LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

-LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type	DCC Number			
Test procedure	29 July, 2005			
ISS board Test Procedure				
Flavio Nocera, Richard Abbott				

Distribution of this draft: NSF reviewers, LIGO scientists This is an internal working note of the LIGO Laboratory

California Institute of Technology LIGO Project – MS 18-33 Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu Massachusetts Institute of Technology LIGO Project – MS 20B-145 Cambridge, MA 01239 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

www: http://www.ligo.caltech.edu/

1 Overview

The following procedure refers to D020241-D, all revisions up to D02. The board is the Controller for the laser Intensity Stabilization Servo (ISS).

The ISS interfaces with two [four when the Outer Loop is implemented] custom designed photodetector heads (D030452-00-C) for monitoring and control through two DB9 connectors, on the back panel of the chassis.

4-pin LEMO connectors on the front panel are used to interface the ISS with the DAQ system.

2 Test Equipment

The following test equipment is necessary:

Dual DC power supply (capable of ± 24VDC) Handheld Voltage Calibrator Scope with scope probe Dynamic Signal Analyzer (SR785) Function Generator (DS345) BNC cables (for transfer function measurements with the SR785) 1 Dual-pin male LEMO to BNC adapter 37 pin male D connector to be used in applying power to device under test (DUT)

3 Test Setup

Establish jumper settings per paragraph 5.0 of this procedure Apply \pm 24VDC using a male 37 pin D-sub connector configured as a test connector.

37 PIN D-SUB CONNECTOR PIN	FUNCTION
Pin 1	+24VDC
Pin 3	-24VDC
Pin 20	Ground

4 Test Overview

The test procedure is divided into the following sections:

Input Power level

This test will verify that the ISS board gets the proper amount of current from the power supply in the two possible test modes.

Servo path Transfer Functions

These tests will verify that the transfer functions implemented by the various stages are the ones expected according with the design.

Saturation Detection

These tests will verify that in event of saturation a 1 second pulse is produced and made available to EPICS.

Monitor and DAQ signal integrity

These tests will verify that signals available for the DAQ and as monitor on the board front panel are an accurate replica of the ones used in the servo.

Filter time response

These two tests will verify the proper behavior of the low pass filters specified in par 5.5.

Date _	
Tech _	
Board Serial Number_	

5 Test procedure

1.0 Jumper normal operating positions (Outer loop disabled)

JP1- 12	JP2-23	JP3-23	JP4-12
JP5-23	JP6-23	JP7-12	JP8-12
JP9-23	JP10-12		

1.1 Input Power

Supply	Nominal Current	Actual Current	Check if OK
-24 V	600 mA (± 150 mA)		
+24 V	600 mA (± 150 mA)		

By observing the 4 board mounted LEDs (D10, D11, D12, D13) verify that the front panel power switch functions correctly to turn power on and off to the DUT

Check box if OK

There are 4 DB-9 connectors on the front panel of the ISS chassis. These connectors supply power and ground to the remotely located photo-detector modules. A check must be performed to verify that the correct voltages are present on these connectors. The pinout is identical on each DB-9 connector and is pinned as follows:

FUNCTION	PIN
+ 5VDC	1
+15VDC	2
-15VDC	3
Ground	5, 6, 7, 8

Check box if the correct voltages are present on each of the 4 connectors

1.2 Inner Loop Transfer Functions

The SR785, in conjunction with the scope (to avoid taking measurements affected by saturation), will be used to measure the various transfer functions to assess the proper behavior of the DUT.

Set up the SR785 for Transfer Function measurement using 201 points

Inner Loop DC Offset and Oscillation Check

This step verifies that the inner loop op-amps are not oscillating and no significant DC offsets exist (>2mV).

The method for adjusting the DC offset potentiometers for any arbitrary chain of AD-829 op-amps on the ISS board is given next. The method exploits the fact that the AD-829 op-amp is tolerant of continuous short circuit to ground on its output. The example uses the chain of op-amps at the output of the ISS and nulls the offsets back to the point where the servo has an AC coupling point. The same technique can be used at other points in the board provide that the preceding stage is an AD-829.

Date _____ Tech _____ Board Serial Number_____

Starting at the 2-pin Lemo connector associated with the "Current Shunt Drive", insert a spare pin into one pin of the Lemo connector and hook up a Fluke Multimeter to read the voltage with respect to ground. It's a good idea to allow 5 minutes or so for the unit to warm up, and avoid doing the procedure in the presence of large air currents, as these will cause drift.

Start the process by grounding TP2 with a clip lead. Adjust R59 until the "Current Shunt Drive" output is as close to zero as possible. Remove the clip lead and move it back one stage to TP1. Now adjust R6 until the "Current Shunt Drive" output is again as close as possible to zero. Continue this process of grounding, adjusting and measuring working backwards with R2/TP6. With all clip leads removed, R4 can be adjusted without shorting its input, as U3 is AC coupled by C25.

Check box after using the above process to establish the Current Shunt Drive output offset to be within 2mV of zero.

Check box after verifying that all grounding clip leads have been removed.

Record the final DC offset at the "Current Shunt Drive" output. _____VDC

While shorting TP21 and TP5 to ground, measure the DC offset at TP3 and adjust R5 to be as close as possible to zero. Remove the shorting clip from TP21 while temporarily leaving the jumper on TP5 in place.

Adjust R186 to put TP3 as close as possible to zero. Remove the shorting clip lead from TP5 after completion of this step.

Now, with no clip leads on the DUT, adjust R10 until TP3 is as close to possible to zero.

Check box after using the above process to establish the offset at TP3 to be within 2mV of zero.

Check box after verifying that all grounding clip leads have been removed.

Record the final DC offset at TP3. _____VDC

Check box if no oscillations, RF or otherwise are found on:

- All panel mounted DAQ Lemo Jacks
- All BNC panel mounted monitoring points
- o DB37 connector pins 5 through 18 and 24 to 30 inclusive
- o TP44, TP45, TP47, TP48, TP28, TP5, TP37, TP35, TP27, TP26, TP7

Date _	
Tech _	
Board Serial Number_	

1) Functional check of stages U6, U5, U14, U1, U44C, U44D, U46A and U46B

Input	Output	Vsource	Frequency Span
DB1-4 (+) and DB1-9 (-)	Err Point BNC (JTC1-1)	100 mV	10Hz – 100 kHz
	-Inner Loop-PD DC		

Freq	Theoretical	Measured	Check if OK	Transfer Function 1
52.48	$Gain (dB) \\ 0 \pm 1$	Gain (dB)	II OK	
32.48	Phase (deg) -180 ± 3	Phase (deg)		
01 203	Gain (dB) 0 ± 1	Gain (dB)		
91.205	Phase (deg) 180 ± 3	Phase (deg)		

Input	Test Name	Output		Transfer Function	Check if OK
DB1-4 (+) and DB1-9 (-)	1b2	J3-pin3 (IL Sensor PD DAQ)		Same shape as above, gain 20 dB lower	
DB1-4 (+) and DB1-9 (-)	1b3	DB3-pin5		Same as (Transfer Function 1) but with 6 dB of attenuation	
DB1-4 (+) and DB1-9 (-)	1b4	J3-pin2 (IL Sensor PD DAQ)		Same as (1b2) but phase rotated 180 deg	
DB1-4 (+) and DB1-9 (-)	1b5	DB3-pin24		Same as (1b3) but phase rotated 180 deg	

Date _	
Tech _	
Board Serial Number_	

2) Functional check of stages U45, U44A and U44B

Input	Output	Vsource	Frequency Span
DB1-4 (+) and DB1-9 (-)	J3-pin4 (IL Sensor PD DAQ)	100 mV	10Hz – 100 kHz

Freq (Hz)	Theoretical values	Measured values	Check OK	Transfer Function 2
52 18	Gain (dB) 20 ± 2	Gain (dB)		
52.48	Phase (deg) -166 ± 5	Phase (deg)		
01.2.2	Gain (dB) 20 ± 2	Gain (dB)		
91.205	Phase (deg) 180 ± 5	Phase (deg)		

Input	Output	Transfer Function	Check if OK
DB1-4 (+) and DB1-9 (-)	J3-pin1 (IL Sensor PD DAQ)	Same as above, but phase rotated 180 deg	

3) Functional check of stage U11, U4 and U12

Input	Output	Vsource	Frequency Span
DB1-4 (+) and DB1-9 (-)	Test Out Ch2 BNC	100 mV	10Hz – 100 kHz
	-Inner Loop- (JTC3-1)		

Freq	Theoretical	Measured	Check	d 20	leg	dB				T	ra	nsf	er	F	un	ctio	on	3					-
(пz)	values	values	ILOK						╈		r	-			╢	-				 ++	++	₩	-
	Gain (dB)	Gain (dB)		10	0 0.5																		
52 48	0 ± 1								-++-			+		┝╌┝┼┝					₩	 ┿	-+-+	₩	-
52.40	Phase (deg)	Phase (deg)							#														
	-180 ± 5				o - c	-	+	+	╈		+	+	-	HH		-		\square		+	++	₩	-
01.2-2	Gain (dB) 0 ± 1	Gain (dB)		-10	0 -0.5												ph m	ase					
91.2e3	Phase (deg) 180 ± 5	Phase (deg)		-20	-1.0	10 ¹				10					103				10				10

Input	Output	Transfer Function	Check if OK
DB1-4 (+) and DB1-9 (-)	Test Ch 1 BNC	Same as above, but phase rotated 180 deg	

Date	
Tech _	
Board Serial Number_	

Input		Output		Vsource		Frequency Span					
Analog Input IL (J4)		"Test Ch1" BNC		100 mV	100 mV						
Freq	Theoretical	Measured	Check	Tran	sfer F	Function					
(Hz)	values	values	if OK								
52.48	Gain (dB) -20 ± 1	Gain (dB)									
52.40	Phase (deg) 180 ± 3	Phase (deg)		2 phase mag							
01 203	Gain (dB) -20 ± 1	Gain (dB)		3 -30							
71.205	Phase (deg) 180 ± 5	Phase (deg)		- 130 10 ² 10 ²	10	* 10 ⁴					

5) Functional check of stages U49 and U30

Repeat the measurement after moving JP5 from 23 to 12.

The output should go to zero (huge negative number in dB). Check Box if OK Put the jumper back on 23.

10) Functional check of stages U3, U2, U7, U13, U9, U10

Input		Output		Vsource	Frequency Span
Analog In IL (J4) "Current Shunt Mon" BNC		" BNC	1 mV	1 Hz – 100 kHz	
Freq	Theoretical	Measured	Check	Transfer F	unction
(Hz)	values	values	OK		
	Gain (dB)	Gain (dB)			
10	14.3 ±3				
10	Phase (deg)	Phase (deg)		100 - 40	
	118 ± 5				
	Gain (dB)	Gain (dB)			
200.1	44 ± 2	Culli (u2)			
398.1	Phase (deg)	Phase (deg)			
	154 + 5	1 11450 (4008)			
	Goin(dR)	Cain (dB)		-100 0	phase mag
94.4e3	Oant (UB)	Galli (ub)			
	7.7 ± 2	Dhasa (dag)			
	162 ± 5	Phase (deg)		$-200 \begin{bmatrix} -20 \end{bmatrix} -20 \begin{bmatrix} -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1$	<u>1 </u>

Repeat the measurement applying a DC voltage to "Rack Interface" (pin 14+, pin 32 -) – the gain control input - using a voltage source. Application of +/- 10VDC to the gain control input should result in +/- 20dB of gain change.

Check if +/-20dB (+/-1dB tolerance) gain variation is observed

Date	
Tech	
Board Serial Number	

10b) Functional check of stages U43C, U43D, U47A and U47B

Input		Output	Transfer I	Function	Check if OK
Analog In IL (J4)	10b1	DB3-pin8		Same as (10)	
Analog In IL (J4)	10b2	DB3-pin27		Same as (10b1) but phase rotated 180 deg	

Repeat the measurement increasing the source level up to 100 mV. Although the measurement is affected by saturation, this is no concern here.

The objective is to see both LEDs light up and flicker.

Bring the source level back to 1mV. Check Box if OK

11) Functional check of stages U34C and U34D

Input	Output	Vsource	Frequency Span
Analog In IL (J4)	J5-pin3 (ACT DAQ HF)	1 mV	1Hz – 100 kHz

Freq	Theoretical	Measured	Check	Transfer Function
(Hz)	values	values	OK	dB deg ^{©0} [
10	Gain (dB) 14.3 ±3	Gain (dB)		
10	Phase (deg) -58± 5	Phase (deg)		
308.1	Gain (dB) 45.3 ± 2	Gain (dB)		20- 0
590.1	Phase (deg) 144 ± 5	Phase (deg)		
94 403	Gain (dB) 9.9 ± 2	Gain (dB)		
94.403	Phase (deg) 163 ± 5	Phase (deg)		

11b)

Input		Output	Transfer F	Transfer Function	
Analog In IL (J4)	11b1	J5-pin2 (ACT DAQ HF)		Same as (11) but phase rotated 180 deg	

Date _	
Tech _	
Board Serial Number_	

Input	Output	Vsource	Frequency Span
Analog In IL (J4)	DAQ "Current Shunt"	1 mV	1Hz – 100 kHz

12) Functional check of stages U48, U43A and U43B

Freq (Hz)	Theoretical values	Measured values	Check OK	Transfer Function
53.08	$\begin{array}{c} \text{Gain (dB)} \\ 35 \pm 2 \end{array}$	Gain (dB)		
55.08	Phase (deg) -16 ± 5	Phase (deg)		
04.4.03	Gain (dB) 15.9 ± 2	Gain (dB)		
94.4 03	Phase (deg) 164.1 ± 5	Phase (deg)		

Input	Test Name	Output	Transfer Function		Check if OK
Test In	12b1	DAQ "Current Shunt" Pin 1		Same as above (12) but phase rotated 180 deg	

13) Functional check of stage U22

Input	Output		Vsource	Frequency Span
Analog In IL	J1-pin1		1 mV	1Hz – 100 kHz
(J4)	(Current Shunt Drive)	(\bullet)		

Freq (Hz)	Theoretical values	Measured values	Check OK	dB deg
10	Gain (dB) 23.9 ± 3	Gain (dB)		190 phase mag
10	Phase (deg) -58 ± 5	Phase (deg)		
208.1	Gain (dB) 52 ± 3	Gain (dB)		
390.1	Phase (deg) 154 ± 5	Phase (deg)		
04.403	Gain (dB) 18 ± 3	Gain (dB)		
94.4e3	Phase (deg) 165 ± 5	Phase (deg)		$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Repeat the measurement after moving JP3 from 23 to 12. The output should go to zero (great negative number in dB). Check Box if OK Put the jumper back on 23.

Date	
Tech	
Board Serial Number	

13b)

Input	Output		Vsource	Check if OK
Test In	J1-pin2 (Current Shunt Drive)		Same as above but phase rotated 180 deg	

5.3 Inner Loop Monitor PD (and associated monitoring points) Transfer Functions

1) Functional check of stages U53, U54, U56, U51C, U51D, U52A, U52B

Input	Output	Vsource	Frequency Span
Rear Panel DB-9 "Monitor	Rear Panel BNC	100 mV	10Hz – 100 kHz
PD-IL" Pin4 (+), Pin9 (-)	"Monitor PD-IL-PD DC"		

Freq (Hz)	Theoretical values	Measured values	Check OK
50.49	Gain (dB) 0 ± 1	Gain (dB)	
52.48	Phase (deg) -180 ± 3	Phase (deg)	
01 203	Gain (dB) 0 ± 1	Gain (dB)	
91.205	Phase (deg) 180 ± 3	Phase (deg)	

Input	Test Name	Output		Transfer Function	Check if OK
Same as above	1b1	J7-pin3 (IL Mon PD DAQ)		Same shape as above (1), gain 20 dB lower	II OK
Same as above	1b2	DB3-pin6		Same as (1) but with 6 dB of attenuation	
Same as above	1b3	J7-pin2 (IL Mon PD DAQ)		Same as (1b1) but phase rotated 180 deg	
Same as above	1b4	DB3-pin25		Same as (1b2) but phase rotated 180 deg	

Date _	
Tech _	
Board Serial Number_	

2) Functional check of stages U55, U51A, U51B

Input	Output	Vsource	Frequency Span
Rear Panel DB-9 "Monitor PD-IL" Pin4 (+), Pin9 (-)	Front Panel "DAQ- Monitor PDs-IL"	100 mV	10Hz – 100 kHz

Freq (Hz)	Theoretical values	Measured values	Check OK	Transfer Function
52 49	Gain (dB) 20 ± 2	Gain (dB)		
52.40	Phase (deg) -165 ± 5	Phase (deg)		
01.2.2	Gain (dB) 20 ± 2	Gain (dB)		
91.203	Phase (deg) 180 ± 5	Phase (deg)		

Input		Output		Transfer Function	Check if OK
Same as above	2b1	J7-pin1 (IL Mon PD DAQ)	Same as 180 deg	(2) but phase rotated	

1.3 Filter time response

Evaluate the step response of the LP filters implemented with U8 and U50.

A Function Generator and a two-channel scope are needed.

Apply the output of the Function Generator as input to the board where indicated and to channel 1 of the scope.

Feed the output of the filter to channel 2 of the scope.

Use the suggested settings

Function Generator	
Function	Square wave
Freq	0.03 Hz
Amplitude	2 Vpp

Set up the scope for a single shot, triggering on the rising front of channel 1 (and setting the trigger level just above 0 V).

There could be the need of shifting the two signals on the Y-axis relatively to each other in order to overlap the traces.

Once the waveforms are acquired, use the vertical cursors and place the first of them at where the output is 0.8 V, the second at -0.8 V instead.

Measure the time delta between the cursors (using the scope's utility for it).

DC
1V/div
1 s/div

Date _	
Tech	
Board Serial Number	

Filter1)

Input	Output	Nominal rise time	Actual rise time	Check if OK
Rear Panel "Rack Interface" DB-37 Pin13 (+), Pin31 (-)	Front Panel "LF Act Drive"	0.5 s (± 0.1 s)		
Rear Panel "Rack Interface" DB-37 Pin13 (+), Pin31 (-)	Front Panel "LF Act Drive"	5.1 s (± 0.1 s)		

5.5 Outer Loop Transfer Functions

1) Functional check of stages U20, U19, U27, U28C, U28D, U23A and U23B

Input	Output	Vsource	Frequency Span
DB2-4 (+) and DB2-9 (-)	Err Point BNC (JTC5-1)	100 mV	10Hz – 100 kHz
	-Outer Loop-		

Freq (Hz)	Theoretical values	Measured values	Check OK	Transfer Function 1
52 19	Gain (dB) 0 ± 1	Gain (dB)		
52.40	Phase (deg) -180 ± 5	Phase (deg)		
01 2-2	Gain (dB) 0 ± 1	Gain (dB)		
91.2e3	Phase (deg) 180 ± 5	Phase (deg)		

Input	Test Name	Output	Transfer Function	Check if OK
DB2-4 (+) and DB2-9 (-)	1b2	J2-pin3 (OL Sensor PD DAQ)	Same shape as above, gain 20 dB lower	
DB2-4 (+) and DB2-9 (-)	1b3	DB3-pin10	Same as (Transfer Function 1) but with 6 dB of attenuation	
DB2-4 (+) and DB2-9 (-)	1b4	J2-pin2 (OL Sensor PD DAQ)	Same as (1b2) but phase rotated 180 deg	
DB2-4 (+) and DB2-9 (-)	1b5	DB3-pin29	Same as (1b3) but phase rotated 180 deg	

Date _	
Tech _	
Board Serial Number_	

2) Functional check of stages U29, U28a, U28b

Input	Output	Vsource	Frequency Span
DB2-4 (+) and DB1-9 (-)	J2-pin4 (OL Sensor PD DAQ)	100 mV	10Hz – 100 kHz

Ereca	Theoretical	Maggurad	Chaole	Transfer Function 2
(Ur)	rineoretical	weasured	OV	
(пz)	values	values	UK	
52 / 8	Gain (dB) 20 ± 2	Gain (dB)		s
52.40	Phase (deg) 13 ± 5	Phase (deg)		
01.2.2	Gain (dB) 20 ± 2	Gain (dB)		
91.205	Phase (deg) 0 ± 5	Phase (deg)		

Input	Output		Transfer Function	Check if OK
DB2-4 (+) and DB2-9 (-)	J2-pin1 (OL Sensor PD DAQ)		Same as above, but phase rotated 180 deg	

3) Functional check of stage U26

Input	Output	Vsource	Frequency Span
DB2-4 (+) and DB2-9 (-)	Test Out Ch2 BNC	100 mV	10Hz – 100 kHz
	-Outer Loop- (JTC6-1)		

Freq	Theoretical	Measured	Check	Transfer Function 3
(Hz)	values	values	OK	
52.48	Gain (dB) 0 ± 1	Gain (dB)		
52.40	Phase (deg) -180 ± 5	Phase (deg)		
01.2-2	Gain (dB) 0 ± 1	Gain (dB)		
91.263	Phase (deg) 180 ± 5	Phase (deg)		

Date	-
Tech	_
Board Serial Number	_

5.6 Outer Loop Monitor PD (and associated monitoring points) Transfer Functions

1) Functional check of stages U64, U63, U59, U61C, U61D, U58A, U58B

Input	Output	Vsource	Frequency Span
Rear Panel DB-9 "Monitor	Rear Panel BNC	100 mV	10Hz – 100 kHz
PD-OL" Pin4 (+), Pin9 (-)	"Monitor PD-OL-PD		
	DC"		

Freq (Hz)	Theoretical values	Measured values	Check OK	Transfer Function
52.48	$\begin{array}{c} \text{Gain (dB)} \\ 0 \pm 1 \end{array}$	Gain (dB)		
52.48	Phase (deg) 180 ± 3	Phase (deg)		
01 203	Gain (dB) 0 ± 1	Gain (dB)		
91.203	Phase (deg) 180 ± 3	Phase (deg)		

Input	Test Name	Output		Transfer Function	Check if OK
Same as above	1b1	J8-pin3 (OL Mon PD DAQ)		Same shape as above (1), gain 20 dB lower	
Same as above	1b2	DB3-pin11		Same as (1) but with 6 dB of attenuation	
Same as above	1b3	J8-pin2 (OL Mon PD DAQ)		Same as (1b1) but phase rotated 180 deg	
Same as above	1b4	DB3-pin30		Same as (1b2) but phase rotated 180 deg	

2) Functional check of stages U62, U61A, U61B

Input	Output	Vsource	Frequency Span
Rear Panel DB-9 "Monitor PD-OL" Pin4 (+), Pin9 (-)	Front Panel "DAQ- Monitor PDs-OL"	100 mV	10Hz – 100 kHz

Freq	Theoretical	Measured	Check	Transfer Function			
(Hz)	values	values	OK				
11.22	Gain (dB) 17 ± 2	Gain (dB)					
11.22	Phase (deg) -135 ± 5	Phase (deg)					
01 202	Gain (dB) 20 ± 2	Gain (dB)					
91.205	Phase (deg) -175 ± 5	Phase (deg)		s si su' tu' tu' tu' tu'			

Input		Output		Transfer Function	Check if OK
Same as above	2b1	J8-pin1 (OL Mon PD DAQ)	Same as 180 deg	(2) but phase rotated	

5.7 Outer Loop DC Offset and Oscillation Check

Verify that the outer loop op-amps are not oscillating and that they don't have significant DC offsets (>20mV)

Check box after using each op-amps associated offset trim potentiometer, to establish each op-amp's offset to be within 20mV of zero. Applies to U18, U21, U17, U57

Check box if no oscillations, RF or otherwise are found on U57-Pin6, TP36, TP18, TP12, TP14, Outer Loop "Test Out Ch1" BNC using an oscilloscope

5.8 Tests of Saturation Monitors

There are three separate saturation monitors used on the ISS board. The first is on the Inner loop photodetector input, and is AC coupled. It's function is to catch sharp pulses that may be causing saturation events on the early stages of the ISS op-amps, but due to the filters later on the board, the events may not be observable as saturations at the current shunt output.

A second saturation monitor looks for saturation events at the output of the servo just prior to the current shunt drive output.

The third monitor functions exactly the same as the inner loop photodetector monitor and is AC coupled. Its function is fast glitch detection at the plane of the outer loop photodetector input circuitry.

Once the threshold for a glitch is exceeded in any of these monitors, an approximately 1 second pulse is generated and presented as an output from the board.

All three of these monitors are tested by the application of square wave pulses to various inputs on the ISS board, and observation of the ~1sec pulse that is generated as a response. The following details the method:

A 0.2 Hz 50% duty cycle square wave of the specified amplitude is the stimulus during all the following tests of the saturation monitors. Use a scope and a signal generator to observe and stimulate during this step

It can be tricky to get a low enough drive level to get below the trigger threshold of the current shunt drive saturation monitor. Either a signal generator capable of millivolt level square waves must be used, or a voltage divider or attenuator must be used.

Date _	
Tech _	
Board Serial Number_	

For the inner loop saturation monitors (U33, U41, U39), the stimulus is applied to the "Inner Loop DB-9 Sensor PD" input. The idea here is to find the threshold of pulses observed at TP-27 that just triggers the ~1 second pulses on the appropriate pin of the "Rack Interface".

INPUT	OUTPUT	DRIVE	EXPECTED	MEASURED
		AMPLITUDE	THRESHOLD	THRESHOLD
			VALUE	VALUE
"Inner Loop DB-	Pin 7 of the 37 pin	Start at about 0.4V	Pulses above 0.5	
9 Sensor PD"	Rack Interface	p-p out of the	volts +/- 0.1 volts at	
pin4 (+), Pin9 (-)	connector on the	function generator	TP-27 should trigger	
	front panel	and decrease the	the generation of ~1	
		drive until there are	second pulses at the	
		no more ~1 second	specified rack	
		trigger events on the	interface output pin	
		rack interface		

For the Outer loop saturation monitors (U37, U34, U42), the stimulus is applied to the "Outer Loop DB-9 Sensor PD" input. The idea here is to find the threshold of pulses observed at TP-22 that just triggers the ~1 second pulses on the appropriate pin of the "Rack Interface".

INPUT	OUTPUT	DRIVE	EXPECTED	MEASURED
		AMPLITUDE	THRESHOLD	THRESHOLD
			VALUE	VALUE
"Outer Loop DB-	Pin 12 of the 37	Start at about 0.4V	Pulses above 0.5	
9 Sensor PD"	pin Rack Interface	p-p out of the	volts +/- 0.1 volts at	
pin4 (+), Pin9 (-)	connector on the	function generator	TP-22 should trigger	
	front panel	and decrease the	the generation of ~1	
		drive until there are	second pulses at the	
		no more ~1 second	specified rack	
		trigger events on the	interface output pin	
		rack interface		

Date	
Tech	
Board Serial Number_	

For the Current Shunt Drive saturation monitors (U31, U38, U35), the stimulus is applied to the "IL Analog Input". The idea here is to find the threshold of pulses observed at TP-26 that just triggers the ~1 second pulses on the appropriate pin of the "Rack Interface".

INPUT	OUTPUT	DRIVE	EXPECTED	MEASURED
		AMPLITUDE	THRESHOLD	THRESHOLD
			VALUE	VALUE
"IL Analog	Pin 9 of the 37 pin	Start at about 0.01V	Pulses above 1.5	
Input" Pins 1&2	Rack Interface	p-p out of the	volts $+/- 0.1$ volts at	
	connector on the	function generator	TP-26 should trigger	
	front panel	(or voltage divider)	the generation of ~1	
		and decrease the	second pulses at the	
		drive until there are	specified rack	
		no more ~1 second	interface output pin	
		trigger events on the		
		rack interface		

5.9 Establishing Normal Jumper Positions

Ensure the following jumpers are in the specified position:

• Check box when the following jumpers are verified in the indicated positions

JP1-**12** JP2-23, JP3-23, JP4-12, JP5-23, JP6-23, JP7-12, JP8-12, JP9-23, JP10-12