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1 Gravitational-Wave Signal

1.1 Two polarizations

Gravitational waves appear as perturbations of the space-time metric. Assume that in the ab-
sence of gravitational waves the space-time is flat. Then the metric is

gµν = ηµν + hµν , (1)

whereηµν is the Minkowski metric andhµν is the strain tensor of gravitational waves. In the
transverse traceless (TT) coordinates the strain tensor takes the form:

hµν =


0

h+ h×
h× −h+

0

 , (2)

whereh+ andh× correspond to two different polarizations of the gravitational wave. For most
of our analysis time can be regarded as a fixed dimension and no time-dependent coordinate
transformations will be necessary. We therefore can safely neglect the time components of the
4-dimensional tensors and consider only their spatial (3-dimensional) parts. In this case, the
gravitational wave strain tensor can be represented by a sum of two 3-dimensional matrices:

h = h+ m + h× n. (3)

wherem is a traceless andn is a transverse unit tensor

m =

 1 0 0
0 −1 0
0 0 0

 , n =

 0 1 0
1 0 0
0 0 0

 . (4)

A laser interferometer defines its own coordinate system so thatx andy axes run along the
two interferometer arms, and the origin is at the beam-splitter. In general, these coordinates are
oriented differently from the TT-coordinates of the gravitational wave introduced above. The
two coordinate systems can be related by rotational transformation

x′ = RT x, (5)

wherex are the coordinates associated with the gravitational wave andx′ and are the coordinates
associated with the detector.

The rotational transformation induces the transformation of the metric. The strain tensor
in the detector frame,h′, can be found from the original tensorh by means of the induced
transformation:

h′ = RThR. (6)

This can be easily derived from the fact that the length must be conserved:

x′Th′ x′ = xThx. (7)
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A laser interferometer generates signal from the difference between the length of thex and
y arms, and therefore is proportional to

V =
1
2

Tr
{
m h′

}
. (8)

Such a signal is a sum of two parts each originating from an independent polarization:

V = F+ h+ + F× h×. (9)

The antenna patternsF+ andF× depend on the orientation of the detector with respect to the
source and its polarization axes. In the explicit form they are given by

F+ =
1
2

Tr
{
mRTmR

}
, (10)

F× =
1
2

Tr
{
mRTnR

}
. (11)

The normalization factors2−1 ensure that the maximum value for the antenna patterns is equal
to 1. The orientation of the detector which corresponds to these maximum values is known as
optimal.

1.2 Antenna Patterns

The standard antenna patterns can be obtained by using Euler angles for parametrization of the
rotational transformations:

R = Rz(ψ) Ry(θ) Rz(φ). (12)

The rotations around thex, y, andz axes are given by

Rx(φ) =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 , (13)

Ry(θ) =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 , (14)

Rz(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 . (15)

Then the antenna patterns [1, 2] can be found as

F+ = 2−1 cos 2φ (1 + cos2 θ) cos 2ψ − sin 2φ cos θ sin 2ψ, (16)

F× = 2−1 cos 2φ (1 + cos2 θ) sin 2ψ − sin 2φ cos θ cos 2ψ. (17)

The graphical representation for these functions can be obtained by setting one of the angles to
a fixed value. For example, forψ = 0 the antenna patterns are shown in Fig. 1
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Figure 1: Top:F+(φ, θ, 0), bottom:F×(φ, θ, 0).
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2 Midpoint Coordinate Frame

All potential sources of gravitational waves are located very far away from the Earth. This fact
guarantees that the gravitational waves are well approximated by plane waves

hi(t,x) = hi

(
t+

k̂ · x
c

)
, (18)

wherek̂ is a unit vector pointing to the source of the gravitational waves. This representation
for the signal indicates that there is a delay in the arrival time of the gravitational wave at the
two detector sites. The value for the delay can be found as

τs =
k · p
c

, (19)

wherep is a vector which originates at one of the detector site and ends at the other, as shown
in Fig. 2.

Figure 2: The separation vector and the midpoint for two detectors.

The values of the signalV (t) from each detector depends on the rotational transformation
which we parametrize here by some angles. For simplicity, we denote such parametrization by

R = R(Ω). (20)

These angles may not be independent and may not necessarily form a minimum set. Their
choice will be made according to geometrical interpretation and convenience for the analysis.

In order to treat the two detectors as equally as possible, and thus take advantage of symme-
try properties of the rotational transformations, we choose the parametrization as follows. We
begin by introducing a preferred coordinate system, which is located exactly between the two
detectors, as shown in Fig. 2. The advantage of using the midpoint coordinates is that the delay
becomes split equally between the two detectors:

V1(t) = F+(Ω1) h+(t+ τs/2) + F×(Ω1) h×(t+ τs/2), (21)

V2(t) = F+(Ω2) h+(t− τs/2) + F×(Ω2) h×(t− τs/2). (22)
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The largest delay occurs when the source of gravitational waves is on the line of sight for two
detectors (along the vectorp):

τ0 =
|p|
c
. (23)

This parameter defines a natural time scale in this analysis.
It is important to note that the delayτs is not known beforehand unless the location of the

source of gravitational waves is known. In general, the analysis strongly depends on whether
the location of the source is known or not. The second situation is more difficult and also is
more likely to occur in practice.

3 Definition of the Correlation Function

3.1 Correlation Function in Time Domain

Given two signalsV1(t) andV2(t) which correspond to data streams from two gravitational
wave detectors, one can construct the correlation function

C(τ) = V1

(
t+

τ

2

)
V2

(
t− τ

2

)
. (24)

It is a function of the artificial delay:τ . (Note that the artificial delay is introduced in a symmet-
ric manner to be consistent with the midpoint parametrization.) In these notations, maximum
correlation, or coincidence, occurs whenτ = −τs. Thus defined correlation function is a com-
plicated function of the angular parameters and the time delays:

C(τ) = F+(Ω1)F+(Ω2) h+

(
t+

τs + τ

2

)
h+

(
t− τs + τ

2

)
+

F+(Ω1)F×(Ω2) h+

(
t+

τs + τ

2

)
h×

(
t− τs + τ

2

)
+

F×(Ω1)F+(Ω2) h×

(
t+

τs + τ

2

)
h+

(
t− τs + τ

2

)
+

F×(Ω1)F×(Ω2) h×

(
t+

τs + τ

2

)
h×

(
t− τs + τ

2

)
. (25)

However, in reality only the artificial time delayτ is known and therefore we write the correla-
tion function asC(τ) suppressing all other functional dependences.

It is worthwhile to consider separately these functional dependences and try to gain any
information about them. For this purpose we introduce two matrices:M andN and write the
correlation function in a compact (matrix) form:

C(τ) = Tr
{
MT N(τ)

}
. (26)

The first matrix comprises all angular dependence of the correlation function

Mij = Fi(Ω1)Fj(Ω2). (27)
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It does not depend on the delay times or the gravitational wave strain.
The second matrix comprises all temporal behavior of the correlation function

Nij(τ) = hi

(
t+

τs + τ

2

)
hj

(
t− τs + τ

2

)
. (28)

It does not depend on the detector orientations or the location of the source in the sky.

3.2 Correlation Function in Fourier Domain

For computational efficiency, the correlation function is calculated in the Fourier domain. Con-
sider Fourier transformation of the strain function:

h̃j(ω) =

T/2∫
−T/2

eiωt hj(t) dt. (29)

Then the Fourier transform of the matrixNij is

Ñij(ω) = eiωτs h̃i(ω) h̃j(ω)∗. (30)

As a result, the correlation function takes the form:

C̃(ω) = Tr
{
MT Ñ(ω)

}
. (31)

In practice, the above Fourier transforms are replaced by discrete Fourier transforms defined
over the finite time intervals. However, such details are irrelevant for the present analysis.

4 Parametrization of Rotational Transformations

We begin the chain of rotational transformations with the transformation of each detector frame
to the midpoint coordinate frame. The two detectors and the center of Earth define the reference
plane as shown in Fig. 3. The axesx andz of the midpoint frame are co-planar with the reference
plane.

Consider one the detectors, for example, this can be the Hanford detector shown in Fig. 3.
The first transformation is such that thex-axis becomes co-planar with the reference plane.
This can be achieved by rotating the coordinate frame by angleβ1 around they-axis. The
second transformation is the rotation by(π/2 − α) around they-axis. It will align the detector
frame with the midpoint frame. The combined effect of the two transformations is given by the
product

Ry(π/2− α) Rz(β1). (32)

Similarly, we can construct the transformation from the coordinate frame of the second
detector to the midpoint frame. The orientation of the Livingston detector frame with respect to
the reference plane involves a different angle:β2. Furthermore, the second detector is located
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Figure 3: The midpoint and the detector coordinate frames on Earth.

at an angle−α in the reference plane. Therefore, the second rotation angle isπ/2 + α. The
combined effect of the two transformations is given by the product

Ry(π/2 + α) Rz(β2). (33)

The rest of the rotational transformations are the same for both detectors.
We now shall find a coordinate transformation which connects the midpoint frame with the

gravitational-wave frame. The midpoint coordinate system,xyz, and the source of gravitational
waves,S, are schematically shown in Fig. 4. The location of the source on the sky is given by
spherical anglesθ andφ with respect to the midpoint frame. The third angle,ψ, describes the
polarization of the gravitational waves with respect to the plane of incidence (SOP in Fig. 4).

The rotation matrixRij is defined by the three Euler angles (φ, θ, andψ) and can be con-
structed as a product of three rotation matrices the same way as in Eq. (12). The only difference
is that now the Euler angles are defined in the midpoint frame. It is worthwhile to follow the
sequence of the transformations one rotation at a time.

First, we rotate the midpoint frame around thez-axis by the angleφ. The axesx andy
remain in the horizontal plane. As a result of this transformation, thex-axis comes to point
along the direction~OP , which coincides with the projection of~n onto the plane of the detector.
Second, rotate the coordinate frame around they-axis by the angleθ. As a result of this trans-
formation, thez-axis points to the source (~OS). Also, the axesx andy become perpendicular
to ~OS.
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Figure 4: Orientation of the GW coordinate system with respect to the midpoint coordinate
system.

Finally, rotate the coordinate frame around thez-axis by the angleψ. As a result of this
transformation, the axesx andy become aligned along the polarization axes of the gravitational
wave. The combined effect of all five rotations for the first detector is

R1 = Rz(ψ) Ry(θ) Rz(φ) Ry(π/2− α) Rz(β1). (34)

A similar formula can be written for the second detector, except thatβ1 must be replaced byβ2

and alsoα by−α:

R2 = Rz(ψ) Ry(θ) Rz(φ) Ry(π/2 + α) Rz(β2). (35)

In this angular parametrization the delay in the arrival time of the gravitational wave is
associated with angleθ. Namely,

cos θ =
τs
τ0
. (36)

Thus all sources which have the sameθ coordinate would produce the same delay, regardless of
what theirφ coordinates are.
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5 LIGO Hanford and Livingston Detectors

The numerical calculations in this technical note are done for the LIGO Hanford and Livingston
4-km interferometers. The locations of the two detector on Earth are given by their latitudes and
longitudes; their orientations are given by the angle between thex-arm and the direction to the
North (azimuth) [3, 4].

coordinate Hanford Livingston

latitude 460 27′ 18.53′′ N 300 33′ 46.42′′ N

longitude 1190 24′ 27.57′′ W 900 46′ 27.27′′ W

azimuth 35.99930 N 72.28360 S

From these coordinates we conclude that

|~p| = 2997.021 km, (37)

τ0 = 9.996985 ms, (38)

α = 13.6120, (39)

whereα is the angle between thez axes of the detectors.

Figure 5: Orientation of the LIGO Hanford and Livingston interferometers in the Earth tangen-
tial planes.

Calculations using standard formulas for spherical triangles yield the values for anglesβ1

andβ2. These are the angles ofx-axis of the detectors and the vector~p:

β1 = 28.420, (40)

β2 = −61.520. (41)
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6 Directional Overlap of Two Detectors

The matrixM depends on the location of the source of gravitational waves on the sky (angles
θ andφ) and its polarization (angleψ). In a typical situation neither of these coordinates are
known beforehand. Thus, not much can be said about the matrixM. In this situation, one can
try guessing the value of the matrix. For example, one can try replacing the matrixM with its
average. There are number of ways we can perform such averaging. Below we describe the
results of such averaging in detail.

Average overψ, φ, θ

The simplest would be to average over all three angles. In this case, the angular overlap matrix
becomes diagonal:

M =

(
a 0
0 a

)
, (42)

where the coefficienta depends on the mutual detector orientation. For Hanford-Livingston pair
numerical analysis yielda = −0.1413. The minus sign comes from the fact that the detectors
are oriented in such a way that thex arm of one interferometer is roughly parallel to they arm of
another. This form of matrixM is very convenient for calculations but is not particularly useful
because it no longer carries the dependence onθ and therefore cannot be used for extractingτs.

There is another reason why the diagonal form for matrixM is not useful. It is related
to the fact thatθ-dependence also occurs in matrixN even though implicitly. Thus consistent
averaging overθ would require taking both matrices into account.

Average overψ, φ

The next level of complexity occurs when two of the tree angular degrees of freedom are aver-
aged out. There are three such possibilities. Here we only consider one. In this analysis we are
interested in the delay which is related toθ. Therefore, we consider this angle a fixed quantity
and average overψ andφ. The result is

M(θ) =

(
a(θ) b(θ)
−b(θ) a(θ)

)
, (43)

wherea andb are trigonometric functions ofθ. For any two detectors their functional form is

a(θ) = a0 + a2 cos2 θ + a4 cos4 θ, (44)

b(θ) = b1 cos θ + b3 cos3 θ. (45)

The coefficientsai andbi depend on mutual detector orientation. The relationship between the
angleθ and the delay timeτs, Eq.(36), allows us to expressa andb as a function ofτs. For
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example, the directional overlap of Hanford-Livingston pair is given by

a(τs) = −0.239 + 0.133
(
τs
τ0

)2

+ 0.084
(
τs
τ0

)4

, (46)

b(τs) = 0.073
(
τs
τ0

)
− 0.13

(
τs
τ0

)3

. (47)

This functional dependence is shown in Fig. 6.

Figure 6: The dependence of the angular parametersa andb on the delayτs.

Note that for all values of the delay the coefficienta is negative. This is largely due to the fact
thatx arm of the Livingston detector is roughly oriented alongy arm of the Hanford detector. If
we ignore the swap of the arms, the two detectors are aligned as best as possible considering the
fact that the detectors belong to the Earth tangential planes at two locations separated by roughly
3000 km. As a result of this alignment the antisymmetric component of the angular correlation
b is much less than the symmetric component (roughly a factor of10 less). The exception is
small angle of incidence when the gravitational wave is propagating roughly along vectorp. In
this caseb can be comparable to or greater thana with the maximum value ofb = 2.5718 a.

Average overψ

Finally, one can keep two angular degrees of freedom and average over the third one. Numerical
calculations show that the result of such averaging is very complicated. Again, there are three
possibilities. Here we only discuss one. Consider a source of gravitational waves with known
location on the sky (θ, φ) but with unknown polarization (ψ). The matrixM for such a source
can be estimated by taking average overψ. The result is

M(θ, φ) =

(
a(θ, φ) b(θ, φ)
−b(θ, φ) a(θ, φ)

)
, (48)
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wherea andb are trigonometric functions of bothθ andφ. For example, for Hanford-Livingston
pair these functions are given by

a = −0.02168− 0.1909 cos2 θ + 0.1905 cos4 θ

−0.06095 cos4 θ cos4 φ− 0.1668 cos4 θ cos2 φ

−0.06095 cos4 φ− 0.3423 · 10−3 cosφ sinφ
+0.5566 cos2 θ cos2 φ− 0.3898 cos2 φ

+0.1219 cos2 θ cos4 φ− 0.1731 cos θ sin θ sinφ
−0.2100 cos3 θ sin θ sinφ cos2 φ

−0.1300 · 10−3 sinφ cos3 φ+ 0.3355 · 10−3 cos2 θ cosφ sinφ
+0.4323 cos3 θ sin θ sinφ+ 0.2100 cos θ sin θ sinφ cos2 φ

−0.1300 · 10−3 cos4 θ cos3 φ sinφ
+0.6822 · 10−5 cos4 θ cosφ sinφ
+0.2601 · 10−3 cos2 θ cos3 φ sinφ, (49)

b = −0.2064 cos3 θ − 0.8454 · 10−4 cosφ sin θ cos2 θ2

+0.09418 sinφ sin θ cos2 θ + 0.5934 · 10−3 cos2 θ cos3 φ sin θ
+0.1965 sinφ cos2 φ sin θ − 0.3962 · 10−3 sin θ cosφ
+0.03033 sin θ sinφ− 0.5934 · 10−3 cos3 φ sin θ
+0.1525 cos3 θ cos2 φ− 0.1525 cos θ cos2 φ

−0.1965 sin θ cos2 θ sinφ cos2 φ+ 0.1496 cos θ. (50)

There are several ways in which these functions can be analyzed. The simplest is to plota and
b as functions ofθ andφ. Such a representation is shown in Fig. 7.
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Figure 7:a andb as functions ofθ, φ.
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Another way is to construct a graphical representation similar to the one used to view the
standard antenna patterns. In this representation the functionsa andb are shown as magnitudes
of the radius vector with the spherical angelsθ andφ. The corresponding Cartesian coordinates
are then:

x = R sin θ cosφ, (51)

y = R sin θ sinφ, (52)

z = R cos θ, (53)

whereR stands either for|a| or |b|. Such representation is shown in Fig. 8.
Note thatM++ (same asa) has a rough cylindrical symmetry along thex-axis. (Thex

axis of the midpoint coordinate system is directed towards the center of the Earth.) This effect
occurs partially because the LIGO Hanford and Livingston interferometers are roughly aligned,
and partially because the detector sites are relatively close to each other compared to the size of
the Earth. On the other hand,M+× (same asb) has no obvious symmetry along thex-axis but
is roughly symmetric along they-axis. This fact is rather difficult to explain.
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Figure 8:a andb as radius vectors in the Cartesian frame.
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Finally, one can analyze the ratio of the two matrix components and form the function:

µ(θ, φ) =
b(θ, φ)
a(θ, φ)

. (54)

This function can be used to find whenb-component becomes small compared toa-component.
For these angles, one can neglect theb-component making the directional overlap function di-
agonal. The ratio calculated for the Hanford-Livingston detectors is shown in Fig. 9. The figure
can be viewed as a map of the sky showing the regions (“mountains”) where the sources of
gravitational waves give poor correlation due to strong mixing of the+ andx polarizations.

Figure 9: The rationb/a as a function ofθ, φ.
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7 Properties of the Correlation Function

7.1 Real and Imaginary Parts

Assume averaging overψ andφ but notθ. Consider the angular correlation matrix in the form

M(θ, φ) =

(
a(θ, φ) b(θ, φ)
−b(θ, φ) a(θ, φ)

)
. (55)

Then the correlation function in time domain becomes

C(τ) = a(θ, φ) [N++(τ) +N××(τ)] + (56)

b(θ, φ) [N+×(τ)−N×+(τ)] . (57)

Its Fourier-domain representation is

C̃(ω) = eiωτs [a E(ω) + ib P(ω)] , (58)

whereE is symmetric andP is antisymmetric function of frequency. The symmetric component
is given by

E(ω) = |h̃+(ω)|2 + |h̃×(ω)|2, (59)

and has the meaning of the energy density of the gravitational wave. The antisymmetric com-
ponent is given by

P(ω) =
1
i

[
h̃+(ω) h̃∗×(ω)− h̃×(ω) h̃∗+(ω)

]
, (60)

and has the meaning of the spin density. BothE andP are real functions of frequency. (Con-
struction of spin eigenstates for general gravitational wave is given in the Appendix.)

7.2 Magnitude and Phase

For any gravitational wave,
|P(ω)| ≤ E(ω). (61)

The proof of this inequality can be easily done using the helicity eigenstates constructed in the
Appendix.

An excess of states with a particular helicity will give rise to nonzero values for the spin den-
sity. Such an excess, or imbalance of spin states in the gravitational wave can be characterized
by a dimensionless quantity,

r(ω) =
P(ω)
E(ω)

, (62)

which is bounded by|r(ω)| ≤ 1. Nonzero values for this quantity would indicate the presence
of spin in the gravitational wave and thus confirm the prediction of general relativity.

However, the ratior(ω) cannot be directly observed. At best, one can measure the ratio of
the detectable spin density to the energy density which is given by

robs(ω) = µ(θ, φ) r(ω). (63)
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This relation shows that the ratior(ω) becomes suppressed (by a factor ofµ) if the detectors are
well aligned with respect to each other. Furthermore, for any pair of the detectors even if they
are not aligned there are regions of the sky where the source of gravitational wave would not
show substantial polarization.

To understand how the ratior(ω) can be measured, consider the magnitude and phase of the
correlation function:

C̃(ω) = R(ω) eiχ(ω). (64)

The explicit formula for the magnitude of the correlation function,

R(ω) =
[
a2 E(ω)2 + b2 P(ω)2

]1/2
, (65)

shows that the peak value does not necessarily correspond to the maximum of the energy den-
sity. Instead, the peak of the magnitude occurs at maximum of the sum of two components in
quadrature:ω = ωp.

The phase of the correlation function defined as

χ(ω) = ωτs + arctan {robs(ω)} , (66)

is directly related to the time delayτs. Indeed, the slope of the phase at the peak frequency can
be found as

dχ

dω

∣∣∣∣
ω=ωp

= τs +
1

1 + r2obs(ωp)
drobs

dω

∣∣∣∣
ω=ωp

. (67)

Any deviation of the phase from the linear dependence would indicate the presence of the spin
density. Thus, the quantity of interest is the difference between the phase of the correlation
function and its linear approximation:

δχ(ω) = χ(ω)− dχ

dω

∣∣∣∣
ω=ωp

(ω − ωp). (68)

This quantity can be directly measured in the experiment.
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A Appendix. Spin-2 Representation of SO(3)

The physical meaning of the symmetric and antisymmetric components of the correlation func-
tion can be understood by considering irreducible representations of the rotational group, SO(3).
These irreducible representations are specified by spin. Fields that propagate with the speed of
light are also characterized by additional quantum number - helicity which is a binary quantity.
Due to relativistic constraints helicity can be either+1 or−1 depending on whether the spin is
oriented along the propagation vector or opposite to it.

For fields propagating with the speed of light, the spin must be oriented parallel to the
direction of the wave propagation (z-axis). For gravitational waves, the states with particular
helicity are those with spin↑ or ↓:

u(ω) =
1√
2

[h̃+(ω) + ih̃×(ω)], (69)

d(ω) =
1√
2

[h̃+(ω) − ih̃×(ω)]. (70)

These states are eigenstates of the rotations around thez axis in the TT-coordinate frame. (In
this case, thez-axis corresponds to the direction of the wave propagation.)

For these states, rotation by angleα alongz-axis generates

u(ω) → e+2iα u(ω), (71)

d(ω) → e−2iα d(ω). (72)

The invariant quantities are the densities of positive and negative helicity:

N↑(ω) = u(ω) u(ω)∗, (73)

N↓(ω) = d(ω) d(ω)∗. (74)

Their sum and difference,

E(ω) = N↑(ω) +N↓(ω), (75)

P(ω) = N↑(ω)−N↓(ω), (76)

represent the total number of helicity eigenstates and the net spin in the wave. These two quan-
tities are the energy density and the spin density of the gravitational wave.
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Some related material can be found in [5, 6, 7, 3, 8, 9].
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