CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laser Interferometer Gravitational Wave Observatory (LIGO) Project

To/Mail Code:	
From/Mail Code:	Daniel Sigg
Phone/FAX:	
Refer to:	LIGO-T030275-00
Date:	December 2, 2003

Subject: Angular Stability in a Triangular Fabry-Perot Cavity

Summary:

This work is an extension of the angular instabilities in Fabry-Perot cavities described in T030120 to include the LIGO mode cleaner. Basically, the same conclusion is reached: the mode cleaner is intrinsically unstable at high powers.

Geometry of a Triangular Cavity:

Following notes from Dave Ottoway we use the ray matrix formalism (see for example Siegman, Chap. 15, "ABCD matrices") to calculate the position of the optical axis as function of the mirror angles. In the ray matrix formalism the coordinates of a beam are described by its position, x, and its slope, x^{\prime}, ie.,

Figure 1: Triangular Cavity.

$$
\begin{equation*}
\boldsymbol{x}(z)=\binom{x(z)}{n(z) \frac{d}{d z} x(z)} \tag{2}
\end{equation*}
$$

where z is the coordinate along the beam axis and $n(z)$ denotes the refractive index. Since all our beams propagate in vacuum we set $n(z)=1$ from now on. The free space propagation along L and $2 s$ is then described by

$$
D_{L}=\left(\begin{array}{cc}
1 & L \tag{3}\\
0 & 1
\end{array}\right), \quad D_{s}=\left(\begin{array}{cc}
1 & 2 s \\
0 & 1
\end{array}\right)
$$

The reflection from the curved mirror is described by

$$
M_{2}=\left(\begin{array}{cc}
1 & 0 \tag{4}\\
-2 / R_{e} & 1
\end{array}\right)
$$

with $R_{e}=R \cos \theta$ in the horizontal plane and $R_{e}=R / \cos \theta$ in the vertical plane. The reflection from the flat mirrors MC_{1} and MC_{3} is described by the identity matrix, ie., $M_{1}=M_{3}=\mathbf{1}$. Since the coordinates flip left-to-right in the horizontal plane after each refleciton from a mirror, we also need to multiply each mirror operator by $M_{\text {flip }}(h)=\mathbf{- 1}$ when calculating misalignments in the horizontal plane and by $M_{\text {flip }}(v)=\mathbf{1}$ when calculating misalignments in the vertical plane.
Misalignments are simply introduced by adding vectors of the form

$$
\begin{gather*}
\alpha_{i}(h)=\binom{0}{2 \alpha_{i}}, \tag{5}\\
a_{1}(v)=\binom{0}{2 \cos \beta \alpha_{1}}, \quad a_{2}(v)=\binom{0}{2 \alpha_{1}} \quad \text { and } \quad a_{3}(v)=\binom{0}{2 \cos \beta \alpha_{3}} \tag{6}
\end{gather*}
$$

where α_{i} is the misalignment of the i-th mirror, respectively. Since the incident angle is nonnormal a vertical tilt of the MC_{1} and MC_{3} mirrors by α_{1} and α_{3}, respectively, will give a beam deflection of only $2 \cos \beta \alpha_{i}$ with $\beta=(\pi / 2-\theta) / 2$. Since we assume $\theta \ll 1$, the factor $\cos \theta$ in $a_{2}(v)$ has been neglected.
We now define the vectors, \boldsymbol{v}_{i}, that describe the beam after each mirror:

$$
\begin{align*}
v_{1} & =M_{\text {flip }} D_{L}\left(M_{\mathrm{flip}} M_{2} D_{L}\left(M_{\mathrm{flip}} D_{s} v_{1}+\alpha_{3}\right)+\alpha_{2}\right)+\alpha_{1} \\
& =\left(\mathbf{1}-M_{\mathrm{flip}} M D_{L} M_{\mathrm{flip}} M_{2} D_{L} M_{\mathrm{flip}} D_{s}\right)^{-1}\left(M_{\mathrm{flip}} D_{L}\left(M_{\mathrm{flip}} M_{2} D_{L} \alpha_{3}+\alpha_{2}\right)+\alpha_{1}\right) \tag{7}\\
\boldsymbol{v}_{3} & =M_{\mathrm{flip}} D_{s} v_{1}+\alpha_{3} \\
\boldsymbol{v}_{2} & =M_{\mathrm{flip}} M_{2} D_{L} v_{3}+\alpha_{2}
\end{align*}
$$

Taking only the position coordinates of the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ and \boldsymbol{v}_{3} we can form a new vector, $\Delta \boldsymbol{x}$, which describes the beam position on each of the mirorrs. For MC_{1} and MC_{3} the first components of the vectors \boldsymbol{v}_{1} and \boldsymbol{v}_{3} describe the displacement perpendicular to the beam. Hence, the true
displacement on these mirrors is enhanced by a factor of $1 / \cos \beta$. Finally, we rotate into a basis of common and differential motion for MC_{1} and MC_{3}, and get:

$$
\begin{gather*}
\Delta \boldsymbol{x}(h)=\left(\begin{array}{c}
\left(x_{1}+x_{3}\right) /(\sqrt{2} \cos \beta) \\
\left(x_{1}-x_{3}\right) /(\sqrt{2} \cos \beta) \\
x_{2}
\end{array}\right), \quad \Delta \boldsymbol{x}(v)=\left(\begin{array}{c}
\left(x_{1}+x_{3}\right) / \sqrt{2} \\
\left(x_{1}-x_{3}\right) / \sqrt{2} \\
x_{2}
\end{array}\right) \text { and } \tag{8}\\
\Delta \boldsymbol{\alpha}=\left(\begin{array}{c}
\left(\alpha_{1}+\alpha_{3}\right) / \sqrt{2} \\
\left(\alpha_{1}-\alpha_{3}\right) / \sqrt{2} \\
\alpha_{2}
\end{array}\right) \tag{9}
\end{gather*}
$$

We now rewrite equation (7) into

$$
\begin{gather*}
\Delta \boldsymbol{x} / L=K \Delta \boldsymbol{\alpha} \tag{10}\\
\text { with } K(h)=\frac{1}{L\left(s+L-R_{e}\right)}\left(\begin{array}{ccc}
-2 s\left(L-R_{e}\right) \sec \beta & 0 & -s R_{e} \sec \beta \\
0 & -2 L \sec \beta\left(s+L-R_{e}\right) & 0 \\
-s R_{e} & 0 & (s+L) R_{e}
\end{array}\right) \tag{11}\\
\text { and } K(v)=\frac{1}{L}\left(\begin{array}{ccc}
-2\left(L-R_{e}\right) \cos \beta & 0 & \sqrt{2} R_{e} \\
0 & -2 s L \cos \beta /(s+L) & 0 \\
2 R_{e} \cos \beta & 0 & R_{e}
\end{array}\right) . \tag{12}
\end{gather*}
$$

In the limit $s \rightarrow 0, \theta \rightarrow 0, \beta \rightarrow \pi / 4$ and $R_{e} \rightarrow L /(1-g)$ with $g=1-L / R$ we obtain

$$
\begin{align*}
K(h) & \rightarrow\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -2 \sqrt{2} & 0 \\
0 & 0 & -1 / g
\end{array}\right) \text { and } \tag{13}\\
K(v) & \rightarrow \frac{1}{1-g}\left(\begin{array}{ccc}
\sqrt{2} g & 0 & \sqrt{2} \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right) . \tag{14}
\end{align*}
$$

We see that common angular misalignment of MC_{1} and MC_{3} in the horizontal plane produces no displacement of the beam in $K(h)$. This can be easily understood by recognizing that two mirrors fixed at right angle act like a corner cube. Similarly, a differential misalignment of MC_{1} and MC_{3} in the vertical plane will have no effect on the beam positions, since the beam path between the two mirrors is of negligible length and the two misalignments compensate each other. We can therefore neglect these degrees-of-freedom from our further analysis.

Radiation Pressure and Torsion Pendulum:

We follow the analysis outlined in T030120. In the first section we derived the K-matrices which describe the geometry of a triangular cavity the same way as the K-matrix in the analysis of T030210. There is one slight difference, however, the torque from radiation pressure depends on the incident angle by

$$
\begin{equation*}
T_{1,2}=\frac{2 P}{c} \cos \beta \Delta x_{1,2} \quad \text { and } \quad T_{3}=\frac{2 P}{c} \cos \theta \Delta x_{3} . \tag{15}
\end{equation*}
$$

We can absorbe this difference into the K-matrix by forming

$$
\bar{K}=T_{\Delta} K \quad \text { with } T_{\Delta}=\left(\begin{array}{ccc}
\cos \beta & 0 & 0 \tag{16}\\
0 & \cos \beta & 0 \\
0 & 0 & \cos \theta
\end{array}\right)
$$

Thus, we can study the stability of a triangular cavity by computing the eigenvalues of the modified \bar{K}-matrices. Neglecting the common motion of MC_{1} and MC_{3} and using the same approximations as above, $\theta \rightarrow 0$ and $\beta \rightarrow \pi / 4$, we get in the horizontal plane:

$$
\begin{equation*}
k_{1}(h)=-2 \quad \text { and } \quad k_{2}(h)=-\frac{1}{g} . \tag{17}
\end{equation*}
$$

We see that both eigenvalues are negative and, therefore, a triangular cavity is intrinsically stable in the horizontal plane. The eigenvectors are then simply the differential motion of MC_{1} and MC_{3}, and the motion of MC_{2} alone

$$
\begin{equation*}
\kappa_{1}(h)=\binom{1}{0} \quad \text { and } \quad \kappa_{2}(h)=\binom{0}{1} . \tag{18}
\end{equation*}
$$

Neglecting the differential motion of MC_{1} and MC_{3} the eigenvalues and eigenvectors in the vertical plane become

$$
\left.\begin{array}{ll}
k_{1}(v)=\frac{1+g-\sqrt{5-2 g+g^{2}}}{2(1-g)} & \kappa_{1}(v)=\frac{1}{2}\left(-1+g-\sqrt{5-2 g+g^{2}}\right) \tag{19}\\
k_{2}(v)=\frac{1+g+\sqrt{5-2 g+g^{2}}}{2(1-g)} & \kappa_{2}(v)=\frac{1}{2}\left(-1+g+\sqrt{5-2 g+g^{2}}\right. \\
2
\end{array}\right) .
$$

The determinants are

$$
\begin{equation*}
\operatorname{det} K(h)=\frac{2}{g} \quad \text { and } \quad \operatorname{det} K(v)=-\frac{1}{1-g} . \tag{20}
\end{equation*}
$$

Looking at equation (10) from T030120 we see that the vertical case is identical to the simple Fabry-Perot, if we make the substitutions $g_{1} \rightarrow 1$ and $g_{2} \rightarrow g$. We also see that for a stable triangular cavity there is always one intrinsically stable and one intrinsically unstable eigenmode in the vertical plane. On the other hand the two eignemodes in the horizontal plane are always intrinsically stable.

LIGO mode cleaners:

For LIGO we are using the following small optics suspension parameters:
Table 1: LIGO small optics suspension parameters

Parameter	Description	LIGO / Adv. LIGO	Unit
M	mirror mass (SOS)	$0.243 / 3.04$	kg
R	mirror radius (SOS)	$0.0375 / 0.075$	m
h	mirror thickness (SOS)	$0.025 / 0.08$	m
ω	pitch angular frequency (SOS)	$2 \pi 0.80 / 2 \pi 1.08$	$\mathrm{rad} / \mathrm{s}$
ω	yaw angular frequency (SOS)	$2 \pi 0.87 / 2 \pi 1.08$	$\mathrm{rad} / \mathrm{s}$
Θ	angular moment (SOS)	$9.81 \times 10^{-5} / 5.8 \times 10^{-3}$	$\mathrm{~kg} \mathrm{~m}^{2}$

The mode cleaners have the following parameters (Adv. LIGO cavity parameters were chosen to be the same as the 2 K):

Table 2: LIGO mode cleaner parameter

Parameter	4K MC		2K MC		Adv. LIGO			
	Value		Unit	Value	Unit	Value		Unit
L	12.24	m	15.251	m	15.25	m		
MC2 curvature	17.25	m	21.50	m	21.5	m		
g	0.290		0.291		0.291			
$P_{\text {crit }}$	12.6	kW	10.1	kW	1.09	MW		
Parameter	horizontal		vertical					
k_{1}	-2.00		-0.586					
k_{2}	-3.44		2.41					

where $P_{\text {crit }}$ is calculated from Eqn. (9) in T030120 using the largest positive k_{i}. Since the mode cleaner parameters are almost identical we just give the eigenvalues for horizontal and vertical of the LIGO 4 K . With a power build-up factor of about 500 the critical power at the input to the mode cleaner is 25 W and 20 W for 4 K and 2 K , respectively.

References:

[1] John A. Sidles and Daniel Sigg, "Optical Torques in Suspended Fabry-Perot Interferometers," LIGO-P030055-B.
[2] Daniel Sigg, "Angular Instabilities in High Power Fabry-Perot Cavities," LIGO-T030120-00.

