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Subject: Angular Instabilities in High Power Fabry-Perot Cavities

Summary:

We show that intrinsic angular instabilities exist in suspended Fabry-Perot cavities under high
operating power. If the cavity mirrors are misaligned, the beam axis of the cavity mode moves.
This in general leads to a beam offset at the mirror locations which in turn generates a radiation
pressure induced torque. If the beam offset is in the direction of the mirror tilting away from the
cavity and if the radiation pressure induced torque is larger then the restoring torque of the torsion
pendulum, the system is unstable. This is not a subtle effect for LIGO cavities. For Advanced
LIGO it is better to choose negative g-parameters for the cavity geometry.

Radiation Pressure and Torsion Pendulum:

We can write (also see T030039) the torque introduce by a laser beam of power, P, that hits a
mirror at a distance, , away from the center as:

(1)

The differential equation of an undamped torsion pendulum is 

(2)

and the restoring torque of a torsion pendulum can be written as:

(3)
where  is the angle,  is the angular moment along the vertical axis and  is the angular
frequency in yaw.

Fabry-Perot Geometry:

The beam offsets at mirror 1 and 2 of a Fabry-Perot cavity,  and , can be written as
function of the misalignment angles,  and  (Siegman, Lasers, section 19.4, pg. 768):
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(4)

with  the g-parameters and  the radii of curvature of the Fabry-Perot mirrors and
 the cavity length.

Cavity Dynamics and Stability:

Using Eqns. (1), (2) and (3) we can write a modified torsion pendulum equation as 

(5)

with

(6)

and

(7)

We solve the problem by calculating the eigenvalues of ,  and . For stability it is required
that all eigenvalues of the right hand side of Eqn. (5) are negative. We can therefore write

, (8)

or with the eigenvalues of ,  and ,

. (9)

The eigenvalues and eigenvectors of  can be written as:

(10)

The determinant of  can be calculated as
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(11)

and since  for a stable resonator, one eigenvalue is always positive and one negative.
Or in other words, there exists always one stable and one intrinsically unstable solution.

Application to LIGO:

For LIGO we are using the following suspension parameters:

The arm cavities have the following parameters (Adv. LIGO parameters were chosen to make the
cavity most stable):

where  is calculated from Eqn. (9) using the positive .

Figure 1 shows the eigenvalues,  and , as function of  for a constant  of 0.334 (red) and
0.630 (blue). Since the eigenvalues do not change when  and  are interchanged, the minima
and maxima are for symmetric resonators, i.e., . One can see that a lower -parameters
generally yields eigenvalues of lower absolute value. Also, cavities with negative  are more
likely to be stable. Figure 2 shows the eigenvalues as function of  for symmetric resonators.

Table 1: LIGO suspension parameters

Parameter Description LIGO / Adv. LIGO Unit
M mirror mass (LOS) 10 / 40 kg
R mirror radius (LOS) 0.125 / 0.155 m
h mirror thickness (LOS) 0.1 / 0.13 m

yaw angular frequency (LOS) 0.5 rad/s

angular moment (yaw/pitch) 0.0474 / 0.297 kg m2

Table 2: LIGO arm cavity parameter

Parameter 4K ifo 2K ifo Adv. LIGO
Value Unit Value Unit Value Unit

Length 4000 m 2000 m 4000 m
ETM curvature 7400 m 7400 m 2222 m
ITM curvature 14600 m 14600 m 2222 m

0.460 0.730 –0.800

0.726 0.863 –0.800

0.334 0.630 0.640

2.40 4.86 –5.01

–0.624 –0.556 0.556

7.3 kW 7.2 kW 198 kW
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Simple Geometrical Interpretation for Symmetric Cavities:

For a symmetric cavity it is straight forward to deduce the eigenvectors,  and . It is easy to
see why one of them yields a stable configuration and other one not. Figure 3 shows a picture of
the geometrical eigenmodes of a symmetric Fabry-Perot resonator. For  the cavity axis tilts
around the point halfway in between the two mirrors, whereas for  the cavity axis moves up
and down. In the first case the radiation pressure tends to push the misaligned mirrors back to
their aligned orientation, whereas for the second case the radiation pressure pushes them further
away. The second case is unstable, if the torque applied by the radiation pressure is larger than the
restoring force—either by the torsion in the suspended mass or by the angular controls system.
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Figure 1: Eigenvalues as function of  for constant  of 0.334 (red) and 0.630 (blue).g1 g
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Figure 2: Eigenvalues as function of  for symmetric resonators with the stable solution to the
left and the unstable one to the right.
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Effect of the Cavity Pole:

We assume we have diagonalized the problem and that the light storage time or cavity pole, ,
expresses itself simply by a delayed reaction until the new cavity mode axis is established. We use

 to denote the axis of the cavity mode and write its dependency on the geometrical axis as
follows:

(12)

With a change of variables  we get the following two differential equations:

(13)

where we also introduce a damping term that is controlled by the variable ;  corresponds
to critical damping. This is fundamentally a third order linear differential equation in . Its
solutions are given by the roots of the characteristic polynomial:

(14)

Studying these roots for advance LIGO, setting  and assuming critical damping
shows that the stable solution, , tends to go unstable at about the same cavity power as the
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Figure 3: The geometrical eigenmodes of a symmetric resonator.
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unstable solution, . Figure 4 shows the magnitude (blue) and inverse  (red) of the solution
with the largest real part for the  case. The system is unstable if  becomes negative. The
solution can be kept stable if the damping is increased accordingly.
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Figure 4: The magnitude (blue) and inverse  (red) of the solution with the largest real part for
the  case. On the left the damping corresponds to a  of 5, whereas the right side is for critical
damping.
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