LIGO Laboratory / LIGO Scientific Collaboration

System Dynamics Model of the External Pre-Isolator (EPI) for the Horizontal Access Module (HAM)

Dennis Coyne

Distribution of this document:
LIGO Science Collaboration

This is an internal working note
of the LIGO Project.

California Institute of Technology
LIGO Project - MS 18-34 1200 E. California Blvd. Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834
E-mail: info@ligo.caltech.edu
LIGO Hanford Observatory
P.O. Box 1970

Mail Stop S9-02
Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

Massachusetts Institute of Technology
LIGO Project - NW17-161
175 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014
E-mail: info@ligo.mit.edu
LIGO Livingston Observatory
P.O. Box 940

Livingston, LA 70754
Phone 225-686-3100
Fax 225-686-7189
http://www.ligo.caltech.edu/

1 Introduction

This is an incomplete draft of a technical memo on the electro-Magnetic External Pre-Isolator (MEPI) system. MEPI is similar in dynamics to the Hydraulic EPI (HEPI) system.

2 Geometry

2.1 CAD

2.2 Finite Element Model (FEM)

3 Mass Properties

3.1 MEPI Assembly

The MEPI assembly with just the stationary components is shown in Figure X. The mass properties for the MEPI assembly is given in Table X. The spring density was set to be $1 / 2$ of steel to approximate the fact that not all of the mass of the spring participates in the quasi-rigid body modes.


```
Mass properties of EM_assy_stationary_parts_R
Output coordinate System : MEPI Assy Coordinate System
Mass = 109.4561 kilograms
Volume \(=0.0155\) cubic meters
Surface area \(=1.8894\) square meters
Center of mass: ( meters )
    \(\mathrm{X}=-0.0133\)
    \(Y=-0.0263\)
    \(\mathrm{Z}=-0.1731\)
```

Principal axes of inertia and principal moments of inertia: (kilograms * square meters)
Taken at the center of mass.

$\mathrm{Ix}=(-0.0658,-0.1325,0.9890)$	$\mathrm{Px}=1.8728$
$\mathrm{Iy}=(0.9966,-0.0569,0.0587)$	$\mathrm{Py}=2.4448$
$\mathrm{Iz}=(0.0485,0.9896,0.1358)$	$\mathrm{Pz}=2.4821$

Moments of inertia: (kilograms * square meters)
Taken at the center of mass and aligned with the output coordinate system.

$L x x=2.4424$	$L x y=0.0032$	$L x z=-0.0375$
$L y x=0.0032$	$L y y=2.4713$	$L y z=-0.0799$
$L z x=-0.0375$	Lzy $=-0.0799$	$L z z=1.8860$

Moments of inertia: (kilograms * square meters)
Taken at the output coordinate system.
$\mathrm{Ixx}=5.7993 \quad \mathrm{Ixy}=0.0413 \quad \mathrm{Ixz}=0.2138$
Iyx $=0.0413 \quad$ Iyy $=5.7718 \quad$ Iyz $=0.4182$
Izx $=0.2138 \quad$ Izy $=0.4182 \quad$ Izz $=1.9809$

3.2 MEPI and Support Structure Assembly

Mass properties of HAM_support_assy
Output coordinate System : HAM support structure coord sys
Mass $=1122.550$ kilograms
Volume $=0.196$ cubic meters
Surface area $=30.285$ square meters
Center of mass: (meters)

$$
\begin{aligned}
& X=0.000 \\
& Y=0.000 \\
& Z=-0.107
\end{aligned}
$$

Principal axes of inertia and principal moments of inertia: (kilograms * square meters)
Taken at the center of mass.

$$
\begin{array}{ll}
\mathrm{Ix}=(0.002,-1.000,0.000) & \mathrm{Px}=907.574 \\
\mathrm{Iy}=(1.000,0.002,0.000) & \mathrm{Py}=1488.929 \\
\mathrm{Iz}=(0.000,0.000,1.000) & \mathrm{Pz}=2347.401
\end{array}
$$

Moments of inertia: (kilograms * square meters)
Taken at the center of mass and aligned with the output coordinate system.

$L x x=1488.927$	$L x y=-1.105$	$L x z=-0.000$
$L y x=-1.105$	$L y y=907.576$	$L y z=-0.000$
$L z x=-0.000$	$L z y=-0.000$	$L z z=2347.401$

Moments of inertia: (kilograms * square meters)
Taken at the output coordinate system.

$I x x=1501.707$	Ixy $=-1.105$	$I x z=-0.000$
$I y x=-1.105$	Iyy $=920.357$	$I y z=-0.000$
$I z x=-0.000$	Izy $=-0.000$	$I z z=2347.401$

3.3 Stack

3.3.1 Optics Table

The Optics Table coordinate system is parallel to global system and centered on the bottom face of the table, with Xtable = Xglobal, Ytable $=$ Zglobal and Ztable $=-$ Yglobal

Mass properties of HAM Optics Table Assy
Output coordinate System : -- default --
Mass $=381.461$ kilograms
Volume $=0.138$ cubic meters
Surface area $=27.255$ square meters
Center of mass: (meters)

$$
\begin{aligned}
& X=-0.000 \\
& Y=0.208 \\
& Z=-0.000
\end{aligned}
$$

Principal axes of inertia and principal moments of inertia: (kilograms * square meters)
Taken at the center of mass.

$$
\begin{array}{ll}
\mathrm{Ix}=(1.000,-0.000,-0.002) & \mathrm{Px}=105.142 \\
\mathrm{Iy}=(-0.002,0.000,-1.000) & \mathrm{Py}=128.132 \\
\mathrm{Iz}=(0.000,1.000,0.000) & \mathrm{Pz}=219.975
\end{array}
$$

Moments of inertia: (kilograms * square meters)
Taken at the center of mass and aligned with the output coordinate system.

$L x x=105.142$	Lxy $=-0.010$	$L x z=-0.050$
$L y x=-0.010$	$L y y=219.975$	$L y z=-0.008$
$L z x=-0.050$	$L z y=-0.008$	$L z z=128.132$

Moments of inertia: (kilograms * square meters)
Taken at the output coordinate system.

$I x x=121.638$	Ixy $=-0.026$	$I x z=-0.050$
$I y x=-0.026$	Iyy $=219.975$	Iyz $=-0.023$
$I z x=-0.050$	Izy $=-0.023$	Izz $=144.629$

3.3.2 Optics Table with Payload

Optics table with 50 counter-weights, each weighing 10 pounds, evenly distributed over the top of the optics table.

Mass properties of HAM Optics Table Mass Study
Output coordinate System : -- default --
Mass $=609.105$ kilograms
Volume $=0.167$ cubic meters
Surface area $=29.840$ square meters
Center of mass: (meters)

$$
\begin{aligned}
& X=-0.000 \\
& Y=0.263 \\
& Z=-0.000
\end{aligned}
$$

Principal axes of inertia and principal moments of inertia: (kilograms * square meters)
Taken at the center of mass.

$$
\begin{array}{ll}
\mathrm{Ix}=(1.000,-0.000,-0.001) & \mathrm{Px}=162.249 \\
\mathrm{Iy}=(-0.001,0.000,-1.000) & \mathrm{Py}=202.247 \\
\mathrm{Iz}=(0.000,1.000,0.000) & \mathrm{Pz}=344.997
\end{array}
$$

Moments of inertia: (kilograms * square meters)
Taken at the center of mass and aligned with the output coordinate system.

$L x x=162.249$	$L x y=-0.005$	$L x z=-0.050$
$L y x=-0.005$	$L y y=344.997$	$L y z=-0.005$
$L z x=-0.050$	$L z y=-0.005$	$L z z=202.247$

Moments of inertia: (kilograms * square meters)
Taken at the output coordinate system.

$I x x=204.348$	Ixy $=-0.026$	Ixz $=-0.050$
$I y x=-0.026$	Iyy $=344.997$	Iyz $=-0.023$
$I z x=-0.050$	Izy $=-0.023$	Izz $=244.346$

3.3.3 Isolation Leg Element 1

Coordinate system is centered on the lower face of the cylindrical mass.
Mass properties of legelement1-coil
Output coordinate System: -- default --
Density $=8027.17$ kilograms per cubic meter
Mass $=179.42$ kilograms
Volume $=0.02$ cubic meters
Surface area $=0.60$ square meters
Center of mass: (meters)

$$
\begin{aligned}
& \mathrm{X}=0.00 \\
& \mathrm{Y}=0.06 \\
& \mathrm{Z}=0.00
\end{aligned}
$$

Principal axes of inertia and principal moments of inertia: (kilograms * square meters)
Taken at the center of mass.

$$
\begin{array}{ll}
\mathrm{Ix}=(0.00,0.00,1.00) & \mathrm{Px}=2.97 \\
\mathrm{Iy}=(1.00,0.00,0.00) & \mathrm{Py}=2.97 \\
\mathrm{Iz}=(0.00,1.00,0.00) & \mathrm{Pz}=5.53
\end{array}
$$

Moments of inertia: (kilograms * square meters)
Taken at the center of mass and aligned with the output coordinate system.

$$
\begin{array}{lll}
L x x=2.97 & L x y=0.00 & L x z=0.00 \\
L y x=0.00 & L y y=5.53 & L y z=0.00 \\
L z x=0.00 & L z y=0.00 & L z z=2.97
\end{array}
$$

Moments of inertia: (kilograms * square meters)
Taken at the output coordinate system.

$I x x=3.58$	$I x y=0.00$	$I x z=0.00$
$I y x=0.00$	$I y y=5.53$	$I y z=0.00$
$I z x=0.00$	Izy $=0.00$	$I z z=3.58$

3.3.4 Isolation Leg Element 2

Coordinate system is centered on the lower face of the cylindrical mass.
Mass properties of legelement2-coil
Output coordinate System : -- default --
Density $=8027.17$ kilograms per cubic meter
Mass $=106.52$ kilograms
Volume $=0.01$ cubic meters
Surface area $=0.51$ square meters
Center of mass: (meters)

$$
\begin{aligned}
& \mathrm{X}=0.00 \\
& \mathrm{Y}=0.03 \\
& \mathrm{Z}=0.00
\end{aligned}
$$

Principal axes of inertia and principal moments of inertia: (kilograms * square meters)
Taken at the center of mass.

$$
\begin{array}{ll}
\mathrm{Ix}=(0.00,0.00,1.00) & \mathrm{Px}=1.69 \\
\mathrm{Iy}=(1.00,0.00,0.00) & \mathrm{Py}=1.69 \\
\mathrm{Iz}=(0.00,1.00,0.00) & \mathrm{Pz}=3.29
\end{array}
$$

Moments of inertia: (kilograms * square meters)

Taken at the center of mass and aligned with the output coordinate system.

$$
\begin{array}{lll}
L x x=1.69 & L x y=0.00 & L x z=0.00 \\
L y x=0.00 & L y y=3.29 & L y z=0.00 \\
L z x=0.00 & L z y=0.00 & L z z=1.69
\end{array}
$$

Moments of inertia: (kilograms * square meters)
Taken at the output coordinate system.

$I x x=1.81$	Ixy $=0.00$	$I x z=0.00$
$I y x=0.00$	Iyy $=3.29$	$I y z=0.00$
$I z x=0.00$	Izy $=0.00$	Izz $=1.81$

3.3.5 Isolation Stack Assembly

The coordinate system for the assembly is parallel to the global axes and centered on the top of the support table.

Mass properties of HAM-top-stack-with-coil springs
Output coordinate System : HAM Stack Coordinate System
Mass $=1558.153$ kilograms
Volume $=0.301$ cubic meters
Surface area $=34.728$ square meters
Center of mass: (meters)

$$
\begin{aligned}
& \mathrm{X}=-0.000 \\
& \mathrm{Y}=0.000 \\
& \mathrm{Z}=0.280
\end{aligned}
$$

Principal axes of inertia and principal moments of inertia: (kilograms * square meters)
Taken at the center of mass.

$$
\begin{array}{ll}
\mathrm{Ix}=(-0.001,-1.000,-0.000) & \mathrm{Px}=353.501 \\
\mathrm{Iy}=(1.000,-0.001,-0.000) & \mathrm{Py}=412.440 \\
\mathrm{Iz}=(0.000,-0.000,1.000) & \mathrm{Pz}=638.121
\end{array}
$$

Moments of inertia: (kilograms * square meters)
Taken at the center of mass and aligned with the output coordinate system.

$$
\begin{array}{lll}
\text { Lxx }=412.440 & \text { Lxy }=0.050 & L x z=-0.034 \\
L y x=0.050 & L y y=353.501 & L y z=0.030 \\
L z x=-0.034 & L z y=0.030 & L z z=638.121
\end{array}
$$

Moments of inertia: (kilograms * square meters)
Taken at the output coordinate system.

$\mathrm{Ixx}=534.355$	$\mathrm{Ixy}=0.050$	$\mathrm{Ixz}=-0.057$
$\mathrm{Iyx}=0.050$	$\mathrm{Iyy}=475.416$	$\mathrm{Iyz}=0.049$

4 Support Table Stiffness

5 Joint Stiffness

6 Spring Stiffness

7 Static Compliance

With the entire stack weight added, the maximum static deflection is 7.85 mm (0.31 in) as shown in figure x . Note also in Figure X that elastic deflection of the cross beams contribute about 2 mm of the total vertical deflection, the balance being from the V-springs.

When the top of one spring is pulled up 1 mm , the resulting deflection pattern is shown in Figure X . The load redistribution is calculated to be as shown in the following Table.

8 Modal Analysis

Mode \#, Frequency	Mode Shape

Mode 1 4.5 Hz translation in X , roll about Y	
Mode 2 4.6 Hz Translation in Y, roll about X	
Mode 3 7.2 Hz Yaw about Z	

Mode 4 9.0 Hz Roll about Y	
Mode 5 $10.3 \mathrm{~Hz}$ Translation in Z (Heave)	
Mode 6 $13.8 \mathrm{~Hz}$ Vertical Crossbeam Bending and support table roll about X	

Mode 7 20.2 Hz Symmetric horizontal crossbeam bending	
Mode 8 $20.2 \mathrm{~Hz}$ Anti-symmetric horizontal crossbeam bending	
Mode 9 $24.0 \mathrm{~Hz}$ Crossbeam bending and support table yaw about Z	

| Mode 10 | |
| :--- | :--- | :--- |
| 24.7 Hz | |
| Crossbeam bending and support | |
| table bending | |

9 Transfer Functions

Force at N24 Z-direction, Displacement Response at N19 (same Pier)

Force at N24 Z-direction, Velocity Response at N19 (same Pier)

Force at N24 X-direction, Displacement Response at N19 (same Pier)

Force at N24 Y-direction, Displacement Response at N19 (same Pier)

Force at N24 Y-direction, Velocity Response at N19 (same Pier)

