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This note derives an efficient estimator for the pseudo-detector strain for the Hanford Observatory
pair of detectors by considering the possibility of the presence of instrumental correlations between
two machines co-located at one site. An expression is given for the effective power spectral density
of combined noise in the pseudo-detector. This is then introduced into the standard optimal Wiener
filter used to cross-correlated detector data streams in order to obtain an estimate of the stochastic

gravitational wave background.
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I. INTRODUCTION

The two LIGO interferometers at Hanford are known
to exhibit instrumental cross-correlations arising from a
number of sources:

e Low-frequency seismicity

e Common-mode acoustic coupling among the input
electro-optics systems

e Electromagnetic susceptibilities the are manifested
by the presence of 60 Hz mains lines in the spectra
and cross-spectra.

This note derives an efficient estimator for the pseudo-
detector strain for the Hanford Observatory pair of detec-
tors by considering the possibility of the presence of in-
strumental correlations between two machines colocated
at one site. An expression is given for the effective
power spectral density of combined noise in the pseudo-
detector. This is then introduced into the standard opti-
mal Wiener filter used to cross-correlated detector data
streams in order to obtain an estimate of the stochastic
gravitational wave background.

II. THE S1 ANALYSIS

For the S1 analysis of the stochastic gravitational wave
background, the final results showed that there was sub-
stantial cross-correlated noise between the two (4km and
2km) Hanford inteferometers. This observation led us to
disregard these results. In addition, two separate upper
limits were obtained for the two transcontinental pairs,
H1-L1 and H2-L1. These were not combined because of
the known common cross-correlation contaminating the
H1-H2 pair.

It is possible to take into account such local instru-
mental correlations by first combining the two local mea-
surements into a single, pseudo-detector estimate of GW

strain from the Hanford site, and then cross-correlating
this pseudo-signal with the remaining Livingston signal.

In doing this, it is possible to obtain a self-consistent
utilization of the three measurements to obtain a sin-
gle estimate of Qgw . In order for this to be valid, the
following reasonable assumptions are made:

e There are no broadband transcontinental correla-
tions. This has been empirically observed to be the
case for both the S1 and S2 science runs when the
coherences between H1,2 and L1 are calculated over
long periods of time.

e The local H1-H2 correlations are dominated by in-
strumental effects and not GW. The spectral mag-
nitude of the H1-H2 coherence is greater than ei-
ther of the H1,2-L1 pairs; moreover the frequency
dependence of the coherence for H1-H2 is qualita-
tively different from the transcontinental pairs.

III. OPTIMAL ESTIMATE OF STRAIN FROM
THE HANFORD INSTRUMENTS

The derivation of a efficient estimator of strain at Han-
ford is derived in Appendix A. The results are quoted
here. Assume the two instruments produce data streams

sg1(t) = h(t) +ngi(t) (3.1)
SHQ(t) = h(t) +nH2(t) (32)

The Fourier domain representations of these signals are!

sm(f) = h(f)+nm(f) (3.3)
h 3.4

sua(f) = h(f)+nm2(f)

1 a(f) denotes the Fourier transforms of a(t)—i.e.,
a(f)y= [ _dt e~ 27 ft o(t).



The cross-correlation between the two Hanford machines
is characterized by the coherence function:

- PH1H2<f)
PH1H, (f) . PHl (f)PH2 (f) (35)
PH1H2(f) = |pH1H2(f)|2
|PH1H2(f)‘2
P, (/)P () (30

pH, H,(f) is inherently a complex quantity contained
within the unit circle.

Assume we form an unbiased linear combination of the
st () = a()sm (F) + (1 — al))sm (). 1 su(f)
is also to be a minimum variance estimator, then a(f)
takes the following value:

a(f) =

PHz(f) _p}({ng(f) PHl(f)PHz(f)

PHl(f) +PH2(f) - (leHz(f) +pE1H2(f)) PHl(f)PHQ(f)

(3.7)
The corresponding power of the pseudo-signal is,

Py(f) =

PHI (f)PHz (f)(]- - FH1H2 (f))

Py, (f) + Pu,(f) — (pr, . (f) + 03, 1, (F))/ P, (f) Py (f)

(3.8)

IV. THE CROSS-CORRELATION STATISTIC
USING A COMPOSITE PSEUDO DETECTOR
STRAIN FOR HANFORD

Since the instrumental transcontinental cross-
correlations are assumed to be negligible, the derivation
of the optimal filter when using the pseudo-detector sig-
nal for Hanford proceeds exactly as has been presented
in the literature [1, 2, 3] with Py, (f), P, (f) — Pu(f).
The cross-correlation statistic is given by,

T/2 T/2

Y = / dtl dtg SL, (tl)Q(tlftQ) SH(tQ), (41)
—T/2 —T/2

The frequency domain expression is,

Yz/_oo df [w df/ (ST(f_f/)gzl(f)Q(f/)gH(f/),
(4.2)

The optimal filter becomes,

o (fDSeeIF])
QD) > B, U Ea(f)

As before, if we specialize to the case Qg (f) = Qo =
const. Then,

B A1f)
=N B (N B 7))

where N is a (real) overall normalization constant.
In practice we choose N so that the expected cross-
correlation is py = Qg h3y, T. For such a choice,
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Q(f) (4.4)
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A. Combining triple and double coincident
measurements of Qgw

In order to make use of this methodology for the anal-
ysis of the S2 and S3 data, we will need to partition the
data into three non-overlapping (hence statistically inde-
pendent) data sets: the HI-H2-L1 triple coincident data,
and the two H1-L1 and H2-L1 double coincident data
sets. The triple coincidence data would be analyzed in
the manner described in this note. Measurements from
the three observations may be combined under the as-
sumption of statistical independence.
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APPENDIX A: OPTIMALLY COMBINING
SIGNALS FROM TWO (CO-LOCATED)
INTERFEROMETERS WITH CORRELATED
INSTRUMENTAL NOISE

This appendix derives the minimum variance unbiased
estimator of local GW strain from two interferometer
data streams co-located at one site (i.e., LIGO Hanford
Observatory). It takes into account the possibility that
the two measurements contain instrumentally correlated
noise in addition to the GW signal.

Consider two interferometers, labeled by indices 1,2
(e.g., 1 = H1;2 = H2). Both see the same GW signal, h
but have different noise floors, n; o:

s1(t) = h(t) +m(t)
sa(t) = h(t) +na(t)

The Fourier domain representations of these signals

are2

s1(f) = h(f) +n(f)
s2(f) = h(f)+na(f)

Assume the process generating h,n; to be stochastic with
the following statistical properties of the signals and noise
components?:

2 a(f) denotes the Fourier transforms of a(t)—i.e.,
a(f) = [°0, dte 2 fta(t).

3 The brackets < ... > denote ensemble or statistical averages of
random processes

<Hi(f)>=<h(f)> = 0 (A5)

<[w(HP > = B(f) (A6)

<[P > < <) > (A7)

<@(f) R (f)> = 0 (A8)
<7i(f) W (f) > = Py(f)

= pii(F)\/ PAAS)Pi(fNA9)

Tii(f) = lpi(f)I? (A10)

I';;(f) is the coherence between the two signals. p;;(f)
is a complex quantity of magnitude less than or equal to
unity.

Assume we form a linear combination of the s;: §'(f) =
a(f)s1(f)+B(f)s2(f). If s’ is to be an unbiased estimator
of h, then the following must be true:

<h(f) F(f) >=< h(f)* >= a(f) + B(f) = 1(A11)

In order to determine a(f), the other constraint that
can be applied is to require the estimator s’ to have a

minimum variance:
Var(s') := Py(f)
Ps’ (f) =

(A12)

X
(R(f) + 7 () (B*(f)
<@ (N -a(f)
(R*(f) + 75 () (A(f)

Where Var(s') := Py (f), the noise power of the signals
s

Ignoring the magnitude of A in favor of the noise terms
and taking the correlations (and lack thereof) into ac-

count, the expression reduces to,

Pa(f) = [@DEPL) +11 = ()PP +
(G =a (M) +

& ()1 = a(F)pla(f)) X

Pi(f)P2(f) (A14)

Minimizing Py (f) leads to the following pair of equa-

tions:
_ 0
—\o

9Py (f)
oa(f)
9Py (f)
da*(f)

(A15)




The resulting equations are complex conjugates of each
other. One of them is:

0 = a(f)P(f) = (1 =a(f) P(f) +
(1 =a(f)(pr2(f) + p12(f))) x

Pi(f)P(f) (A16)

a(f) = Py(f) = pia(f)/ Pr(f)Pa(f)
Pi(f) + Pa(f) = (pr2(f) + pi2(F)V P (f) P(f)
(A17)

This expression for &(f) results in an efficient estimator

for E(f) Substituting for a(f) in Eq. Al4 , the noise
power (variance) for s’ becomes:
o) - ()P =T ()
) Pi(f) + Po(f) = (pr2(F) + o1 (AP Pa(F)
(A18)
Limiting cases:
I If p12(f) — 0: Then &(f) becomes,
a(f) — — 12 (A19)

Pi(f)+ P(f)

ITa. If Pi(f) — Px(f): Then a(f) is independent of

P(f),
~ _ 1- PT2(f)
Sy s R 1) B
IIb. If p12(f) — 1, then p12(f) = pi5(f) = V/I'(f) and

Pi(f) = Po(f). Then Py (f) — P1(f):

. P 1=-T(f)
P = i g

Pi(f) (A21)

ITI. For H1 and H2 the limiting design performance
will have Py(f) = 4Pi(f) due to the 1 : 2 arm length
ratio,

2(2 = pio(f))

alf) = 5—2(p12 + pia)

(A22)

If the noise were either completely correlated (p;2 —
1,a(f) — 2) or anti-correlated (p12 — —1,a(f) — 2),
then it would be possible to exactly cancel the noise in
the signals s;.



