LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note	LIGO-T040089-00-Z	$2004 / 05 / 18$
Use of overlapping windows in the stochastic		
background search		

Distribution of this document:

Draft

This is an internal working note of the LIGO project

California Institute of Technology
LIGO Project, MS 18-34
Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834
E-mail: info@ligo.caltech.edu

LIGO Hanford Observatory
Route 10, Mile Marker 2
Richland, WA 99352
Phone (509) 372-8106
Fax (509) 372-8137
E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project, Room NW17-161
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014
E-mail: info@ligo.mit.edu

LIGO Livingston Observatory 19100 LIGO Lane Livingston, LA 70754
Phone (225) 686-3100
Fax (225) 686-7189
E-mail: info@ligo.caltech.edu

This discussion treats a simple model that serves to identify the correct way to combine segments of analyzed data that may have correlations. This occurs, for example, in the case of analyzing windowed data using overlapping window functions, where each data point is used more than once, with different weights.

1 Statement of the problem

Consider two series of data elements, $\left\{x_{11}, x_{12}, x_{13}, \ldots, x_{1 R}\right\}$ and $\left\{x_{21}, x_{22}, x_{23}, \ldots, x_{2 R}\right\}$. The $x_{\alpha i}$ may correspond to AS_Q $\left(t_{i}\right)$ for two different detectors, labelled by $\alpha=1,2$. We wish to analyze the statistics of some function of the data when they are analyzed using windowing functions and data partitions which overlap. Let the R data points be partitioned into M non-overlapping segments each containing N points. Further, the data are windowed with 50% overlapping (e.g., Hann) windows, w_{i}. Figure 1A shows this schematically for one such series x_{i}. As a concrete example, consider 600s of data with a sample rate of 1024 samples per second. Further assume that this data set is partitioned into $M=10 \times 60$ s nonoverlapping segments. Then, referring to the figure we have the following: $R=600 \times 1024=$ $614400, N=60 \times 1024=61440$, and $2 M-1=19$ overlapping segments. The odd set, $I \in\{1,3,5, \cdots, 19\}$, and even set, $I \in\{2,4,6, \cdots, 18\}$, of segments do not overlap amongst themselves. While the odd set of segments covers the full data set, the even set fails to cover the first $N / 2$ and last $N / 2$ data points.

In particular, we wish to estimate a quantity from each of the overlapping data segments and to then combine them all in order to obtain a more precise estimate of that quantity. Referring once again to Fig. 1A, one sees that an analysis based on using only the odd window functions shown above the data series results in a set of estimates that are independent and non-overlapping. Let Y_{I} denote the quantities to be estimated and σ_{I} the corresponding variances. Then from the set of estimates $\left\{Y_{1}, Y_{3}, \cdots, Y_{2 M-1}\right\}$ and associated variances, $\left\{\sigma_{1}^{2}, \sigma_{3}^{2}, \cdots, \sigma_{2 M-1}^{2}\right\}$, one forms the best estimates $Y_{\mathrm{opt}}^{\text {odd }}$ and $\sigma_{\mathrm{o}}^{2} \equiv\left(\sigma_{\mathrm{opt}}^{\text {odd }}\right)^{2}$ as follows:

$$
\begin{align*}
Y_{\mathrm{opt}}^{\mathrm{odd}} & \equiv \frac{\sum_{I \in \mathrm{odd}} \sigma_{I}^{-2} Y_{I}}{\sum_{I \in \mathrm{odd}} \sigma_{I}^{-2}}, \tag{1}\\
\sigma_{\mathrm{o}}^{2} & \equiv \frac{1}{\sum_{I \in \mathrm{odd}} \sigma_{I}^{-2}} \tag{2}
\end{align*}
$$

Similar expressions hold for the results of analyzing the data using the even window functions shown below the data series in the figure. The best overall estimate $Y_{\text {opt }}$ involves further combining the two results, $Y_{\mathrm{opt}}^{\text {odd }}$ and $Y_{\mathrm{opt}}^{\text {even }}$. However, to do this requires properly taking into account the correlations between the two estimates. In order to do this, we need a number of intermediate results which will be discussed next.

Figure 1: Data analysis schema for overlapping windows. A: the full data train of R samples, partitioned into 50% overlapping segments, each of which contains N points. The upper windows (odd-numbered) stride through the R data points and consist of $R / N=M$ nonoverlapping and thus independent segments. Similarly, the lower windows, offset by 50%, represent a different partition of the data into non-overlapping segments. B: Schematic of two adjacent segments, I and $I+1$. Together they span $p=3 N / 2$ data points. The $3 N / 2$ span is composed of three different partitions: interval $(1, N / 2)$ containing data only in segment I, interval $(N / 2+1, N)$, containing data in common between I and $I+1$, and interval $(N+1,3 N / 2)$, with data from segment $I+1$. C: Schematic of the indexing for the sums in Eq. 30. As can be visualized in graphic \mathbf{B} above, there are four components to the double sum, three of which involve uncorrelated data (shown in gray) and one of which (shown in black) contains correlations that must be taken into account. D: Schema showing terms contributing to the evaluation of $\left\langle Y_{\mathrm{opt}}^{\text {even }} Y_{\mathrm{opt}}^{\text {odd }}\right\rangle$.

2 Calculation of various statistics of the $\left\{x_{\alpha i}\right\}$

Since the data will be analyzed in segments of length N, it is useful to consider the following different partitions of the data:

$$
\begin{align*}
\left\{x_{\alpha i}\right\} & =\left\{x_{\alpha I i}\right\}_{I \in \text { odd }} \tag{3}\\
& =\left\{x_{\alpha I i}\right\}_{I \in \text { even }} \cup\left\{x_{\alpha 1}, \cdots, x_{\alpha N / 2}\right\} \cup\left\{x_{\alpha R-N / 2}, \cdots, x_{\alpha R}\right\} \tag{4}
\end{align*}
$$

where

$$
\begin{align*}
\left\{x_{\alpha I i}\right\}_{I \in \mathrm{odd}} & \equiv\left\{x_{\alpha 11}, \cdots, x_{\alpha 1 N} ; x_{\alpha 31}, \cdots, x_{\alpha 3 N} ; x_{\alpha 2 M-11}, \cdots, x_{\alpha 2 M-1 N}\right\} \tag{5}\\
\left\{x_{\alpha I i}\right\}_{I \in \text { even }} & \equiv\left\{x_{\alpha 21}, \cdots, x_{\alpha 2 N} ; x_{\alpha 41}, \cdots, x_{\alpha 4 N} ; x_{\alpha 2 M-21}, \cdots, x_{\alpha 2 M-2 N}\right\} \tag{6}
\end{align*}
$$

As mentioned earlier, the segments labelled by even I do not cover the full data set, failing to include the first and last $N / 2$ data samples of $\left\{x_{\alpha i}\right\}$ (hence the need for the unions in Eq. 4).

We will consider the case where the $x_{\alpha I i}$ are given by the sum of noise components $n_{\alpha I i}$ and a common signal component $h_{I i}$:

$$
\begin{equation*}
x_{\alpha I i}=n_{\alpha I i}+h_{I i} . \tag{7}
\end{equation*}
$$

We will assume that that the noise and signal components are described by zero mean Gaussian random processes

$$
\begin{equation*}
\left\langle n_{\alpha I i}\right\rangle=0=\left\langle h_{I i}\right\rangle, \tag{8}
\end{equation*}
$$

and that the different noises are uncorrelated with one another and with the signal:

$$
\begin{equation*}
\left\langle n_{1 I i} n_{2 J j}\right\rangle=0=\left\langle n_{\alpha I i} h_{J j}\right\rangle . \tag{9}
\end{equation*}
$$

Here $\langle\cdots\rangle$ corresponds to taking the ensemble average of the random variables over many realizations or trials. We will also assume that data from non-overlapping segments are uncorrelated with another, and that while the noise power may fluctuate from one segment to the next, the signal power does not:

$$
\begin{align*}
\left\langle n_{\alpha I i} n_{\alpha J j}\right\rangle= & \delta_{I J} \sigma_{n_{\alpha} I}^{2} \mathcal{R}_{n_{\alpha} I}(|i-j|)+ \\
& \delta_{I \pm 1 J} \frac{1}{2}\left[\sigma_{n_{\alpha} I}^{2} \mathcal{R}_{n_{\alpha} I}(|i-j|)+\sigma_{n_{\alpha} I \pm 1}^{2} \mathcal{R}_{n_{\alpha} I \pm 1}(|i-j|)\right] \tag{10}\\
\left\langle h_{I i} h_{J j}\right\rangle= & \left(\delta_{I J}+\delta_{I \pm 1 J}\right) \sigma_{h}^{2} \mathcal{R}_{h}(|i-j|) . \tag{11}
\end{align*}
$$

In the above expressions, \mathcal{R} denotes a correlation sequence which is normalized to unity at zero lag. The power spectra of the signal and noise, P_{h} and $P_{n_{\alpha} I}$, are the inverse Fourier transforms of $\sigma_{h}^{2} \mathcal{R}_{h}$ and $\sigma_{n_{\alpha} I}^{2} \mathcal{R}_{n_{\alpha} I}$, respectively. For white Gaussian data, $\mathcal{R}(|i-j|)=\delta_{i j}$, while for colored noise, $\mathcal{R}(|i-j|)$ will have be non-zero over some finite range of $|i-j|$, which we assume is still small relative to the number of samples N in a segment.

Finally, we will assume that the signal power is much smaller than the corresponding noise power:

$$
\begin{equation*}
\sigma_{h}^{2} \ll \sigma_{n_{\alpha} I}^{2}, \tag{12}
\end{equation*}
$$

LIGO-T040089-00-Z
 Draft

so that in expressions involving both σ_{h}^{2} and $\sigma_{n_{\alpha} I}^{2}$, we can ignore terms proportional to σ_{h}^{2}.
Now consider the quantity

$$
\begin{equation*}
Y_{I} \equiv \frac{1}{N} \sum_{i=1}^{N} x_{1 I i} x_{2 I i} w_{i}^{2} \tag{13}
\end{equation*}
$$

This is an experimental estimate of the covariance of between $x_{1 \text { Ii }}$ and $x_{2 \text { Ii }}$ using a windowed, finite data sample. The window function w_{i} can be any symmetric function of index (i.e., time) that equals unity in the middle and tapers to zero near the ends. We now determine the statistics of the Y_{I} given the definition of the processes $x_{\alpha I}$.

2.1 The mean of Y_{I}

$$
\begin{align*}
\left\langle Y_{I}\right\rangle & =\frac{1}{N} \sum_{i=1}^{N}\left\langle x_{1 I i} x_{2 I i}\right\rangle w_{i}^{2} \tag{14}\\
& =\frac{1}{N} \sum_{i=1}^{N}\left(\left\langle n_{1 I i} n_{2 I i}\right\rangle+\left\langle n_{1 I i} h_{I i}\right\rangle+\left\langle h_{I i} n_{2 I i}\right\rangle+\left\langle h_{I i} h_{I i}\right\rangle\right) w_{i}^{2} \tag{15}\\
& =\sigma_{h}^{2} \frac{1}{N} \sum_{i=1}^{N} w_{i}^{2} \tag{16}\\
& =\sigma_{h}^{2} \overline{w^{2}} \tag{17}
\end{align*}
$$

where

$$
\begin{equation*}
\overline{w^{2}} \equiv \frac{1}{N} \sum_{i=1}^{N} w_{i}^{2} \tag{18}
\end{equation*}
$$

Note that $\left\langle Y_{I}\right\rangle$ is independent of the segment number I.

2.2 The variance of Y_{I}

$$
\begin{align*}
\sigma_{I}^{2} & =\left\langle Y_{I}^{2}\right\rangle-\left\langle Y_{I}\right\rangle^{2} \tag{19}\\
& =\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N}\left(\left\langle x_{1 I i} x_{2 I i} x_{1{ }_{I j}} x_{2 I j}\right\rangle-\left\langle x_{1 I i} x_{2 I i}\right\rangle\left\langle x_{1{ }_{I j}} x_{2 I j}\right\rangle\right) w_{i}^{2} w_{j}^{2} \tag{20}\\
& =\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N}\left(\left\langle x_{1 I i} x_{1 I_{j}}\right\rangle\left\langle x_{2 I i} x_{2 I j}\right\rangle+\left\langle x_{1 I i} x_{2 I_{j}}\right\rangle\left\langle x_{2 I_{i}} x_{1 I j}\right\rangle\right) w_{i}^{2} w_{j}^{2} \tag{21}\\
& \approx \sigma_{n_{1} I}^{2} \sigma_{n_{2} I}^{2} \frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathcal{R}_{n_{1} I}(|i-j|) \mathcal{R}_{n_{2} I}(|i-j|) w_{i}^{2} w_{j}^{2} \tag{22}
\end{align*}
$$

where we used the small signal approximation Eq. 12 and the fact that the variances $\sigma_{n_{\alpha} I}^{2}$ depend only segment number I and not on i, j to obtain the last line. Note that for white noise, where $\mathcal{R}_{n_{\alpha} I}(|i-j|)=\delta_{i j}$, we have

$$
\begin{equation*}
\sigma_{I}^{2} \approx \sigma_{n_{1} I}^{2} \sigma_{n_{2} I}^{2} \frac{1}{N} \overline{w^{4}} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{w^{4}} \equiv \frac{1}{N} \sum_{i=1}^{N} w_{i}^{4} \tag{24}
\end{equation*}
$$

The generalization to colored noise amounts to defining

$$
\begin{equation*}
\overline{w_{I}^{4}} \equiv \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathcal{R}_{n_{1} I}(|i-j|) \mathcal{R}_{n_{2} I}(|i-j|) w_{i}^{2} w_{j}^{2} \tag{25}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sigma_{I}^{2} \approx \sigma_{n_{1} I}^{2} \sigma_{n_{2} I}^{2} \frac{1}{N} \overline{w_{I}^{4}} \tag{26}
\end{equation*}
$$

Note the I subscript on w_{I}^{4} in the last two expressions-i.e., window factors for colored, non-stationary noise depend on segment number I; there is no I dependence for either white noise or for stationary, colored noise.

2.3 The covariance of $Y_{I} Y_{J}$

$$
\begin{equation*}
\sigma_{I J}^{2}=\left\langle Y_{I} Y_{J}\right\rangle-\left\langle Y_{I}\right\rangle\left\langle Y_{J}\right\rangle \tag{27}
\end{equation*}
$$

Referring to Figs.1A and 1B, one sees that data segments separated by more than $J=I \pm 1$ involve unrelated, and therefore uncorrelated, data sets. Thus, one immediately obtains $\left\langle Y_{I} Y_{J}\right\rangle=\left\langle Y_{I}\right\rangle\left\langle Y_{J}\right\rangle$, which implies

$$
\begin{equation*}
\sigma_{I J}^{2}=0 \quad \text { for }|I-J|>1 \tag{28}
\end{equation*}
$$

Because of the symmetry of the problem, we need to only consider the covariance between Y_{I} and Y_{I+1}. For this calculation, data from more than a single segment I are involved. In fact, a total of $3 N / 2$ points are involved, as can be seen in Fig.1B. Referring to Eqs. 3, 4, it is useful here to consider the data as forming a continuous series of $3 N / 2$ points. Thus we may rewrite the above equation equivalently as

$$
\begin{equation*}
\sigma_{I(I+1)}^{2}=\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=N / 2+1}^{3 N / 2}\left(\left\langle x_{1 i} x_{2 i} x_{1 j} x_{2 j}\right\rangle-\left\langle x_{1 i} x_{2 i}\right\rangle\left\langle x_{1 j} x_{2 j}\right\rangle\right) w_{i}^{2} w_{j-N / 2}^{2} \tag{29}
\end{equation*}
$$

The summation may be broken up into four terms:

$$
\begin{equation*}
\sum_{i=1}^{N} \sum_{j=N / 2+1}^{3 N / 2}=\sum_{i=1}^{N / 2} \sum_{j=N / 2+1}^{N}+\sum_{i=N / 2+1}^{N} \sum_{j=N / 2+1}^{N}+\sum_{i=1}^{N / 2} \sum_{j=N+1}^{3 N / 2}+\sum_{i=N / 2+1}^{N} \sum_{j=N+1}^{3 N / 2} \tag{30}
\end{equation*}
$$

page 5 of 9

Draft

The summations on the right-hand side of the above expression correspond to the shaded regions in Fig.1C. The first, third, and fourth summations correspond to the non-overlapping gray regions of the figure, for which $\left\langle x_{1 i} x_{2 i} x_{1 j} x_{2 j}\right\rangle=\left\langle x_{1 i} x_{2 i}\right\rangle\left\langle x_{1 j} x_{2 j}\right\rangle$, and thus do not contribute to $\sigma_{I(I+1)}^{2}$. The second summation corresponds to the black-shaded region, which has the same data in both segments Y_{I} and Y_{I+1}. Thus, Eq. 29 for $\sigma_{I(I+1)}$ reduces to

$$
\begin{equation*}
\sigma_{I(I+1)}^{2}=\frac{1}{N^{2}} \sum_{i=N / 2+1}^{N} \sum_{j=N / 2+1}^{N}\left(\left\langle x_{1 i} x_{2 i} x_{1 j} x_{2 j}\right\rangle-\left\langle x_{1 i} x_{2 i}\right\rangle\left\langle x_{1 j} x_{2 j}\right\rangle\right) w_{i}^{2} w_{j-N / 2}^{2} \tag{31}
\end{equation*}
$$

The calculation of this summation is similar to that for σ_{I}^{2}. The only difference is that because the data may not be stationary on time scales comparable to the segment length, care must be taken in the variance we assign to this expression. The most reasonable approach is to use the average of corresponding quantities from segments I and $I+1$. The result is:

$$
\begin{align*}
& \sigma_{I(I+1)}^{2} \approx \frac{1}{2}\left(\sigma_{n_{1} I}^{2} \sigma_{n_{2} I}^{2} \frac{1}{N^{2}} \sum_{i=N / 2}^{N} \sum_{j=N / 2}^{N} \mathcal{R}_{n_{1} I}(|i-j|) \mathcal{R}_{n_{2} I}(|i-j|) w_{i}^{2} w_{j-N / 2}^{2}+\right. \\
&\left.\quad \sigma_{n_{1}(I+1)}^{2} \sigma_{n_{2}(I+1)}^{2} \frac{1}{N^{2}} \sum_{i=N / 2}^{N} \sum_{j=N / 2}^{N} \mathcal{R}_{n_{1}(I+1)}(|i-j|) \mathcal{R}_{n_{2}(I+1)}(|i-j|) w_{i}^{2} w_{j-N / 2}^{2}\right) . \tag{32}
\end{align*}
$$

For white noise, the above expression simplifies to

$$
\begin{equation*}
\sigma_{I(I+1)}^{2} \approx \frac{1}{2}\left(\sigma_{n_{1} I}^{2} \sigma_{n_{2} I}^{2}+\sigma_{n_{1}(I+1)}^{2} \sigma_{n_{2}(I+1)}^{2}\right) \frac{1}{2 N} \overline{w_{\mathrm{ovl}}^{4}}, \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{w_{\mathrm{ovl}}^{4}} \equiv \frac{1}{N / 2} \sum_{i=N / 2}^{N} w_{i}^{2} w_{j-N / 2}^{2} \tag{34}
\end{equation*}
$$

is a quantity characterizing the overlap between the last half and first half of the window function. For colored noise, if we define

$$
\begin{equation*}
\overline{w_{\mathrm{ovl} I}^{4}} \equiv \frac{1}{N / 2} \sum_{i=N / 2}^{N} \sum_{j=N / 2}^{N} \mathcal{R}_{n_{1} I}(|i-j|) \mathcal{R}_{n_{2} I}(|i-j|) w_{i}^{2} w_{j-N / 2}^{2} \tag{35}
\end{equation*}
$$

then

$$
\begin{equation*}
\sigma_{I(I+1)}^{2} \approx \frac{1}{2}\left(\sigma_{n_{1} I}^{2} \sigma_{n_{2} I}^{2} \frac{1}{2 N} \overline{w_{\mathrm{ovl} I}^{4}}+\sigma_{n_{1}(I+1)}^{2} \sigma_{n_{2}(I+1)}^{2} \frac{1}{2 N} \overline{w_{\mathrm{ovl}(I+1)}^{4}}\right) . \tag{36}
\end{equation*}
$$

Note that the overlapping window factors are convolved with the correlation sequences of the detector noise and depend on the particular segment I.

Furthermore, in terms σ_{I}^{2} and σ_{I+1}^{2} :

$$
\begin{equation*}
\sigma_{I(I+1)}^{2}=\frac{1}{2}\left(\frac{1}{2} \frac{\overline{w_{\mathrm{ovl} I}^{4}}}{\overline{w_{I}^{4}}} \sigma_{I}^{2}+\frac{1}{2} \frac{\overline{w_{\mathrm{ovl}(I+1)}^{4}}}{\overline{w_{(I+1)}^{4}}} \sigma_{I+1}^{2}\right) \tag{37}
\end{equation*}
$$

Draft

3 Determining the covariance matrix of $Y_{\mathrm{opt}}^{\mathrm{odd}} Y_{\mathrm{opt}}^{\text {even }}$

Now we can proceed with calculating the covariance matrix of the pair of correlated measurements $Y_{\mathrm{opt}}^{\text {odd }}$ and $Y_{\mathrm{opt}}^{\text {even }}$. Using an obvious notation, we write:

$$
\|\mathbf{C}\| \equiv\left[\begin{array}{ll}
\sigma_{\mathrm{o}}^{2} & \sigma_{\mathrm{oe}}^{2} \tag{38}\\
\sigma_{\mathrm{eo}}^{2} & \sigma_{\mathrm{e}}^{2}
\end{array}\right]
$$

From Eq. 2 the diagonal terms are

$$
\begin{equation*}
\sigma_{\mathrm{o}}^{2}=\frac{1}{\sum_{I \in \mathrm{odd}} \sigma_{I}^{-2}}, \quad \sigma_{\mathrm{e}}^{2}=\frac{1}{\sum_{I \in \mathrm{even}} \sigma_{I}^{-2}} \tag{39}
\end{equation*}
$$

The off diagonal terms are given by

$$
\begin{equation*}
\sigma_{\mathrm{oe}}^{2}=\sigma_{\mathrm{eo}}^{2} \equiv\left\langle Y_{\mathrm{opt}}^{\mathrm{odd}} Y_{\mathrm{opt}}^{\mathrm{even}}\right\rangle-\left\langle Y_{\mathrm{opt}}^{\mathrm{odd}}\right\rangle\left\langle Y_{\mathrm{opt}}^{\mathrm{even}}\right\rangle . \tag{40}
\end{equation*}
$$

Referring to Eq.1, we get

$$
\begin{align*}
\left\langle Y_{\mathrm{opt}}^{\mathrm{odd}} Y_{\mathrm{opt}}^{\mathrm{even}}\right\rangle-\left\langle Y_{\mathrm{opt}}^{\mathrm{odd}}\right\rangle\left\langle Y_{\mathrm{opt}}^{\mathrm{even}}\right\rangle & =\frac{\sum_{I \in \mathrm{odd}} \sum_{J \in \text { even }} \sigma_{I}^{-2} \sigma_{J}^{-2}\left(\left\langle Y_{I} Y_{J}\right\rangle-\left\langle Y_{I}\right\rangle\left\langle Y_{J}\right\rangle\right)}{\sum_{I \in \mathrm{odd}} \sigma_{I}^{-2} \sum_{J \in \mathrm{even}} \sigma_{J}^{-2}} \tag{41}\\
& =\sigma_{\mathrm{o}}^{2} \sigma_{\mathrm{e}}^{2} \sum_{I \in \mathrm{odd}} \sum_{J \in \mathrm{even}} \sigma_{I}^{-2} \sigma_{J}^{-2} \sigma_{I J}^{2} \tag{42}
\end{align*}
$$

To proceed further, note that $\sigma_{I J}^{2}=0$ for $|I-J|>1$, so that

$$
\begin{align*}
\sigma_{\mathrm{oe}}^{2} & =\sigma_{\mathrm{o}}^{2} \sigma_{\mathrm{e}}^{2}\left(\sum_{I \mathrm{odd}=1}^{2 M-3} \sigma_{I}^{-2} \sigma_{I+1}^{-2} \sigma_{I(I+1)}^{2}+\sum_{I \mathrm{odd}=3}^{2 M-1} \sigma_{I}^{-2} \sigma_{I-1}^{-2} \sigma_{I(I-1)}^{2}\right) \tag{43}\\
& =\sigma_{\mathrm{o}}^{2} \sigma_{\mathrm{e}}^{2}\left(\frac{\sigma_{12}^{2}}{\sigma_{1}^{2} \sigma_{2}^{2}}+\frac{\sigma_{23}^{2}}{\sigma_{2}^{2} \sigma_{3}^{2}}+\cdots+\frac{\sigma_{(2 M-2)(2 M-1)}^{2}}{\sigma_{2 M-2}^{2} \sigma_{2 M-1}^{2}}\right) . \tag{44}
\end{align*}
$$

Finally, substituting for $\sigma_{I(I+1)}^{2}$ using Eq. 37, we obtain:

$$
\begin{align*}
\sigma_{\mathrm{oe}}^{2}= & \sigma_{\mathrm{o}}^{2} \sigma_{\mathrm{e}}^{2}[\tag{45}
\end{align*} \frac{1}{2}\left(\frac{1}{2} \frac{\overline{w_{\mathrm{ovl} 1}^{4}}}{\overline{w_{1}^{4}}} \sigma_{2}^{-2}+\frac{1}{2} \frac{\left.\left.\overline{w_{\mathrm{ovl} 2}^{4}} \sigma_{1}^{-2}\right)+\frac{1}{2}\left(\frac{1}{2} \frac{\overline{w_{\mathrm{ovl} 2}^{4}}}{\overline{w_{2}^{4}}} \sigma_{3}^{-2}+\frac{1}{2} \frac{\overline{w_{\mathrm{ov} 13}^{4}}}{\overline{w_{3}^{4}}} \sigma_{2}^{-2}\right)+\cdots\right]}{=} \frac{1}{2} \sigma_{\mathrm{o}}^{2} \sigma_{\mathrm{e}}^{2}\left[\frac{1}{2}\left(\frac{\overline{w_{\mathrm{ovl} 2}^{4}}}{\overline{w_{2}^{4}}}\right) \sigma_{1}^{-2}+\frac{1}{2}\left(\frac{\overline{w_{\mathrm{ov} 1}^{4}}}{\overline{w_{1}^{4}}}+\frac{\overline{w_{\mathrm{ovl} 3}^{4}}}{\overline{w_{3}^{4}}}\right) \sigma_{2}^{-2}+\cdots, ~\left(\overline{w_{\mathrm{ovl}(2 M-1)}^{4}}\right) \sigma_{2 M-2}^{-2}+\frac{1}{2}\left(\frac{\overline{w_{\mathrm{ovl}(2 M-2)}^{4}}}{\left.\left.\overline{w_{2 M-2}^{4}}\right) \sigma_{2 M-1}^{-2}\right] .}\right.\right.\right.
$$

For stationary or white noise, the window factors are all independent of segment number, yielding the simplified result

$$
\begin{align*}
\sigma_{\mathrm{oe}}^{2} & =\frac{1}{2} \frac{\overline{w_{\mathrm{ovl}}^{4}}}{\overline{w^{4}}} \sigma_{\mathrm{o}}^{2} \sigma_{\mathrm{e}}^{2}\left[\frac{1}{2} \sigma_{1}^{-2}+\sigma_{2}^{-2}+\sigma_{3}^{-2}+\cdots+\sigma_{2 M-2}^{-2}+\frac{1}{2} \sigma_{2 M-1}^{-2}\right] \tag{47}\\
& =\frac{1}{2} \frac{w_{\mathrm{ovl}}^{4}}{\overline{w^{4}}} \sigma_{\mathrm{o}}^{2} \sigma_{\mathrm{e}}^{2}\left[\sigma_{\mathrm{e}}^{-2}+\sigma_{\mathrm{o}}^{-2}-\frac{1}{2}\left(\sigma_{1}^{-2}+\sigma_{2 M-1}^{-2}\right)\right] \tag{48}\\
& =\frac{1}{2} \frac{\overline{w_{\mathrm{ovl}}^{4}}}{\overline{w^{4}}}\left[\sigma_{\mathrm{o}}^{2}+\sigma_{\mathrm{e}}^{2}-\frac{1}{2} \sigma_{\mathrm{o}}^{2} \sigma_{\mathrm{e}}^{2}\left(\sigma_{1}^{-2}+\sigma_{2 M-1}^{-2}\right)\right] . \tag{49}
\end{align*}
$$

Since the individual variances σ_{I}^{2} are typically M times larger than either σ_{o}^{2} or σ_{e}^{2}, we have

$$
\begin{equation*}
\frac{1}{2} \sigma_{\mathrm{o}}^{2} \sigma_{\mathrm{e}}^{2}\left(\sigma_{1}^{-2}+\sigma_{2 M-1}^{-2}\right) \sim \frac{1}{2 M}\left(\sigma_{\mathrm{o}}^{2}+\sigma_{\mathrm{e}}^{2}\right) \tag{50}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sigma_{\mathrm{oe}}^{2} \sim \frac{\overline{w_{\mathrm{ovl}}^{4}}}{\overline{w^{4}}} \frac{1}{2}\left(\sigma_{\mathrm{o}}^{2}+\sigma_{\mathrm{e}}^{2}\right)\left(1-\frac{1}{2 M}\right) . \tag{51}
\end{equation*}
$$

The factor $(1-1 / 2 M)$ can be thought of as a finite data stream 'edge-effect' correction. For, e.g., $M=10$ segments, the term represents a 5% effect.

4 Optimal combination of $Y_{\mathrm{opt}}^{\mathrm{odd}}$ and $Y_{\mathrm{opt}}^{\text {even }}$

As shown in Appendix C of "Optimal combination of signals from co-located gravitational wave interferometers for use in searches for a stochastic background," the optimal combination of two measurements Y_{1} and Y_{2} that have the same theoretical mean and covariance matrix

$$
\|\mathbf{C}\| \equiv\left[\begin{array}{ll}
C_{11} & C_{12} \tag{52}\\
C_{21} & C_{22}
\end{array}\right]
$$

is given by the weighted average

$$
\begin{equation*}
Y_{\mathrm{opt}} \equiv \frac{\sum_{i=1}^{2} \lambda_{i} Y_{i}}{\sum_{j=1}^{2} \lambda_{j}} \tag{53}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{i}=\sum_{j=1}^{2}\|\mathbf{C}\|_{i j}^{-1} . \tag{54}
\end{equation*}
$$

Explicitly,

$$
\begin{equation*}
\lambda_{1}=\frac{C_{22}-C_{12}}{\operatorname{det}\|\mathbf{C}\|}, \quad \lambda_{2}=\frac{C_{11}-C_{21}}{\operatorname{det}\|\mathbf{C}\|} \tag{55}
\end{equation*}
$$

where det $\|\mathbf{C}\|:=C_{11} C_{22}-C_{12} C_{21}$. The theoretical variance of $Y_{\text {opt }}$ is

$$
\begin{equation*}
\sigma_{\mathrm{opt}}^{2}=\frac{1}{\sum_{k=1}^{2} \lambda_{k}} \sum_{i=1}^{2} \sum_{j=1}^{2} \lambda_{i} C_{i j} \lambda_{j} . \tag{56}
\end{equation*}
$$

LIGO-T040089-00-Z

Draft
For the overlapping window analysis, we have $Y_{1}=Y_{\mathrm{opt}}^{\mathrm{odd}}$ and $Y_{2}=Y_{\mathrm{opt}}^{\text {even }}$ with

$$
\|\mathbf{C}\| \equiv\left[\begin{array}{cc}
\sigma_{\mathrm{o}}^{2} & \sigma_{\mathrm{oe}}^{2} \tag{57}\\
\sigma_{\mathrm{eo}}^{2} & \sigma_{\mathrm{e}}^{2}
\end{array}\right]
$$

so

$$
\begin{equation*}
\lambda_{\mathrm{o}}=\frac{\sigma_{\mathrm{e}}^{2}-\sigma_{\mathrm{oe}}^{2}}{\sigma_{\mathrm{o}}^{2} \sigma_{\mathrm{e}}^{2}-\left(\sigma_{\mathrm{oe}}^{2}\right)^{2}}, \quad \lambda_{\mathrm{e}}=\frac{\sigma_{\mathrm{o}}^{2}-\sigma_{\mathrm{oe}}^{2}}{\sigma_{\mathrm{o}}^{2} \sigma_{\mathrm{e}}^{2}-\left(\sigma_{\mathrm{oe}}^{2}\right)^{2}} . \tag{58}
\end{equation*}
$$

Since we know $\sigma_{\mathrm{o}}^{2}, \sigma_{\mathrm{e}}^{2}$, and σ_{oe}^{2} in terms of the σ_{I}^{2} (c.f. Eqs. 39, 46), we can calculate $Y_{\text {opt }}$ and $\sigma_{\mathrm{opt}}^{2}$ as desired.

