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Summary:

This work is an extension of the angular instabilities in Fabry-Perot cavities described in T030120
to include the LIGO mode cleaner. Basically, the same conclusion is reached: the mode cleaner is
intrinsically unstable at high powers.

Geometry of a Triangular Cavity:

Following notes from Dave Ottoway we use the ray matrix formalism (see for example Siegman,
Chap. 15, “ABCD matrices”) to calculate the position of the optical axis as function of the mirror
angles. In the ray matrix formalism the coordinates of a beam are described by its position, , and
its slope, , ie., 
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Figure 1: Triangular Cavity.
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(2)

where  is the coordinate along the beam axis and  denotes the refractive index. Since all our
beams propagate in vacuum we set  from now on. The free space propagation along 
and  is then described by

. (3)

The reflection from the curved mirror is described by

(4)

with  in the horizontal plane and  in the vertical plane. The reflection
from the flat mirrors MC1 and MC3 is described by the identity matrix, ie., . Since
the coordinates flip left-to-right in the horizontal plane after each refleciton from a mirror, we also
need to multiply each mirror operator by  when calculating misalignments in the
horizontal plane and by  when calculating misalignments in the vertical plane.

Misalignments are simply introduced by adding vectors of the form

, (5)

, and (6)

where  is the misalignment of the i-th mirror, respectively. Since the incident angle is non-
normal a vertical tilt of the MC1 and MC3 mirrors by  and , respectively, will give a beam
deflection of only  with . Since we assume , the factor  in

 has been neglected.

We now define the vectors, , that describe the beam after each mirror:

(7)

Taking only the position coordinates of the vectors ,  and  we can form a new vector, ,
which describes the beam position on each of the mirorrs. For MC1 and MC3 the first components
of the vectors   and  describe the displacement perpendicular to the beam. Hence, the true
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displacement on these mirrors is enhanced by a factor of . Finally, we rotate into a basis
of common and differential motion for MC1 and MC3, and get:

, and (8)

. (9)

We now rewrite equation (7) into
(10)

with (11)

and . (12)

In the limit , ,  and  with  we obtain

and (13)

. (14)

We see that common angular misalignment of MC1 and MC3 in the horizontal plane produces no
displacement of the beam in . This can be easily understood by recognizing that two mirrors
fixed at right angle act like a corner cube. Similarly, a differential misalignment of MC1 and MC3
in the vertical plane will have no effect on the beam positions, since the beam path between the
two mirrors is of negligible length and the two misalignments compensate each other. We can
therefore neglect these degrees-of-freedom from our further analysis.
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Radiation Pressure and Torsion Pendulum:

We follow the analysis outlined in T030120. In the first section we derived the -matrices which
describe the geometry of a triangular cavity the same way as the -matrix in the analysis of
T030210. There is one slight difference, however, the torque from radiation pressure depends on
the incident angle by

and . (15)

We can absorbe this difference into the -matrix by forming

with . (16)

Thus, we can study the stability of a triangular cavity by computing the eigenvalues of the
modified -matrices. Neglecting the common motion of MC1 and MC3 and using the same
approximations as above,  and , we get in the horizontal plane:

and . (17)

We see that both eigenvalues are negative and, therefore, a triangular cavity is intrinsically stable
in the horizontal plane. The eigenvectors are then simply the differential motion of MC1 and MC3,
and the motion of MC2 alone

and . (18)

Neglecting the differential motion of MC1 and MC3 the eigenvalues and eigenvectors in the
vertical plane become

. (19)

The determinants are

and . (20)

Looking at equation (10) from T030120 we see that the vertical case is identical to the simple
Fabry-Perot, if we make the substitutions  and . We also see that for a stable
triangular cavity there is always one intrinsically stable and one intrinsically unstable eigenmode
in the vertical plane. On the other hand the two eignemodes in the horizontal plane are always
intrinsically stable.
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LIGO mode cleaners:

For LIGO we are using the following small optics suspension parameters:

The mode cleaners have the following parameters (Adv. LIGO cavity parameters were chosen to
be the same as the 2K):

where  is calculated from Eqn. (9) in T030120 using the largest positive . Since the mode
cleaner parameters are almost identical we just give the eigenvalues for horizontal and vertical of
the LIGO 4K. With a power build-up factor of about 500 the critical power at the input to the
mode cleaner is 25W and 20W for 4K and 2K, respectively.
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Table 1: LIGO small optics suspension parameters

Parameter Description LIGO / Adv. LIGO Unit
M mirror mass (SOS) 0.243 / 3.04 kg
R mirror radius (SOS) 0.0375 / 0.075 m
h mirror thickness (SOS) 0.025 / 0.08 m

pitch angular frequency (SOS) 0.80 / 1.08 rad/s

yaw angular frequency (SOS) 0.87 / 1.08 rad/s

angular moment (SOS)  / kg m2

Table 2: LIGO mode cleaner parameter

Parameter 4K MC 2K MC Adv. LIGO
Value Unit Value Unit Value Unit

L 12.24 m 15.251 m 15.25 m
MC2 curvature 17.25 m 21.50 m 21.5 m

0.290 0.291 0.291

12.6 kW 10.1 kW 1.09 MW

Parameter horizontal vertical

–2.00 –0.586

–3.44 2.41

ω 2π 2π
ω 2π 2π

Θ 9.81 5–×10 5.8 3–×10
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