’

= X
Py (1P, [/]

=1
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M N M .
M § D[] (P, [£] - P, [1]) § D12 (P2 [4] - Py 1))
2 2 2
1/ D[/] ~ -1 P [(]* P, [(] ~ — P, [7] P, (]
P

~ x|1 +
[/]1P,[/] ZM D)2 ZM D[]
=1 (=1 PP =1 PP
M N N M ~ M ~
DIA 2 (B, 11— Py [41) (B2 141 - P2 [1]) i1 (By 0] - Py (1)) DI (B2 101 - P2 (1))
P\ [/ P, [T P\ [/ P, 111 P\ [P, [T
/=1 + /=1 + /=1
Do Do Do
(=] PiOTPSIA (=1 PP (=1 PP

M . M .
M E DI(12 (Py1¢] - Py 1) E DIA12 (P[]~ P, [4])
N 1/2 D[] - _ P[] P2[(] .\ _ P (1] P [(]
Pi[£]1P,[/]
=1

D Tk D Tk
=1 PP =1 PRI

M ~ ~ M “ M ~
DI¢12 (P 1£) = Pu [¢]) (P2 41 - P2 [41) DI (B[ 1-Pi[£']) DI¢12 (P le) - Pilf])
Py [(P Py [/ P[P P[] Py [( P, (]
/=1 =1 /=1
M + 2
Z D[] M ppp2
(=1 PilPI Z PP T

=1

M N M N M N M A
2 DI (B [¢]1-Pi[]) DI(12 (P2 [41 = P, [4]) DI¢'T? (P[] =P, []) D12 (P2 141 = P2 /)
P[] Pa[t] Pi[(1P2 [(] P[P [ P[] P [(]
=1 (=1 + =1 (=1

(S, o) (O, o)
1 PrAPT] -1 BB
M N M N
DI (B 11 - P [¢])° DI (B 101 - Py [0])°
Py I P [0] P01 P [
(=1 _ (=1
Y e e
=1 P1l/IP2[f] =1 P1l/IP2[f]
M
_ D[
Defining IT = 1/ E _—
P [f]1P,[f]
/=1

_ _ZM DI¢1? (By[e] - Py[¢])
N~ N1 + N 3 +
P, [/]° P, [f]

=1

_ ZM: DI (Balf) - Pale)) ZM: DIe1> (P [4] = Py 1£]) (Pa1e] = Pal])

n
P, [/] P, [¢]? P, [/) P, [¢T
/=1 /=1

M 2 M 2
i Z D) (Pile] - Pi[']) Z D[] (Prle] - Pi[1]) .
P[] Py[r] P[]’ Py [/]

= —
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_4§iDWF@M@—HMUjiDm2®m—Pmﬂ+

2n 3 3
- P [¢/]° P, [¢] - P, [f]1P,[/]
M 2 M 2
ﬁzzowumwrmmﬂzzbm(mm—&m)_
P, [P, [T P, [£]P, [(]

=1 =

O DI (Bl - Pel) X DI (Bale] — Palel) ;
n}i —ﬁ}i + O[(Bile) - Pi1e))’ ]

P, [T Py[(] P, [(]P,[¢]

=1 =1

The last equation above is the expansion to second
order in power spectrum fluctuations. Next consider the cross — correlation term,

M
MC, = Zw
AN NV

Following the approach above, define C; = , then express C; as an expansion,

1 Z D[{]Ppp[/]

2 & P[] Py[f]

M Piia[f] - Pia[1])

C = ! Z DIr] Plz[f](l + (T[I])
24y + B Ry 4 B

M
C, = iZ DI Pulfl (, (Pi2[(] = Pia[4]) »
2 Pi (1P, [/] Ppo[f]

=1

P, [/] P;[f] P, [f] P, [/]

A 1 2 P p ’
P_(mm—mm)+pmm—PmD]+W%P_(mm—mm)+“Bm—%mq #J

1 ZM: DI[f] P1»[/] x[l . ®iale] = Pole) (Pl = Pilel)  (Pol] - Po[1])

Ci%— — —
ARG Poa [7] P 1/] Pl

=1

“EM—PMDH@WLJMM]+“EM—PMD]+“EM—PNDT_

Py [f] P, [f] P,[/]

AR AN

P2 (] = P2 [f]) (pl /1 - P [(]) (P21 = P2 [f]) (}32[(] - PZV]) N O[(
Pis[f] Py [f] Py [f] P, [f]

Combining the expansions leads to,

M A A
ﬁszﬂizzmammxp+@mm—mm>(EM—HW (Pale] = Pofe])

2 P, [(] P, [(] Py, [/] - P, [(] - P, [/]

=1
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[(f)l [f] - Py 1/]) ][ (Ba1e1 - P, m)] ) [(f)l €] - Py [/]) ]2 ) [(f)z €] - Pa[/]) ]2 i

P;[f] P, [f] P, [f] P, [f]

Py, [4] P, [f] P, [4] P, [f]

" D2 (B[] - P 1£]) DI (Bye] - Pylr])
1+ ﬁZ > +ﬁZ > -
P, [f]" P1[!] P, [{]1P,[f]

=1 =1

Bialf] = Plf) (Pilf] = Pilfl)  (Pinlf] = Pio[eD) (Palf] - Pal0]) ]]

=]

+

ZM: DI (B[] — Py1e1) (B 161 — P, 0])
P, [/) P, [¢]

~

=1

M

2 (p M 2 (p
> Z DI (P[] - Py[']) Z D[r1? (P[] - Pi[1]) .
/ P[] Py[r] P[]’ P, [/]

b=

- ZM: DI (B[] - Py [¢]) ZM: oI (Bal) - Pall])

P[] P2 [¢] P, [£] P, [¢]
=1 /=1

[\

M

. Z DI (B[] - Pa1]) ZM: DIr1’ (Palf] - Pall))

P[] P[] P, [/] P, (]

M 2 /A 2 M 2 /A 2
i Z DI (Pife) - Pl i Z D[] (B2 le] - P, (1))
P[]’ P,[/] P[] P, [¢]

=1 =1

Keeping terms to second order in products and cross — products of (131 '] - Pl ]) (IA)J- [/] — P [(]), we get,

oo ﬁiZM: RULU ﬁzzM: DL (P[] - Pil]) ZM: DU (Pl - Pile)
' ) P, [/] P, [(] , P2 P[] P, /]2 P,[/]

=1

M M
DI (B[] - P D[]% (P,[f] - P, [
2ﬁzz [ (P[] 1[])2 (117 (P,[1] 2[])+

P[] P2 [¢] P, [£] P, [¢]?
=1 /=1
M 2 A M 2 a
i Z D) (Bale'] - Po[1']) Z D[] (Pa 4] - P,[1]) .
P[] P[] P, [/] P, [¢]

M 2 /A M 2 /A 2
ﬁZ DI/'T (Pl = Pulr]) ﬁZ DIY (P[] = Pule])
P [0'] Py[r'] P[0 Py[r']

<

2 ra . M 2 a

_Z DI (Pile'] - Pi(e]) (Pale'] — P [2]) _Z D) (Pal'] - Po[1'])

n > > +N > -
Pi[¢']° P, [{7] P[P, []

=1 r=1
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M 2 /A 2 - A A
- Z DY (Pale') — Palf)) - (Pualf] = Poleh)  (Bil) — Pulel)  (Balf] - Polf])
P[] P[0T P2 [f] P, [/] P, [/]

=1

2

(Pile] = Py[e1) (PoLe] - Py[4)) . (By1e1 = Pye)) Y . (P21 - Po[1])
P [f] P, [/] P [f] P, [/]

(Pialf] = Piole) (Pl = Pile])  @ialf) = Piol]) (Palf] - Pal/])

Py [f] P[] Pp[f] P [f]

M 2 /A » M 2 /A ~
ﬁZ DI'Y (P[] = Pilt']) (Byalf] — Pialf]) .\ ﬁZ DY (Bale'] = PoL']) (Piyale] — Piale]) B

L P[] Po[¢"] Pp[(] £ P[P, ] Py (1]
. ZM: DI (Py1e] = Pie)) (Brle = Pric) ZM: DICE (P[] = Pil]) (Pal] = Pall)

£ P[] P[] P [/] £ P[] P[] P,[(]
. ZM: DI (Bale] = Pale)) (Pale) = Pile)) ZM: DI I (P21¢'] = Pale')) (Pale] = Pal)

P[] P[] P [1] P[P [0 P, [(]

Next apply the expectation operator, E[ ...], to the fluctuating quantities,

E[Y;/T] = G x

= ZM D[ D" E[(P1['] = Pi[']) (Pr[e”] — Py[¢”])]
1+ N 5 3 +
P [']" Py 1Py [0 1Py [£7]

=1

M

= Z D[P D" T E[(Pi[] = Pi[¢']) (P2 7] = P2 [¢"])]
2n 5 3 +
P[] Pa[¢7 1P [¢7]1 P2 [ ]

— Z DI'T DY E[(P2['] - Po[']) (P21 — Po["])] T ZM: DIIT E[(Pi[r] - Pi['])]

£d Py [0/ Py 1P 7] P07 - PiLeT Pale']

ﬁZM: DI'T E[(Pi[r'] - Py [F’])z] ‘ﬁZMl DIV E[(Pi[¢'] - Pi[']) (B2 ('] — Py [¢'])] .

- Py [T P[] - P[] o]

-

- P[] P[0 - P[] P[]

oI T E[(Ba1e] - Pale))] ZM: DI E[(P,[¢'] - P, [f’])z]] )

DIf] Pl EI(Pialf] - Puld] 1 ZM: DIl Pl E[(Pi10] - PiLe)]

=
—_—

| =
M=

- Py [/] P, [(] Py [£] 2 . P, [£]% P,[/]
M A
1 Z D[/] P [/1E[(P2[¢] — P, [4])] .
2 P, [(] P[]
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M M A 2
1N DU Pl E[(P [ - Pil) (o] - Palel)] 1 Z DI/ P (ATE[(Pi 1] - Pill) |
2 Py [/ P[] 2 Pi[( P[]

r=1 r=1

M M ~ A~
1 X0 DI Pl B[R0 - Pale)] 1 Z D] Piy [/ E[(Pia[f] = PoolfD) (Pule] = Pil4))]
2 Po L]’ 2 Pi1£]” Pa[/] P2 [(]

r=1 r=1

M A
1N DU Pl E[Ruolf] - PolfD (1] - PalD)]

2 — P [/1P,[(])* P2 [(]
M
al D[/’ DIf] P [1E[(P1[¢'] - Pi[¢]) Pu2[f] — P2 [¢])] .
2 P P[0 P01 P[] P, [(] Py [(]
M 2 A -
m LN DT DI Pl E[(Pa[] — Palt')) (Buialf] — PialfD]
2 £ Py [ 1P, [¢'] Py (1P [(] Pra[f]
al N DI DIf] Pislf] E[(Pi[] = PilT) (Pule] = PileD)]
2 £ Py ('] Po[¢'] Py (] P[]
al - DI D] P [A1E[(Pi[r] = Pi[']) (P21e] - Pa[0])]
2 £ Py [0] P[] Py [(] P[]
ml ) DICT DIt P lIE[(Ra1e] = Pale)) (Pilel = Pii))]
2 £ Py []Po[¢'] Py [/ Py (]
ol ZM: DI Die] Pra[e1E[(Ba 1] — Pole']) (Bale] — Pale])]
2 P [/ ]1P, [0 P[] P, 1]

=1

All quantities E[...] can be evaluated by referring to the variance and covariance properties of power and cross-power spec-
trum estimates given earlier. Odd order estimates are identically zero for Gaussian random variables.

ELY:/T] =
M -4 1 M -4 M L4
ne x| eow 2y DELIPRIIE o LAY DT e LN DI
N Zi PP Re) N L P[P o] N L P[P Pofe]?
ﬁ_ZM: DI’ _ﬁgzM: DIFFPRlE ﬁiZM: DI’ ]+
N LPTRT N L e PRl N L PTRL]

M
= 12 D[] P[] Pia[] 11 D[P [/] 11 D[] Ppp[/]
o-o-or d 3D BTAMRIL L L SR & S R

=1
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11 Z D[] Py, f] B liz DI/] Pip[f ﬁ_LZ D[/]” P2 [/] N
2 N & Pi[(]Poff 2 N & Pi[]Poff 2 N P, [(]* P,[(]

M M , M ; ,
DY P1z [/] T 11 Z D[r]” Pialf] I 12 Z DIf]° Pialf] | Pi[f] |
2 2N prp2 0 2 N 3 3
P [f]” Py [/] P [f]" Py [/]

“5
/=1 = =
M M 3
ﬁ— _Z D[t P12 f] |Pia[e] ﬁl 1 DIr]° Pi2lf]
2N £ P P[] 2 N L Pt} Poler
E[Y;/T] =
2 ) 2 S DT Pull' ) ) 2 S o' 1 Py
ne o - 2oom 2 YN DI RRE g _Zﬁ_—_z_l .
N N £ PileT Paf] N L P[] Pol] P[0T Palt

M

i 1 D[] Pia[f]| Pia[£] I il 2 DI/]° Pialf] [P lf] 2
<), it N e
P [f]" Py [/] P[] P2[{]

Finally, we get the following for the bias in the estimate Qgw = Y; /T,

Bias[Y;/T] = E[Y;/T] - G, =

2 )2 N DI Pulr)? AN oyt [ P[]
NG x| - =42 = y Sl Pelll - 2 —_—_Z s
N N £ Pyt Pof0') N L P[P Po] P[] Pz (7
M M 3
L Z DI Pol1IPolP ,q Z DI/1* Piolf] [Pialf] P
N|L Py [(] P[] s INGRAGE

This result corresponds to the case where the estimates P, [¢] and P, [f] were made including
the epoch i for which Y; is being calculated. We see that the leading term in the biasis 2 /N,
plus a number of other terms involving the details of the spectrum. Thus even when Py, [f] — 0, the bias remains.

P12 f]lplz[f] &

Referring to the earlier expression for C;, E[C;] = C; + — E r . This expression
1* Py[¢

has a bias that depends on < signal >*,
had much less bias.

and therefore is much smaller for weak signals. This corresponds to our earlier observation that C; o



ExpandCCstatistic.nb 10

The limiting case of noiseless injection for the H1 — H2 pair gives : P1»[¢] = P[¢/] = P,[f] = DI[/]. Further,

— — )
all sums — M. Also N C; = 1 (for unity injected strength), Il = M ; Ci = M. Inthis case,

- 2 1
Bias[Y;/T] = E[Y;/T] - G, = 1 x(—ﬁ+ N _F)J’ < (1

which is what has been observed via Monte Carlo injections.

= CASE B:

Consider next another simplified analysis in which PSDs are estimated from N discrete segments, but now these exclude the
segment for which the cross-correlation statistic, (CC), is calculated. Once again, for simplicity in tracking the statistics in
the analysis, assume further that no coarse graining of overlapping Hann PSD estimation is applied. The inclusion of such

details will change the coefficients of the expansion results, but not the conclusions.

In the case where the epoch i is not included, a number of terms from Case A are now zero. The answer becomes,
E[Y;/T] =

o 22 S DI PRI 2 1 S o 21 S o
N P[] P2 1] N c— P[] Po[0] N C— P[] P[]

M
_—_§ _ﬁ_§ DFPaT _—_§
P f’]Pz (] N P[] Po[' ) P f’]Pz (]
=1

M
12 DIl Pule]IPLl 2 1 1iD[(’]P12V] 1 liom Py, [(]
P

no-0-o0 — - — I
"IN ey 2 NGRERE 2 N & PR
1 1 & P 1 1 & DlPL,LIf] 1% DI]° Py [/]
__Z 12 ___Z 12 +ﬁ__Z 12
2 N & Pil/]Pyf 2 N P [/1P,[f] 2 N P, [£)? P, [(]
=1 =1
M M 3 M 3 )
gl Z Dl P12 [] ﬁiiz DI(]® Py, /] _ﬁigz DI/1° Puld] [Pl P
2NLiPPrlr 2N L PP Re? 2 N L Py [ P[]’
M M 3
Ll _Z DlY P12 f] |Piale] ﬁi i DIf]1° Py [1]
N I P[] 2 N P, [¢* P, [/

M
~ I~ 2 — 2 (’4 P (;2
E[Y,/T] =NGC x|1 - =+2 = g DT Pollll
N N Z P[] P[]
=

M
e 2 ot i Z [¢'1* Pyy
N P1 [’ P,[0']? P[] P2 [?
=

M > M 3 >
ﬁi Yot Z D[] P12[2f]|P122V]| _ﬁz D[/] P12£f] |P132[f] |
N P [f]° P, [{] P[] P,[f]

=1 =
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M M
52 AN _ DIf]? Pule)
i FZ:P P HZ P, [/ P, (]
£ Py 2 [17] — 117 P2 [4]

Bias[Y; /T] = E[Y;/T] - C; =

2 S DI Pl 2 S 3 DIV’ Py
e x| 2 1 Poltl 22 pllaN ___Z P .
N £ P[] P[0T N Pl[f'] P[0T P[] Pz [
= =
M M 3 M 3

i 1 DI¢] Pia[f] | Pialf] o1 DI/]° Pualf] | Paff] I i DIr]° P2 1]
N PP P, [ P, [(] - P, [/ P, [¢]

=1 ! 2 =1 1 2 — 2

It is seen that by excluding epoch i from the estimation of power spectra,
the leading 2 /N term from the earlier expression is cancelled by an equal and opposite term that was not present before. Now
all remaining bias correction terms are proportional to either Py, [f] and thus become negligible if Pj; [¢] — O,

. =2 . . .
or they are proportional to U, which also reduces them to the point where they can be ignored. Note however,
that there remains a bias correction when a signal is present and if that signal is large compared to the detector power spectra.

In the limiting case of noiseless injection for the H1 — H2 pair : Py, [f] = P([{] = P,[{] = D[/],

_ _ 1
and all sums — M. Also [T C; = 1 (for unity injected strength), IT = ﬁ; C =M:
Bias[Y;/T] = E[Y;/T] ﬁc_—1><(6 2) 1(1 2)— L, 4 1+0[1]
! B ! b MN N N M/ N NM N M

This test has now been performed via Monte Carlo injections and the
bias for this case is indeed observed at a strength that is 1 /3 the bias for Case A above.

Conclusions

It has been shown that the source of bias seen in the extraction of injected signal strength using the estimator for Qgw can be
understood as coming from two contributions: estimation errors in the power and cross-power spectra and, in Case A,
correlations that persist between power and cross-power spectra measured with the same data set. By suitably excluding the
epoch for which cross-correlation is measured from the data with which power spectra are estimated, the residual bias can
then be made proportional to signal strength. Thus, unless and until we are in a regime where the detector power spectra are
signal-dominated, the residual bias is not an issue.

The effects discussed here are intrinsic to the use of measured estimates in the place of theoretical quantities in expression for
optimal signal filters. Moreover, the effects may be exacerbated by the non-linear manner (e.g., 1/P) in which the measured
quantities are used in constructing filters and normalization factors. In any such application, care must be taken to understand
and analyze the sources of bias to determine how to minimize them to an acceptable level that does not affect the answer.
Places where similar bias effects may be present and non-negligible are transfer function estimates and ratios of spectra or
derived quantities, such as those used to determine calibrations. Of course, optimal filters used in other GW searches may
also be affected by bias such as that discussed in this note.
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