L1GO-T020072-00-D

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
Technical Note

The Signal Injection Handbook

Peter Shawhan, Daniel Sigg

June 3, 2002

LIGO

Thisisan internal working note of the LIGO Project

|ntroduction

The LIGO length-control servo, and aher “front end’ control systems, have the

cgpabili ty to add wser-supplied “excitation” waveforms to the regular feedbadk
waveforms at various pointsin the system. Thiswasoriginaly used ony to injed sine
waves and aher periodic signas (e.g. for cdibration pupases), bu in October 2001we
wrote software to all ow simulated waveforms of arbitrary durationto beinjeded into the
interferometer hardware. This document isintended to serve a aUser’'s Guide for this
cgpability.

The basic goproachisthat a dient program streams waveform datain ore-second chunks
over ethernet to the GDS “arbitrary waveform generator” processor, which sends the
waveform to the excitation channels with the proper synchronization. Thereisalibrary
of client-side routines (called “sI st r ”, for Signal Injedion Stream) which provides a
very simple external cdl interface, andinternally takes care of all the buffering and
timing isaues. At present, there are two ways in which this can be used:

1. Thereisadutility cdled awgst r eamwhich reads waveform data (i.e. a sequence of real
numbers) from aformatted ASCII file and makes the gpropriate Sl St r cdlsto sendthe
waveform to a spedfied excitation channel.

2. Users can write their own client programsin C which cdl functionsinthe sl st r
library. This opens up the possbility of injecting very longwaveforms which are
computed onthe-fly, e.g. signals from periodic sources.

Any client program must run on o of the Sunworkstations onthe CDS network. The
waveforms are synchronized to the GPSclock, so it would be passhbleto injed
waveforms smultaneously into multi ple interferometers with aknown timing
relationship.

How to Use the awgst r eamUtility

1. Determine what excitation channel you will use

The following channels (all sampled at 16384 Hz) are available for injecting signals at
various pointsin the LSC servo:

At Hanford:
H1:.LSC-ITMX_EXC and similarly for ITMY, ETMX, ETMY, BS
H1:LSC-DARM_CTRL_EXC and similarly for CARM, MICH, PRC
H1:.LSC-DARM_ERR_EXC and similarly for CARM, MICH, PRC
H2:LSC-ITMX_EXC and similarly for ITMY, ETMX, ETMY, BS
H2:LSC-DARM_CTRL_EXC and similarly for CARM, MICH, PRC
H2:LSC-DARM_ERR _EXC and similarly for CARM, MICH, PRC
At Livingston:
L1LSC-ITMX_EXC and similarly for ITMY, ETMX, ETMY, BS
L1:LSC-DARM_CTRL_EXC and similarly for CARM, MICH, PRC
L1.LSC-DARM_ERR _EXC andsimilarly for CARM, MICH, PRC

Other excitation channels are available to inject waveforms into other subsystems, such
asthe alignment servo. Thereisatrick to get acomplete list of excitation channels and
their sampling rates: log into any machine on the CDS cluster and type:

setenv GDS DI R /opt/ CDS/ d/ gds/ di ag [/opt/LLO c/gds/diag at LLO
setenv LD LI BRARY_PATH ${LD LI BRARY_PATH}: $GDS_DIR/lib
~control s/ pshawhan/ awgstream -d -d blah 1 null. dat

2. Prepare a waveform file

This should be aformatted ASCII file containing alist of real numbers separated by
newlines or spaces. For example:

-4.903158e- 04
-2.675681e- 04
-4.475717e-05
1. 780641e- 04

Note that any parsing error will cause the input file to be close and the waveform, up to
the point of the parsing error, to be flushed to the front end.

The sampling rate must match the intrinsic rate of the excitation channel onto which this
waveform isto beinjected. The normalization is nominally in"counts’, but you will be
able to scale the entire waveform by a constant factor when you inject it. The one tricky
part about generating the waveform is that you must account for the transfer function
between the point in the servo system where you inject it, and the actual mirror motion.

For example, if you inject awaveform onto the LSC-ETMX_EXC excitation channel,
this causes current to flow proportionally in the coils, but the actual motion of the

mirror is subject to the "pendulum" response function, which goes as —1/f* at frequencies
far above the pendulum frequency. Thus, the waveform injected into the system should
be the gravitational-wave strain waveform, weighted by a factor proportional to f* in the
frequency domain. For simulated inspiral waveforms, | made this adjustment by reading
the waveform into a Matlab array, doing afast Fourier transform, weighting the
frequency-domain data, then doing an inverse FFT to go back to the time domain.

3. Copy the waveform file to the CDS cluster
The CDS unix cluster ison aprivate network and is not visible to the outside world,
except for asingle gateway machine (red . ligo - wa.caltech.edu at Hanford, and
london.ligo - la.caltech.edu at Livingston). The standard way to copy filesto the
CDScluster is:
1. Log into the gateway machine as'ops' . You will need to know the password to do
this, of course.
2. Make a subdirectory below ~ops for your personal use. The custom isto use your
usual unix username for the subdirectory name, e.g. 'mkdir pshawha n'
3. Use scp to copy the remote waveform file to your personal subdirectory.

4. Log into any machine on the CDS cluster as 'ops', and get set up

After logging in, you need to set your LD_LIBRARY_PATHto include the directory with the
libraries for communicating with the servo system. At Hanford, do:

setenv GDS_DIR /opt/CDS/d/gds/diag
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:$GDS_DIR/lib

At Livingston, do:

setenv GDS_DIR /opt/LLO/c/gds/diag
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:$GDS_DIR/lib

Then change directories to your personal subdirectory.

5. Remind yourself of the syntax for the awgst r eamutility

Thisisthe utility program which reads a waveform out of an ASCII file and injects it
onto the excitation channel you specify. Itislocated inthe ~controls/ps hawhan
directory. To get areminder of the syntax, just run it without any arguments:

~controls/pshawhan/awgstream

Thiswill print out:

Usage: awgstream <channel> <rate> <file> [<scale> [<gpstime>]] [-d]
<channel> is case - sensitive and mu st be a real excitation channel
<rate> is in Hz and must match the excitation channel's true rate
<file> is the file of waveform data, which must be a FORMATTED ascii file
with the values separated by whitespace (e.g. newlines and/or spaces).
Any conversion error causes the rest of the file to be skipped.
If <file>is " - ' (i.e. a dash), data is read from standard input.
<scale> is an optional scale factor to apply to the data in the file.
<gpstime> is the time to start injecting th e waveform. It can take any
real value, not just an integer. It must occur during the 24 - hour
period following the execution of the awgstream command.
If omitted, the waveform injection will start in about 10 seconds.
The' -d' option causes debugging information to be printed to the screen.
Specify ' - d' twice for extra information.

6. Determine the scale factor to use when injecting the waveform

Each samplein the waveform file is multiplied by the scale factor argument to

awgst ream, if present. The resulting valueisin units of "counts" within the LSC servo,
which ultimately gets converted to a current in the coil drivers. The exact conversion
factor may be obscure, but in practice net amplitudes of afew countsto afew hundred
counts are probably appropriate. Injecting signals of more than afew thousand counts
will knock the interferometer out of lock and/or make people nervous about over-driving
the cail drivers. Choose a scale factor accordingly.

7. Choose a start time

Y ou can specify aGPStimethat is at least several seconds in the future, and not more
than 24 hoursin the future. An error will occur if you specify atime which does not fall
within thiswindow. With sufficient tunneling through gateway machines, you should be
able to inject waveforms synchronously at both observatories.

If you do not specify a start time, the software picks a start time several secondsin the
future, aligned to an exact integer number of GPS seconds. However, by default it does
not tell you what that timeis. Usethe'-d' flagto cause this and other "debugging"
information to be printed to the screen.

8. Prepare to monitor the injected waveform

Before injecting the waveform, set up Data Viewer to look at the excitation channel you
will be using. Since excitation channels are disabled except when explicitly used, you
may see arepeated pattern of garbage data on the screen until the injection actually starts.
Y ou should make sure the vertical scaleis auto-ranging, and de-select the "Units"
checkbox to disable any (probably meaningless) conversion from "counts" to some other
units.

9. Inject the waveform
Now you can run the awgstream utility! For example:

~controls/pshawhan/awgstream H2:LSC - ETMX_EXC 16384 inspiral16384.dat O. 12 -d

Caveats

If the waveform does not seem to be showing up on the interferometer output (and you
think the amplitude is large enough that you should be able to seeit), make sure the LSC
servo is not disabling the signal that you inject into it. For instance, | tried injecting
inspiral chirpsinto ITMX, only to discover that ITMX was disabled on the servo control
screens, so that the waveform | injected was being ignored.

Miscellaneous

There is a command-line interface to the GDS arbitrary waveform generator. To invoke
it, type:

diag -1 -c
Here are afew example commands:

awg show 1

awg free 2007

The arbitrary waveform generator also keeps track of cumulative statistics. To view

them, do:
awg stat 1

To clear the statistics registers:
awg stat 1 clear

Note that the awgstream utility will read the waveform from standard input if you specify
adash for the input filename.

How to Usethe C Interface

The Signal Injedion Stream library provides asimple interface so that users can write
their own client programs to send waveform data to the front end. The source @de
residesinthefilessi str. handsl str. ¢, andthere ae only threeor four functions
which are ommonly cdled by the user’s code.

Basic skeleton of a user program

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#include "SI Str. h"
Sl Stream si s;

status = Sl StrQOpen(&sis, channel, sanprate, starttime);

if (status !'=SIStr_OK) {
fprintf(stderr, "Error opening stream %s\n", SIStrErrorMg(status));
return 2;

}

while (there is waveformdata to send) {
status = Sl StrAppend(&sis, data_array, ndata, scale);
if (status !'=SIStr_OK) {
fprintf(stderr, "Error streamng data: %\n", SIStrErrorMg(status));
br eak;

}
}

status = SIStrd ose(&sis);

if (status !'=SIStr_OK) {
fprintf(stderr, "Error closing stream %\n", SIStrErrorMg(status));
return 2;

}

Notes on calling SI St r functions

Note how we ched for an error after each cdl to asi st r function, bu if SI St r Append
returns an error, then we do not exit out of the program; we just breg out of the loopso
we can still cdl si strd ose to clean up.

In the cdl to SI St r Open, you must passthe name of avalid excitation channel, anda
sampling rate that matches the ac¢ua sampling rate for that channel. Y ou can passan
explicit start time (in GPSsemnds, as adoulde-predsion value), which must be between
the arrent time, and the aurrent time plus oneday. Or you can passst artti ne=0.0,in
which case the waveform injedionwill start "right away" (adually, after adelay of
several seconds to permit adequate buffering).

Inthe cdl to SI St r Append, dat a_ar ray iSapointer to an array of single-preasion
floating-paint values, and ndata is the number of values. Y ou may append any number of
values at atime, and the number may change from one cdl to the next. Fed freeto

appendasinglevalue & atimeif youwant (i.e. ndat a=1), bu note that if you have the
valuein ascdar variable, then dat a_ar r ay must be apointer to that variable; you can’t
passthe value directly.

Waveform data passed to S| St r Append is assembled into fixed-size buffers which, orce
filled, are sent to the front-end awg server at appropriate times using the remote
procedure call (RPC) medhanism. All the buffering and timing is taken care of internally
by the si st r library functions, so you do nd have to worry abou this as long as you can
cdculate the waveform and pessit to SI St r Append at arate faster than real-time.

Other SIStr functions

SIStrBlank(&sis, duration)
Appends zeros for specified number of seconds, up to oreday. (durati on isadoulde))

SIStrFl ush(&sis)

Fill srest of current buffer with zeros, sends al 1ocd buffersto front end, and slegos urtil
after the last part of the waveform has adually been injeded by the front end.

SI st rd ose cdlsthisfunction,so namally you dona haveto cdl it explicitly.

SI StrAbort (&sis)

Cleasall locd buffers (but canna clear buffers which have dready been sent to the front
end). Also marksthe strean as "aborted” so that any attempt to append more waveform
datato it will fail. Youmust still be sureto cdl SI St rCl ose onthis gream to clean up

properly.

How to compile and link

Before you compil e your program, you must be sure that the GDS shared-objed libraries
can be foundby the compiler. At Hanford, da

setenv GDS DI R /opt/ CDS/ d/ gds/ di ag
setenv LD LI BRARY_PATH ${LD LI BRARY_PATH}: $GDS_DIR/lib

At Livingston, da

setenv GDS DIR /opt/LLO ¢/ gds/di ag
setenv LD LI BRARY_PATH ${LD LI BRARY_PATH}: $GDS DIR/lib

To compil e your program and link it to the SIStr library, da

cc nyprogramc SIStr.o -1$GDS DI R/ src/util -1$GDS_DI R/ src/awg \
-L$CDS DIR/lib -lawg -Itestpoint -lrt -o myprogram

Important note: whenever you want to run your program, the LD_LI BRARY_PATH
environment variable must be set to include $GDS_DI R/ | i b as described above.

Appendix: SI Str. h

#i f ndef _SISTR H
#define _SISTR H

/*
SIStr.h - Header file for client APl to streama waveformto the awg front end
Witten 28 Sep - 4 Cct 2001 by Peter Shawhan

See comments about conpiling and linking at the beginning of the file SIStr.c

*/
#i fdef _ cplusplus
extern "C' {
#endi f
[*eeea-- Aobal variable --------mm oo */
#i fdef _SI STR LI BRARY
int SIStr_debug = 0;
#el se
extern int SIStr_debug;
#endi f
[*eee-- Conpile-tinme paramet ersS ---------m oo oo */

#define SIStr_MAG CVAL 12345678
#defi ne SI Str_MAXCHANNAMELENGTH 64
#define SI Str_MAXCHANLI STSI ZE 32768

/* Target "lead tine" for sending waveform data, in NANOCseconds */
#defi ne SI Str_LEADTI ME 6000000000LL

/* Block size in "epoch" units (1/16 sec). Allowed values are 1 through 16 */
#define Sl Str_BLOCKSI ZE 16

#define S| Str_MAXBUFSI ZE 16384
#define Sl Str_MAXBUFS 8

/* Max nunber of times to try sending same data */
#define Sl Str_MAXTRIES 5

I Status COodeS --------mm o */
#define SIStr_OK 0

/* Status codes returned fromRPC calls */

#define Sl Str_WULL /* Data accepted but front-end buffer is now full */
#define Sl Str_WDUP /* Data accepted but time was duplicated */

#define Sl Str_WGAP /* Data accepted but was not contiguous with prev */
#define Sl Str_EBADSLOT - /* This awg slot is not set up for streamdata */
#defi ne S| St r_EBADDATA - /* Invalid data bl ock or size */

#define S| Str_EPAST - /* Time is already past */

#define Sl Str_EFUTURE - /* Time is unreasonably far in the future */
#define Sl Str_ECONN - /* RPC connection failed */

GRRWONEFEPWNE

/* Error codes internal to SIStr */

#define SI Str_EBADARG -101 /* Bad function argunent */

#define SIStr_EBADSTR -102 /* Streamis not correctly open for witing */
#define Sl Str_EBADRATE -103 /* Invalid sanpling rate */

#define Sl Str_EGAP -104 /* Gap detected in streamdata */

#define SIStr _EUNNNIT -105 /* Streamwas not properly initialized */

#define SI Str_EMALLOC -107 /* Error allocating nenory */
#define S| Str_EOTHER -108 /* Other error */
#define SIStr_EABORTED -110 /* Attenpted to append data to a stream which had

been aborted */

#define Sl Str_EBADSTART -111 /* Attenpted to set start tinme to an unreasonable

val ue */

#define SIStr_EINTERNAL -112 /* Unexpected internal error */

#define SI Str_EBUFSIZE -113 /* Tried to create too |large a data buffer */
#define SIStr_ETIMEQUT -114 /* Tinmeout while trying to send data */
#define SIStr_ELISTERR -115 /* Error retrieving channel list */

#define SIStr_ELI STNONE -116 /* Channel list is enpty */

#define SI Str_ELI STSI ZE -117 /* Channel list is too |large */

#define SI Str_EBADCHAN -118 /* Not a valid excitation channel */

#define Sl Str_EDI FFRATE -119 /* Specified rate differs fromactual rate */
#define SI Str_ESETSLOT -120 /* Error setting up an awg slot for channel */
#define Sl Str_ESETTP -121 /* Error setting up test point */

#define SI Str_ESETCOMWP -122 /* Error setting up awgStream component */
#define SI Str_ECLRCOW -123 /* Error clearing awgStream conponent */
#define Sl Str_ECLRTP -124 /* Error clearing test point */

#define SIStr_ECLRSLOT -125 /* Error freeing awg slot */

#define SI Str_ECLRBOTH -126 /* Errors clearing test point AND freeing slot */

------ Structure definitions ---------ommmmm Y

t ypedef struct tagSl StrBuf

int gpstime; /* Start time of this block (integer nunber of GPS seconds) */

i nt epoch; /* Start tine of this block (epoch counter) */

int iblock; /* Block nunber in sequence, starting with 1 */

int size; /* Size of the data array */

i nt ndat a; /* Number of val ues added to the data array so far */

struct tagSIStrBuf *next; /* Pointer to next buffer in linked list */
fl oat *dat a;

} Sl StrBuf;

typedef struct tagSl Stream

{
i nt magic; /* "Magic nunber"” to allow sanity checks */
char channel [SI St r_MAXCHANNAMVELENGTH] ; /* Channel name */

int sanprate; /* Sanmpling rate in Hz */

doubl e starttime; /* Start tinme of waveform (doubl e-precision GPS seconds) */

int slot; /* awg sl ot nunber */

int tp; /* Flag to indicate whether test point has been set up */

i nt conp; /* Flag to indicate whether awgStream conponent is set up */

int blocksize; /* Block size in "epoch" units (1/16 second tine intervals)
e.g. a block 0.25 seconds |ong has a bl ocksi ze of 4.
Al'l owed values are 1 through 16. */

int nblocks; /* Total nunber of bl ocks buffered and/or sent so far */

int curgps; /* GPS tinme (integer nunber of seconds) of current buffer
(or next buffer to be created) */

int curepoch; /* Epoch counter of current/next buffer */

i nt sentgps; /* GPS tinme (integer seconds) and epoch of |ast buffer */
int sentepoch; /* sent to the front end */

i nt nbufs; /* Current number of buffers resident in menory */

SI StrBuf *curbuf; /* Pointer to current buffer. A buffer is not created
until there is sone data to put into it; therefore, it
is possible for a streamto have NO current buffer
(in which case curbuf==NULL) at various tines. */

SIStrBuf *firstbuf; /* Pointer to first buffer in linked list */

SI StrBuf *lastbuf; /* Pointer to last buffer in linked list. This is the
current buffer if there is one; if not, it is the |ast

buffer which was filled. */
long long lastsend; /* Time that |ast data was sent to front end, in
GPS nanoseconds */
long long mnwait; /* Enforced minimumon the tine interval between RPC
calls to transfer data to the front end, in
nanoseconds */

i nt aborted; /* Flag to indicate if stream has been aborted */
} Sl Stream
[*eeee-- Function prototypes ------- oo oo */
nt SIStrQpen(Sl Stream *sis, char *channel, int sanprate, double starttime);

nt S| StrAppend(Sl Stream *sis, float newdata[], int ndata, float scale);
nt SIStrBlank(SIStream *sis, double duration);

nt SIStrFlush(SIStream *sis);

nt SIStrC ose(SIStream *sis);

nt Sl StrAbort(SIStream *sis);

char * SIStrErrorMsg(int status);

#i fdef _ cplusplus

#endi f

#endif /* _SISTR H */

Appendix: Source Code for the
awgstream Utility

/*

awgstream - Command-line client to streamdata froma file to the awg front end
using the SIStr interface

Witten Gct 2001 by Peter Shawhan

To conpil e:
cc awgstreamc SIStr.o -1$CDS_ DI R/ src/util -1$GDS_DI R/ src/awg \
-L$GDS DIR/1ib -lawg -ltestpoint -Irt -o awgstream
where GDS DIR on red = [opt/ CDS/ d/ gds/ di ag
To run: $CDS DIR/Iib nust be in your LD LI BRARY_PATH
* [
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i nclude <string. h>
#include "SI Str. h"
/* */

voi d PrintUsage(void)

fprintf(stderr,
"Usage: awgstream <channel > <rate> <file> [<scal e> [<gpstime>]] [-d]\n");
fprintf(stderr,
<channel > i s case-sensitive and nmust be a real excitation channel\n");
fprintf(stderr,
<rate> is in Hz and nust match the excitation channel's true rate\n");
fprintf(stderr,
"<file>is the file of waveform data, which nust be a FORMATTED ascii file\n");
fprintf(stderr,
with the val ues separated by whitespace (e.g. new ines and/or spaces).\n");
fprintf(stderr,
' Any conversion error causes the rest of the file to be skipped.\n");
fprintf(stderr,
' If <file>is '-'" (i.e. a dash), data is read fromstandard input.\n");
fprintf(stderr,
' <scale>is an optional scale factor to apply to the data in the file.\n");
fprintf(stderr,
' <gpstine>is the tinme to start injecting the waveform It can take any\n");
fprintf(stderr,
' real value, not just an integer. It must occur during the 24-hour\n");
fprintf(stderr,
' period followi ng the execution of the awgstream command.\n");
fprintf(stderr,
If omtted, the waveforminjection will start in about %l seconds.\n",
(int) (SIStr_LEADTI ME/ 1000000000LL) + 4);
fprintf(stderr,
"The '-d' option causes debugging information to be printed to the screen.\n");
fprintf(stderr,
' Specify '-d'" twice for extra information.\n");
return;

}

/*

int main(int argc, char **argv)

{

char *arg;

int iarg;

int nposarg =

char *channel

int sanprate =

char *fil enane
ti

0,
= NULL;
0,

= NULL;
1.0;

me = 0.0;

float scale
doubl e start
FILE *file;
SI Stream si s;
int status;
float val;

[¥ Begi nning of code ------ */

if (argc <=1) {
PrintUsage(); return O;
}

/*-- Parse comand-|ine argunments --*/
for (iarg=1l; iarg<argc; iarg++) {
arg = argv[iarg];
if (strlen(arg) == 0) { continue; }

/*-- See whether this introduces an option --*/
if (arg[0] =="-'" && arg[1] '="\0") {
/*-- The only valid option is "-d" --*/
if (strcrmp(arg,"-d") ==0) {
SI St r _debug++;
} else {
fprintf(stderr, "Error: Invalid option %\n", arg);
PrintUsage(); return 1;

}

} else {
/*-- This is a positional argument --*/

nposar g++;

switch (nposarg) {

case 1:

channel = arg;

br eak;

case 2:

sanprate = atol (arg);

if (sanprate < 1 || sanprate > 16384) {
fprintf(stderr, "Error: Invalid sanpling rate\n");
PrintUsage(); return 1;

}

br eak;

case 3:

filename = arg;

br eak;

case 4:

scale = atof (arg);

/*

if (scale == 0.0 || scale > 600000000.0) {
fprintf(stderr, "Error: Invalid scale factor\n");
PrintUsage(); return 1;

}

*/

*/

br eak;

case 5:

starttime = atof (arg);

if (starttime < 600000000.0 || starttime > 1800000000.0) {

fprintf(stderr, "Error: Invalid start tinme\n");
PrintUsage(); return 1;
}
br eak;
def aul t:
fprintf(stderr, "Error: Too nmany argunments\n");
PrintUsage(); return 1;

} /* End | oop over command-|ine argunents */
/*-- Make sure the required argunents were present --*/
if (channel == NULL) {
fprintf(stderr, "Error: Channel was not specified\n");

if (sanprate == 0) {

fprintf(stderr, "Error: Sanpling rate was not specified\n");

}
if (filename == NULL) {
fprintf(stderr, "Error: File was not specified\n");

if (channel == NULL || samprate == 0 || filename == NULL) {
PrintUsage(); return 1;
}
[* e e e e e e e e aaaaa */
/* Open the file for reading (if not reading fromstdin) */
if (strecp(filenane,"-") 1'=0) {
file = fopen(filenanme, "r");

if (file == NULL) {
/* An error occurred */
fprintf(stderr, "Error while opening % for reading:
perror(NULL);
return -2;

} else {
file = stdin;

/* Open the Signal I|njection Stream */
status = SI StrQpen(&sis, channel, sanprate, starttinme);

filename);

if (SIStr_debug) { printf("SIStrOpen returned %\ n", status); }

if (status !'= SIStr_OK) {
fprintf(stderr,

"Error while opening SIStream %\n", SIStrErrorMg(status));

return 2;

/* Read data frominput file and send it */
while (fscanf(file,"%",&val) == 1) {
status = Sl StrAppend(&sis, &al, 1, scale);

if (SIStr_debug >= 2) { printf("SIStrAppend returned %\ n", status);

if (status !'=SIStr_OK) {
fprintf(stderr,

}

"Error while adding data to stream %s\n",
SI StrErrorMsg(status));
br eak;
}
}

/* Cose the input file (unless it is stdin) */
if (file!=stdin) {
fclose(file);

/* Close the stream */
status = SIStrd ose(&sis);
if (SIStr_debug) { printf("SIStrd ose returned %\ n", status); }
if (status !'= SIStr_OK) {
fprintf(stderr,
"Error while closing SIStream %\n", SIStrErrorMg(status)
return 2;

}

return O;

