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Abstract

The cross-correlation method used in stochastic gravitational wave searches is gen-
eralized to include non-trivial windowing of the data. Exact expressions are derived
for the expected mean and variance of the statistic, along with approximations which
are valid when the windows chosen are effective at controlling the behavior of the data
in question.

1 Motivation

The primary technique to search for a stochastic background of gravitational waves in the
output of a pair of gravitational wave detectors is to construct an optimally-filtered cross-
correlation statistic.[1] The theoretical analysis[2, 3] describing the behavior of such a statistic
has been carried out in a continuous, long-duration approximation. More recent work[4] has
considered finite lengths of discretely sampled data, but has implicitly assumed rectangu-
lar windowing. If the data in question have a large dynamic range, the leakage of power
across the frequency domain arising from the rectangular window can obscure the data at
some frequencies. The present work considers the behavior of a cross-correlation statistic
constructed from a pair of windowed sections of discretely-sampled data, to allow for the
case where non-trivial windowing may be necessary.

2 Continuous Approximation

Consider the underlying data to be two continuous time series g1(t) and g2(t) (which may,
for example, be the gravitational-wave strain associated with two detectors), and present a
summary of the results obtained in [2, 3], expressed in slightly more general notation.

Given data from a time t0 to a time t0 + T , the cross-correlation statistic associated with a
time-domain filter Q(t1 − t2) is

YQ(t0, t0 + T ) =

∫ t0+T

t0

dt1

∫ t0+T

t0

dt2 g1(t1)
∗ Q(t1 − t2) g2(t1) (2.1)

Defining the continuous Fourier transform

g̃1,2(f) =

∫ ∞

−∞
dt e−i2πf(t−t0) g1,2(t) (2.2)

one can describe the statistical properties of the Gaussian random variables g1,2(t) in terms
of expectation values

〈g̃i(f)∗g̃j(f
′)〉 = δ(f − f ′)Cij(f) . (2.3)
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The auto-correlation spectra C11(f) and C22(f) can be written in terms of the one-sided
power spectral densities P1(f) and P2(f) as

C11(f) =
1

2
P1(|f |) (2.4a)

C22(f) =
1

2
P2(|f |) . (2.4b)

In [3], the expected mean value of the cross-correlation statistic is approximated as

µ := 〈YQ(t0, t0 + T )〉 ≈ T

∫ ∞

−∞
df Q̃(f) C12(f) (2.5)

while the variance can be written, subject to the assumption that the auto-correlation spectra
are much larger than the cross-correlation spectrum C12(f), as

σ2 := 〈(YQ(t0, t0 + T )− µ)2〉 ≈ T

4

∫ ∞

−∞
df

∣∣∣Q̃(f)
∣∣∣2 P1(|f |) P2(|f |) . (2.6)

3 Discretely Sampled Data

In a practical data analysis situation, the data are not continuous, but typically sampled at
some constant frequency (δt)−1, producing an N -point discrete time series:

g1,2[j] = g1,2(t0 + j δt) j = 0, . . . , N − 1 (3.1)

In this section, we deduce the properties of cross-correlations between these discrete time
series from the average behavior of the underlying continuous quantities (e.g., (2.3)).

First, we define a general cross-correlation statistic as

Y =
N−1∑
j=0

δt

N−1∑
k=0

δt w1[j] g1[j]
∗ Q[j − k] w2[k] g2[k] (3.2)

(The factors of δt are to facilitate comparison between this expression and (2.1).) The optimal
filter Q[j − k] depends only on the difference between the two indices, consistent with the
assumption that we’re considering stationary random processes, but the introduction of the
two N -point window functions w1,2[j] (assumed to be real) allows us to control edge effects
by smoothing out the onset and ending of the analyzed data.

Since the sums over j and k in (3.2) both range from 0 to N − 1, the argument of Q[j − k]
ranges from −(N − 1) to N − 1, so a discrete Fourier transform (DFT) of Q will need to
include at least 2N − 1 points. Since it is often more convenient to work with a 2N -point
DFT than a 2N − 1-point one (e.g., if N is a power of two or a product of small primes), we
will in general zero-pad Q[m] out to M ≥ 2N − 1 points, with the “extra” values (i.e., those
with N − 1 < m ≤ M − 1) defined by

Q[m] =

{
0 N − 1 < m < M − (N − 1)

Q[m−M ] M − (N − 1) ≤ m < M
, (3.3)
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before defining the discrete Fourier transform

Q̂[`] =
M−1∑
m=0

e−i2πm`/M Q[m] =
N−1∑

m=−(N−1)

e−i2πm`/M Q[m] . (3.4)

We can transform (3.2) into the frequency domain using the inverses of (2.2) and (3.4):

g1,2(t) =

∫ ∞

−∞
df ei2πf(t−t0) g̃1,2(f) (3.5)

Q[m] =
1

M

M−1∑
`=0

ei2πm`/M Q̂[`] ; (3.6)

the result is

Y =
1

M

M−1∑
`=0

(δt)2 Q̂[`]

(∫ ∞

−∞
df1 Ŵ1([f` − f1]T ) g̃1(f1)

)∗ ∫ ∞

−∞
df2 Ŵ2([f` − f2]T ) g̃2(f2) (3.7)

where δf = (M δt)−1, f` = ` δf , and the transformed window

Ŵ1,2(x) =
N−1∑
j=0

e−i2πxj/N w1,2[j] (3.8)

is equivalent to an N-point discrete Fourier transform, but not limited to integer arguments.
Note that by construction Ŵ1,2(x) is periodic with period N : Ŵ1,2(x + N) = Ŵ1,2(x).

Using (2.3), we can find exact expressions for the expected mean and variance of Y . The
mean is

µ = 〈Y 〉 =
1

M

M−1∑
`=0

(δt)2 Q̂[`]

∫ ∞

−∞
df Ŵ1([f` − f ]T )∗ Ŵ2([f` − f ]T ) C12(f) (3.9)

while the variance, subject to the simplifying assumption that σ � µ and P1(f), P2(f) �
C12(f), is

σ2 ≈ 〈Y 2〉 =
1

4

1

M2

M−1∑
`=0

M−1∑
m=0

∫ ∞

−∞
df1

∫ ∞

−∞
df2

(δt)2 Q̂[`]∗ Ŵ1([f` − f1]T ) P1(|f1|) Ŵ1([fm − f1]T )∗ Ŵ2([fm − f2]T )

P2(|f2|) Ŵ2([f` − f2]T )∗ (δt)2 Q̂[m]

(3.10)

The expressions (3.9) and (3.10) can be simplified by defining

C12[`] =

∫ ∞

−∞
df Ŵ1([f` − f ]T )∗ Ŵ2([f` − f ]T ) C12(f) (3.11)

and

K[`, m] =
1

4

∫ ∞

−∞
df1

∫ ∞

−∞
df2 P1(|f1|) P2(|f2|)

Ŵ1([f` − f1]T ) Ŵ1([fm − f1]T )∗ Ŵ2([fm − f2]T ) Ŵ2([fm − f2]T )∗

(3.12)
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so that the expressions for the mean and variance of Y are written in the form of matrix
multiplication:

µ =
1

M

M∑
`=0

(δt)2 Q̂[`] C12[`] (3.13a)

σ2 =
1

M2

M∑
`=0

M∑
m=0

(δt)2 Q̂[`]∗K[`, m](δt)2 Q̂[m] (3.13b)

Given these expressions, it is straightforward to show (analogous to the construction in [4])
that the ratio µ/σ is maximized when

Q̂[`] ∝
M−1∑
m=0

K−1[`, m]C12[m] (3.14)

where K−1[`, m] is the matrix inverse of K[`, m]:

M−1∑
m=0

K−1[`, m]K[m, `′] = δ``′ (3.15)

4 Approximations in the Presence of Effective Win-

dowing

Since inverting the matrix K[`, m] is a computationally-intensive operation, it is ordinarily
preferable to work in a regime in which the exact expressions (3.9) and (3.10) reduce to
discrete approximations of their continuous counterparts (2.5) and (2.6). Reaching such a
regime is exactly the purpose of choosing “good” windowing functions w1,2[j].

Before describing the effective-windowing condition, we note that if (as is the case for any
sensible discrete-sampling situation) the data g1,2(t) have had an anti-aliasing filter applied
to them so that g̃1,2(f) is negligible whenever |f | ≥ 1/(2 δt), we can change the limits of all
our frequency integrals from (−∞,∞) to (− 1

2 δt
, 1

2 δt
).

We would like to define an effective windowing function as one whose transformed window
is sufficiently sharply peaked about zero argument to overcome the dynamic range of the
data in question. We would then be free to treat transformed windows like delta functions
in the sense that their arguments can be replaced with zero when they appear elsewhere in
the same integral. However, we note that the periodicity of Ŵ1,2(x) means that the best we

can do is insist that Ŵ1,2(x) is negligible unless x ≈ 0 mod N . In expressions like

C12[`] =

∫ 1/(2 δt)

−1/(2 δt)

df Ŵ1([f` − f ]T )∗ Ŵ2([f` − f ]T ) C12(f) (4.1)
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This means f ≈ f` mod N/T = ` δf mod 1/(δt). But only one such frequency will lie in
the range [− 1

2δt
, 1

2δt
, namely

f` :=

{
` δf ` < M/2

` δf − 1/δt ` > M/2
(4.2)

(` = M/2 corresponds to the Nyquist frequency, at which the anti-aliasing filter should
suppress the frequency-domain data anyway). The windowing thus allows us to replace
C12(f) with C12(f`) in (3.9) and obtain

µ ≈ 1

M

M−1∑
`=0

(δt)2 Q̂[`] C12(f`)

∫ 1/(2 δt)

−1/(2 δt)

df Ŵ1([f` − f ]T )∗ Ŵ2([f` − f ]T ) (4.3)

The integral can be evaluated [using (3.8)] as∫ 1/(2 δt)

−1/(2 δt)

df Ŵ1([f` − f ]T )∗ Ŵ2([f` − f ]T ) =
N−1∑
j=0

N−1∑
k=0

w1[j]w2[k]

∫ 1/(2 δt)

−1/(2 δt)

df ei2π(f`−f)(j−k)δt

=
1

δt

N−1∑
j=0

N−1∑
k=0

δjkw1[j]w2[k] =
1

δt
Nw1w2

(4.4)

where the overbar indicates an average over the N points of the window:

w1w2 =
1

N

N−1∑
j=0

w1[j]w2[k] (4.5)

This then tells us

µ ≈ w1w2 T
M−1∑
`=0

δf (δt Q̂[`]) C12(f`) (4.6)

where we have used again the definition δf = 1/(M δt).

We can identify (4.6) (up to the factor of w1w2) as a discrete approximation to (2.5) if we
note that (3.4) relates the discrete and continuous Fourier transforms according to

δt Q̂[`] ≈ Q̃(f`) (4.7)

Similarly, applying the effective windowing assumptions to (3.10) allows us to replace f1 and
f2 with either f` or fm (and hence m with `) and obtain

σ2 ≈ (δt)4

4M2

M−1∑
`=0

M−1∑
m=0

P1(|f`|) P1(|f`|) Q̂[`]∗ Q̂[`]∫ 1/(2 δt)

−1/(2 δt)

df1 Ŵ1([f` − f1]T ) Ŵ1([fm − f1]T )∗
∫ 1/(2 δt)

−1/(2 δt)

df2 Ŵ2([fm − f2]T ) Ŵ2([f` − f2]T )∗

(4.8)
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We can now evaluate the integrals as∫ 1/(2 δt)

−1/(2 δt)

df Ŵ1([f` − f1]T ) Ŵ1([fm − f1]T )∗ =
N−1∑
j=0

N−1∑
k=0

∫ 1/(2 δt)

−1/(2 δt)

df w1[j]w1[k]ei2π[jf`−kfm+(k−j)f1]δt

=
1

δt

N−1∑
j=0

N−1∑
k=0

δjkw1[j]w1[k]ei2π(jf`−kfm)δt =
1

δt

N−1∑
j=0

(w1[j])
2ei2πj(f`−fm)δt

(4.9)

and similarly∫ 1/(2 δt)

−1/(2 δt)

df2 Ŵ2([fm − f2]T ) Ŵ2([f` − f2]T )∗ =
1

δt

N−1∑
k=0

(w2[k])2ei2πk(fm−f`)δt (4.10)

so

σ2 ≈(δt)2

4M

M−1∑
`=0

P1(|f`|) P2(|f`|) Q̂[`]∗ Q̂[`]

N−1∑
j=0

N−1∑
k=0

(w1[j])
2(w2[k])2ei2π(j−k)f`δt 1

M

M−1∑
m=0

ei2πfm(k−j)δt

︸ ︷︷ ︸
δjk

=
T

4
w2

1w
2
2

M−1∑
`=0

δf
∣∣∣(δt Q̂[`])

∣∣∣2 P1(|f`|) P2(|f`|)

(4.11)

Again, we note that this differs from a discrete approximation to (2.6) only by the extra
factor

w2
1w

2
2 =

1

N

N−1∑
j=0

w1[j]
2w2[k]2 (4.12)

Note that the windowing replaces the time T in the usual signal-to-noise expressions with

(w1w2)
2

w2
1w

2
2

T (4.13)

For a pair of Hann windows, the ratio is 18/35.
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