

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T020210-00-D

LIGO

20 October 2002

System Dynamics Model of the External Pre-Isolator (EPI) for the Horizontal Access Module (HAM)

Dennis Coyne

Distribution of this document: LIGO Science Collaboration

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

LIGO Hanford Observatory P.O. Box 1970 Mail Stop S9-02 Richland WA 99352 Phone 509-372-8106 Fax 509-372-8137 Massachusetts Institute of Technology LIGO Project – NW17-161 175 Albany St Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

LIGO Livingston Observatory P.O. Box 940 Livingston, LA 70754 Phone 225-686-3100 Fax 225-686-7189

http://www.ligo.caltech.edu/

1 Introduction

This is an incomplete draft of a technical memo on the electro-Magnetic External Pre-Isolator (MEPI) system. MEPI is similar in dynamics to the Hydraulic EPI (HEPI) system.

2 Geometry

2.1 CAD

3

2.2 Finite Element Model (FEM)

3 Mass Properties

3.1 MEPI Assembly

The MEPI assembly with just the stationary components is shown in Figure X. The mass properties for the MEPI assembly is given in Table X. The spring density was set to be $\frac{1}{2}$ of steel to approximate the fact that not all of the mass of the spring participates in the quasi-rigid body modes.

Mass properties of EM assy stationary parts R Output coordinate System : MEPI Assy Coordinate System Mass = 109.4561 kilograms Volume = 0.0155 cubic meters Surface area = 1.8894 square meters Center of mass: (meters) X = -0.0133Y = -0.0263Z = -0.1731Principal axes of inertia and principal moments of inertia: (kilograms * square meters) Taken at the center of mass. Ix = (-0.0658, -0.1325, 0.9890)Px = 1.8728Iy = (0.9966, -0.0569, 0.0587)Pv = 2.4448Iz = (0.0485, 0.9896, 0.1358)Pz = 2.4821Moments of inertia: (kilograms * square meters) Taken at the center of mass and aligned with the output coordinate system. Lxx = 2.4424Lxy = 0.0032Lxz = -0.0375Lyx = 0.0032Lyy = 2.4713 Lyz = -0.0799Lzx = -0.0375Lzy = -0.0799Lzz = 1.8860Moments of inertia: (kilograms * square meters) Taken at the output coordinate system. Ixx = 5.7993Ixy = 0.0413Ixz = 0.2138Iyx = 0.0413Iyy = 5.7718Iyz = 0.4182Izy = 0.4182Izz = 1.9809Izx = 0.2138

3.2 MEPI and Support Structure Assembly

Mass properties of HAM_support_assy			
Output coordinate System : HAM support structure coord sys			
Mass = 1122.550 kilogram	Mass = 1122.550 kilograms		
Volume = 0.196 cubic met	ters		
Surface area $= 30.285$ squa	are meters		
Center of mass: (meters)			
X = 0.000			
Y = 0.000			
Z = -0.107			
Principal axes of inertia and principal moments of inertia: (kilograms * square meters)			
Taken at the center of mas	s.		
Ix = (0.002, -1.00)	00, 0.000)	Px = 907.574	
Iy = (1.000, 0.00)	2, 0.000)	Py = 1488.929	
Iz = (0.000, 0.00)	0, 1.000)	Pz = 2347.401	
Moments of inertia: (kilograms * square meters)			
Taken at the center of mass and aligned with the output coordinate system.			
Lxx = 1488.927	Lxy = -1.105	Lxz = -0.000	
Lyx = -1.105	Lyy = 907.576	Lyz = -0.000	
Lzx = -0.000	Lzy = -0.000	Lzz = 2347.401	
Moments of inertia: (kilograms * square meters)			
Taken at the output coordi	nate system.		
Ixx = 1501.707	Ixy = -1.105	Ixz = -0.000	
Iyx = -1.105	Iyy = 920.357	Iyz = -0.000	
Izx = -0.000	Izy = -0.000	Izz = 2347.401	

3.3 Stack

3.3.1 Optics Table

The Optics Table coordinate system is parallel to global system and centered on the bottom face of the table, with Xtable = Xglobal, Ytable = Zglobal and Ztable = -Yglobal

ſ	Mass properties of HAM Optics Table Assy	
	Output coordinate System : default	
	Mass = 381.461 kilograms	
	Volume = 0.138 cubic meters	
	Surface area = 27.255 square meters	
	Center of mass: (meters)	
	X = -0.000	
	Y = 0.208	
	Z = -0.000	
	Principal axes of inertia and principal mome	nts of inertia: (kilograms * square meters)
	Taken at the center of mass.	
	Ix = (1.000, -0.000, -0.002)	Px = 105.142
	Iy = (-0.002, 0.000, -1.000)	Py = 128.132
	Iz = (0.000, 1.000, 0.000)	Pz = 219.975
	Moments of inertia: (kilograms * square me	eters)
	Taken at the center of mass and aligned with	n the output coordinate system.
	Lxx = 105.142 $Lxy = -0.010$	Lxz = -0.050
	Lyx = -0.010 $Lyy = 219.975$	Lyz = -0.008
	Lzx = -0.050 $Lzy = -0.008$	Lzz = 128.132
	Moments of inertia: (kilograms * square me	eters)
l	Taken at the output coordinate system.	

Ixx = 121.638	Ixy = -0.026	Ixz = -0.050
Iyx = -0.026	Iyy = 219.975	Iyz = -0.023
Izx = -0.050	Izy = -0.023	Izz = 144.629

3.3.2 Optics Table with Payload

Optics table with 50 counter-weights, each weighing 10 pounds, evenly distributed over the top of the optics table.

Mass properties of HAM Optics Table Mass Study		
Output coordinate System : default		
Mass = 609.105 kilograms		
Volume = 0.167 cubic meters		
Surface area = 29.840 square meters		
Center of mass: (meters)		
X = -0.000		
Y = 0.263		
Z = -0.000		
Principal axes of inertia and principal moments of inertia: (kilograms * square meters)		
Taken at the center of mass.		
Ix = $(1.000, -0.000, -0.001)$ Px = 162.249		
$Iy = (-0.001, 0.000, -1.000) \qquad Py = 202.247$		
Iz = (0.000, 1.000, 0.000) $Pz = 344.997$		
Moments of inertia: (kilograms * square meters)		
Taken at the center of mass and aligned with the output coordinate system.		
Lxx = 162.249 $Lxy = -0.005$ $Lxz = -0.050$		
Lyx = -0.005 $Lyy = 344.997$ $Lyz = -0.005$		
Lzx = -0.050 $Lzy = -0.005$ $Lzz = 202.247$		
Moments of inertia: (kilograms * square meters)		
Taken at the output coordinate system.		

Ixx = 204.348	Ixy = -0.026	Ixz = -0.050	
Iyx = -0.026	Iyy = 344.997	Iyz = -0.023	
Izx = -0.050	Izy = -0.023	Izz = 244.346	

3.3.3 Isolation Leg Element 1

Coordinate system is centered on the lower face of the cylindrical mass.

Mass properties of legelement1-coil Output coordinate System : -- default --Density = 8027.17 kilograms per cubic meter Mass = 179.42 kilograms Volume = 0.02 cubic meters Surface area = 0.60 square meters Center of mass: (meters) X = 0.00Y = 0.06Z = 0.00Principal axes of inertia and principal moments of inertia: (kilograms * square meters) Taken at the center of mass. Ix = (0.00, 0.00, 1.00)Px = 2.97Iy = (1.00, 0.00, 0.00)Py = 2.97Iz = (0.00, 1.00, 0.00)Pz = 5.53Moments of inertia: (kilograms * square meters) Taken at the center of mass and aligned with the output coordinate system. Lxx = 2.97Lxy = 0.00Lxz = 0.00Lvx = 0.00Lvz = 0.00Lvv = 5.53Lzx = 0.00Lzy = 0.00Lzz = 2.97Moments of inertia: (kilograms * square meters) Taken at the output coordinate system. Ixx = 3.58Ixy = 0.00Ixz = 0.00Iyx = 0.00Iyy = 5.53Iyz = 0.00Izx = 0.00Izy = 0.00Izz = 3.58

3.3.4 Isolation Leg Element 2

Coordinate system is centered on the lower face of the cylindrical mass.

Mass properties of legelement2-coil Output coordinate System : -- default --Density = 8027.17 kilograms per cubic meter Mass = 106.52 kilogramsVolume = 0.01 cubic meters Surface area = 0.51 square meters Center of mass: (meters) X = 0.00Y = 0.03Z = 0.00Principal axes of inertia and principal moments of inertia: (kilograms * square meters) Taken at the center of mass. Ix = (0.00, 0.00, 1.00)Px = 1.69Iy = (1.00, 0.00, 0.00)Py = 1.69Iz = (0.00, 1.00, 0.00)Pz = 3.29Moments of inertia: (kilograms * square meters)

Taken at the center of n	nass and aligned w	ith the output coordinate system.
Lxx = 1.69	Lxy = 0.00	Lxz = 0.00
Lyx = 0.00	Lyy = 3.29	Lyz = 0.00
Lzx = 0.00	Lzy = 0.00	Lzz = 1.69
Moments of inertia: (ki	lograms * square i	neters)
Taken at the output coo	rdinate system.	
Ixx = 1.81	Ixy = 0.00	Ixz = 0.00
Iyx = 0.00	Iyy = 3.29	Iyz = 0.00
Izx = 0.00	Izy = 0.00	Izz = 1.81

3.3.5 Isolation Stack Assembly

The coordinate system for the assembly is parallel to the global axes and centered on the top of the support table.

4 Support Table Stiffness

5 Joint Stiffness

6 Spring Stiffness

7 Static Compliance

With the entire stack weight added, the maximum static deflection is 7.85 mm (0.31 in) as shown in figure x. Note also in Figure X that elastic deflection of the cross beams contribute about 2 mm of the total vertical deflection, the balance being from the V-springs.

When the top of one spring is pulled up 1 mm, the resulting deflection pattern is shown in Figure X. The load redistribution is calculated to be as shown in the following Table.

8 Modal Analysis

Mode #, Frequency Mode Shape	Mode #, Frequency	Mode Shape
------------------------------	-------------------	------------

LIGO-T020210-00-D

LIGO-T020210-00-D

LIGO-T020210-00-D

9 Transfer Functions

Force at N24 X-direction, Displacement Response at N19 (same Pier)

Force at N24 Y-direction, Displacement Response at N19 (same Pier)

