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This discussion treats a simple model that serves to identify the correct way to combine
segments of analyzed data that may have correlations. This occurs, for example, in the case
of analyzing windowed data using overlapping window functions, where each data point is
used more than once, with different weights.

1 Statement of the problem

Consider two series of data elements, {x1 1, x1 2, x1 3, ..., x1R} and {x2 1, x2 2, x2 3, ..., x2R}. The
xαi may correspond to AS Q(ti) for two different detectors, labelled by α = 1, 2. We wish to
analyze the statistics of some function of the data when they are analyzed using windowing
functions and data partitions which overlap. Let the R data points be partitioned into
M non-overlapping segments each containing N points. Further, the data are windowed
with 50% overlapping (e.g., Hann) windows, wi. Figure 1A shows this schematically for one
such series xi. As a concrete example, consider 600s of data with a sample rate of 1024
samples per second. Further assume that this data set is partitioned into M = 10×60s non-
overlapping segments. Then, referring to the figure we have the following: R = 600×1024 =
614400, N = 60 × 1024 = 61440, and 2M − 1 = 19 overlapping segments. The odd set,
I ∈ {1, 3, 5, · · · , 19}, and even set, I ∈ {2, 4, 6, · · · , 18}, of segments do not overlap amongst
themselves. While the odd set of segments covers the full data set, the even set fails to cover
the first N/2 and last N/2 data points.

In particular, we wish to estimate a quantity from each of the overlapping data segments
and to then combine them all in order to obtain a more precise estimate of that quantity.
Referring once again to Fig. 1A, one sees that an analysis based on using only the odd window
functions shown above the data series results in a set of estimates that are independent and
non-overlapping. Let YI denote the quantities to be estimated and σI the corresponding
variances. Then from the set of estimates {Y1, Y3, · · · , Y2M−1} and associated variances,
{σ2

1, σ
2
3, · · · , σ

2
2M−1}, one forms the best estimates Y odd

opt and σ2
o ≡ (σodd

opt )
2 as follows:

Y odd
opt ≡

∑

I∈odd σ
−2
I YI

∑

I∈odd σ
−2
I

, (1)

σ2
o ≡

1
∑

I∈odd σ
−2
I

, (2)

Similar expressions hold for the results of analyzing the data using the even window functions
shown below the data series in the figure. The best overall estimate Yopt involves further
combining the two results, Y odd

opt and Y even
opt . However, to do this requires properly taking into

account the correlations between the two estimates. In order to do this, we need a number
of intermediate results which will be discussed next.
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Figure 1: Data analysis schema for overlapping windows. A: the full data train of R samples,
partitioned into 50% overlapping segments, each of which contains N points. The upper
windows (odd-numbered) stride through the R data points and consist of R/N = M non-

overlapping and thus independent segments. Similarly, the lower windows, offset by 50%,
represent a different partition of the data into non-overlapping segments. B: Schematic
of two adjacent segments, I and I + 1. Together they span p = 3N/2 data points. The
3N/2 span is composed of three different partitions: interval (1, N/2) containing data only
in segment I, interval (N/2 + 1, N), containing data in common between I and I + 1, and
interval (N + 1, 3N/2), with data from segment I + 1. C: Schematic of the indexing for
the sums in Eq. 30. As can be visualized in graphic B above, there are four components to
the double sum, three of which involve uncorrelated data (shown in gray) and one of which
(shown in black) contains correlations that must be taken into account. D: Schema showing
terms contributing to the evaluation of 〈Y even

opt Y odd
opt 〉.
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2 Calculation of various statistics of the {xαi}

Since the data will be analyzed in segments of length N , it is useful to consider the following
different partitions of the data:

{xα i} = {xα Ii}I∈odd (3)

= {xα Ii}I∈even ∪ {xα 1, · · · , xαN/2} ∪ {xαR−N/2, · · · , xαR} , (4)

where

{xα Ii}I∈odd ≡ {xα 11, · · · , xα 1N ;xα 31, · · · , xα 3N ;xα 2M−1 1, · · · , xα 2M−1N} (5)

{xα Ii}I∈even ≡ {xα 21, · · · , xα 2N ;xα 41, · · · , xα 4N ;xα 2M−2 1, · · · , xα 2M−2N} . (6)

As mentioned earlier, the segments labelled by even I do not cover the full data set, failing
to include the first and last N/2 data samples of {xα i} (hence the need for the unions in
Eq. 4).

We will consider the case where the xα Ii are given by the sum of noise components nα Ii and
a common signal component hIi:

xα Ii = nα Ii + hIi . (7)

We will assume that that the noise and signal components are described by zero mean
Gaussian random processes

〈nα Ii〉 = 0 = 〈hIi〉 , (8)

and that the different noises are uncorrelated with one another and with the signal:

〈n1 Ii n2 Jj〉 = 0 = 〈nα Ii hJj〉 . (9)

Here 〈· · · 〉 corresponds to taking the ensemble average of the random variables over many
realizations or trials. We will also assume that data from non-overlapping segments are
uncorrelated with another, and that while the noise power may fluctuate from one segment
to the next, the signal power does not:

〈nα Ii nαJj〉 = δIJ σ
2
nα I Rnα I(|i− j|) +

δI±1 J
1

2

[

σ2
nα I Rnα I(|i− j|) + σ2

nα I±1Rnα I±1(|i− j|)
]

(10)

〈hIi hJj〉 = (δIJ + δI±1 J)σ
2
hRh(|i− j|) . (11)

In the above expressions, R denotes a correlation sequence which is normalized to unity at
zero lag. The power spectra of the signal and noise, Ph and Pnα I , are the inverse Fourier
transforms of σ2

hRh and σ2
nα I
Rnα I , respectively. For white Gaussian data, R(|i− j|) = δij,

while for colored noise, R(|i − j|) will have be non-zero over some finite range of |i − j|,
which we assume is still small relative to the number of samples N in a segment.

Finally, we will assume that the signal power is much smaller than the corresponding noise
power:

σ2
h ¿ σ2

nα I , (12)
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so that in expressions involving both σ2
h and σ2

nα I
, we can ignore terms proportional to σ2

h.

Now consider the quantity

YI ≡
1

N

N
∑

i=1

x1 Ii x2 Iiw
2
i . (13)

This is an experimental estimate of the covariance of between x1 Ii and x2 Ii using a windowed,
finite data sample. The window function wi can be any symmetric function of index (i.e.,
time) that equals unity in the middle and tapers to zero near the ends. We now determine
the statistics of the YI given the definition of the processes xα I .

2.1 The mean of YI

〈YI〉 =
1

N

N
∑

i=1

〈x1 Ii x2 Ii〉w
2
i (14)

=
1

N

N
∑

i=1

(

〈n1 Ii n2 Ii〉+ 〈n1 Ii hIi〉+ 〈hIi n2 Ii〉+ 〈hIi hIi〉
)

w2
i (15)

= σ2
h

1

N

N
∑

i=1

w2
i (16)

= σ2
hw

2 (17)

where

w2 ≡
1

N

N
∑

i=1

w2
i . (18)

Note that 〈YI〉 is independent of the segment number I.

2.2 The variance of YI

σ2
I = 〈Y 2

I 〉 − 〈YI〉
2 (19)

=
1

N2

N
∑

i=1

N
∑

j=1

(〈x1 Ii x2 Ii x1 Ij x2 Ij〉 − 〈x1 Ii x2 Ii〉〈x1 Ij x2 Ij〉) w
2
iw

2
j (20)

=
1

N2

N
∑

i=1

N
∑

j=1

(〈x1 Ii x1 Ij〉〈x2 Ii x2 Ij〉+ 〈x1 Ii x2 Ij〉〈x2 Ii x1 Ij〉) w
2
iw

2
j (21)

≈ σ2
n1 I

σ2
n2 I

1

N2

N
∑

i=1

N
∑

j=1

Rn1 I(|i− j|)Rn2 I(|i− j|)w2
iw

2
j (22)
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where we used the small signal approximation Eq. 12 and the fact that the variances σ2
nα I

depend only segment number I and not on i, j to obtain the last line. Note that for white
noise, where Rnα I(|i− j|) = δij, we have

σ2
I ≈ σ2

n1 I
σ2
n2 I

1

N
w4 , (23)

where

w4 ≡
1

N

N
∑

i=1

w4
i . (24)

The generalization to colored noise amounts to defining

w4
I ≡

1

N

N
∑

i=1

N
∑

j=1

Rn1 I(|i− j|)Rn2 I(|i− j|)w2
iw

2
j , (25)

so that

σ2
I ≈ σ2

n1 I
σ2
n2 I

1

N
w4
I . (26)

Note the I subscript on w4
I in the last two expressions—i.e., window factors for colored,

non-stationary noise depend on segment number I; there is no I dependence for either white
noise or for stationary, colored noise.

2.3 The covariance of YIYJ

σ2
IJ = 〈YIYJ〉 − 〈YI〉〈YJ〉 (27)

Referring to Figs.1A and 1B, one sees that data segments separated by more than J = I ± 1
involve unrelated, and therefore uncorrelated, data sets. Thus, one immediately obtains
〈YIYJ〉 = 〈YI〉〈YJ〉, which implies

σ2
IJ = 0 for |I − J | > 1 . (28)

Because of the symmetry of the problem, we need to only consider the covariance between
YI and YI+1. For this calculation, data from more than a single segment I are involved. In
fact, a total of 3N/2 points are involved, as can be seen in Fig.1B. Referring to Eqs. 3, 4, it
is useful here to consider the data as forming a continuous series of 3N/2 points. Thus we
may rewrite the above equation equivalently as

σ2
I(I+1) =

1

N2

N
∑

i=1

3N/2
∑

j=N/2+1

(〈x1 i x2 i x1 j x2 j〉 − 〈x1 i x2 i〉〈x1 j x2 j〉) w
2
iw

2
j−N/2 . (29)

The summation may be broken up into four terms:

N
∑

i=1

3N/2
∑

j=N/2+1

=

N/2
∑

i=1

N
∑

j=N/2+1

+
N
∑

i=N/2+1

N
∑

j=N/2+1

+

N/2
∑

i=1

3N/2
∑

j=N+1

+
N
∑

i=N/2+1

3N/2
∑

j=N+1

. (30)
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The summations on the right-hand side of the above expression correspond to the shaded
regions in Fig.1C. The first, third, and fourth summations correspond to the non-overlapping
gray regions of the figure, for which 〈x1 i x2 i x1 j x2 j〉 = 〈x1 i x2 i〉〈x1 j x2 j〉, and thus do not
contribute to σ2

I(I+1). The second summation corresponds to the black-shaded region, which
has the same data in both segments YI and YI+1. Thus, Eq. 29 for σI(I+1) reduces to

σ2
I(I+1) =

1

N2

N
∑

i=N/2+1

N
∑

j=N/2+1

(〈x1 i x2 i x1 j x2 j〉 − 〈x1 i x2 i〉〈x1 j x2 j〉) w
2
iw

2
j−N/2 . (31)

The calculation of this summation is similar to that for σ2
I . The only difference is that because

the data may not be stationary on time scales comparable to the segment length, care must
be taken in the variance we assign to this expression. The most reasonable approach is to
use the average of corresponding quantities from segments I and I + 1. The result is:

σ2
I(I+1) ≈

1

2

(

σ2
n1 I

σ2
n2 I

1

N2

N
∑

i=N/2

N
∑

j=N/2

Rn1 I(|i− j|)Rn2 I(|i− j|)w2
iw

2
j−N/2 +

σ2
n1 (I+1)σ

2
n2 (I+1)

1

N2

N
∑

i=N/2

N
∑

j=N/2

Rn1 (I+1)(|i− j|)Rn2 (I+1)(|i− j|)w2
iw

2
j−N/2

)

.

(32)

For white noise, the above expression simplifies to

σ2
I(I+1) ≈

1

2

(

σ2
n1 I

σ2
n2 I

+ σ2
n1 (I+1)σ

2
n2 (I+1)

) 1

2N
w4

ovl , (33)

where

w4
ovl ≡

1

N/2

N
∑

i=N/2

w2
iw

2
j−N/2 (34)

is a quantity characterizing the overlap between the last half and first half of the window
function. For colored noise, if we define

w4
ovl I ≡

1

N/2

N
∑

i=N/2

N
∑

j=N/2

Rn1 I(|i− j|)Rn2 I(|i− j|)w2
iw

2
j−N/2 , (35)

then

σ2
I(I+1) ≈

1

2

(

σ2
n1 I

σ2
n2 I

1

2N
w4

ovl I + σ2
n1 (I+1)σ

2
n2 (I+1)

1

2N
w4

ovl (I+1)

)

. (36)

Note that the overlapping window factors are convolved with the correlation sequences of
the detector noise and depend on the particular segment I.

Furthermore, in terms σ2
I and σ2

I+1:

σ2
I(I+1) =

1

2

(

1

2

w4
ovl I

w4
I

σ2
I +

1

2

w4
ovl (I+1)

w4
(I+1)

σ2
I+1

)

. (37)
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3 Determining the covariance matrix of Y odd
opt Y even

opt

Now we can proceed with calculating the covariance matrix of the pair of correlated mea-
surements Y odd

opt and Y even
opt . Using an obvious notation, we write:

||C|| ≡

[

σ2
o σ2

oe

σ2
eo σ2

e

]

(38)

From Eq. 2 the diagonal terms are

σ2
o =

1
∑

I∈odd σ
−2
I

, σ2
e =

1
∑

I∈even σ
−2
I

. (39)

The off diagonal terms are given by

σ2
oe = σ2

eo ≡ 〈Y
odd
opt Y even

opt 〉 − 〈Y
odd
opt 〉〈Y

even
opt 〉 . (40)

Referring to Eq.1, we get

〈Y odd
opt Y even

opt 〉 − 〈Y
odd
opt 〉〈Y

even
opt 〉 =

∑

I∈odd

∑

J∈even σ
−2
I σ−2

J

(

〈YI YJ〉 − 〈YI〉〈YJ〉
)

∑

I∈odd σ
−2
I

∑

J∈even σ
−2
J

(41)

= σ2
oσ

2
e

∑

I∈odd

∑

J∈even

σ−2
I σ−2

J σ2
IJ . (42)

To proceed further, note that σ2
IJ = 0 for |I − J | > 1, so that

σ2
oe = σ2

oσ
2
e

(

2M−3
∑

I odd=1

σ−2
I σ−2

I+1 σ
2
I(I+1) +

2M−1
∑

I odd=3

σ−2
I σ−2

I−1 σ
2
I(I−1)

)

(43)

= σ2
oσ

2
e

(

σ2
12

σ2
1σ

2
2

+
σ2

23

σ2
2σ

2
3

+ · · ·+
σ2

(2M−2)(2M−1)

σ2
2M−2σ

2
2M−1

)

. (44)

Finally, substituting for σ2
I(I+1) using Eq. 37, we obtain:

σ2
oe = σ2

oσ
2
e

[

1

2

(

1

2

w4
ovl 1

w4
1

σ−2
2 +

1

2

w4
ovl 2

w4
2

σ−2
1

)

+
1

2

(

1

2

w4
ovl 2

w4
2

σ−2
3 +

1

2

w4
ovl 3

w4
3

σ−2
2

)

+ · · ·

]

(45)

=
1

2
σ2

oσ
2
e

[

1

2

(

w4
ovl 2

w4
2

)

σ−2
1 +

1

2

(

w4
ovl 1

w4
1

+
w4

ovl 3

w4
3

)

σ−2
2 + · · ·

+
1

2

(

w4
ovl (2M−3)

w4
2M−3

+
w4

ovl (2M−1)

w4
2M−1

)

σ−2
2M−2 +

1

2

(

w4
ovl (2M−2)

w4
2M−2

)

σ−2
2M−1

]

. (46)
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For stationary or white noise, the window factors are all independent of segment number,
yielding the simplified result

σ2
oe =

1

2

w4
ovl

w4
σ2

oσ
2
e

[

1

2
σ−2

1 + σ−2
2 + σ−2

3 + · · ·+ σ−2
2M−2 +

1

2
σ−2

2M−1

]

(47)

=
1

2

w4
ovl

w4
σ2

oσ
2
e

[

σ−2
e + σ−2

o −
1

2
(σ−2

1 + σ−2
2M−1)

]

(48)

=
1

2

w4
ovl

w4

[

σ2
o + σ2

e −
1

2
σ2

oσ
2
e

(

σ−2
1 + σ−2

2M−1

)

]

. (49)

Since the individual variances σ2
I are typically M times larger than either σ2

o or σ
2
e , we have

1

2
σ2

oσ
2
e (σ

−2
1 + σ−2

2M−1) ∼
1

2M

(

σ2
o + σ2

e

)

(50)

so that

σ2
oe ∼

w4
ovl

w4

1

2

(

σ2
o + σ2

e

)

(

1−
1

2M

)

. (51)

The factor (1−1/2M) can be thought of as a finite data stream ‘edge-effect’ correction. For,
e.g., M = 10 segments, the term represents a 5% effect.

4 Optimal combination of Y odd
opt and Y even

opt

As shown in Appendix C of “Optimal combination of signals from co-located gravitational
wave interferometers for use in searches for a stochastic background,” the optimal combi-
nation of two measurements Y1 and Y2 that have the same theoretical mean and covariance
matrix

||C|| ≡

[

C11 C12

C21 C22

]

(52)

is given by the weighted average

Yopt ≡

∑2
i=1 λiYi
∑2

j=1 λj
(53)

where

λi =
2
∑

j=1

||C||−1
ij . (54)

Explicitly,

λ1 =
C22 − C12

det ||C||
, λ2 =

C11 − C21

det ||C||
, (55)

where det ||C|| := C11C22 − C12C21. The theoretical variance of Yopt is

σ2
opt =

1
∑2

k=1 λk

2
∑

i=1

2
∑

j=1

λiCij λj . (56)
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For the overlapping window analysis, we have Y1 = Y odd
opt and Y2 = Y even

opt with

||C|| ≡

[

σ2
o σ2

oe

σ2
eo σ2

e

]

, (57)

so

λo =
σ2

e − σ2
oe

σ2
oσ

2
e − (σ2

oe)
2
, λe =

σ2
o − σ2

oe

σ2
oσ

2
e − (σ2

oe)
2
. (58)

Since we know σ2
o, σ

2
e , and σ2

oe in terms of the σ2
I (c.f. Eqs. 39, 46), we can calculate Yopt and

σ2
opt as desired.
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