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Update on the Flexure Design 
 

This document presents a brief update on the flexure design which utilises a thick 
wire with a threaded flare on either end to facilitate attachment to the cantilever 
spring/instrument pod. The spring and flexure are shown in figures 1 and 2 together with 
the attachments to the spring (the red and blue components). The attachment to the spring 
has changed and is now much simpler than in previous designs. The red riser is has a 5/8” 
thread on its inner surface and sits on top of the spring. The flexure is screwed into the 
riser until its shoulder is flush with the riser’s upper surface (this defines the position of 
the upper pivot point). The flexure can then be screwed into the threaded hole in the 
instrument pod. Finally the riser/flexure is secured to the spring with the blue lock nut. 
There is NO adjustability in the design. 
 It appears that there is still some confusion (on my part) about the correct 
calculation to determine the position of the flexure’s virtual pivot point. Stanford 
presented a calculation which showed the virtual pivot point of a cantilever beam of 
length L to be 
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where EI

Pk =2 . P is the tension carried in the beam, E is the Young’s Modulus and I is 

the second moment of area. I will denote this method #1. Appendix A presents a 
calculation (following the method of Eastman1) which determines the virtual pivot point 
of a cantilever beam whose free end is constrained to parallel translate. I will denote this 
method #2. Although both methods can give significant variations in the position of the 
virtual pivot point, both designs can be accommodated in the retrofit by some suitable 
alteration of parameters. As a result I will continue by considering both methods. Tables 
1 and 2 give an overview of suitable parameters for methods #1 and #2 respectively. 
 
M=mass hung from the flexure 
Rflexure=radius of the flexure 
L=total length of the flexure 
Vp=position of the virtual pivot point 
Leff=distance between the pivot points (set by the current geometry) 
Rsf=radius of the shoulder fillet 
σload=stress from axial tension 
σbending=stress from a 1mm translation 
Ktension=stress concentration factor for axial tension 
Kbending=stress concentration factor for bending 
 

As method #1 results in virtual pivot points which are larger than those of method 
#2, the radius of the flexures have been reduced in order to fit the assembly into the 1.5” 
of headroom above the cantilever springs.  

The stress concentration factors were estimated from expressions presented in 
Young2. Figure 3 shows stress concentration factors for the parameters shown in table 2. 



If it is assumed that the effect of a shoulder fillet will result in some ambiguity in the 
position of the virtual pivot point then the radius should be as small as possible (i.e. the 
flexure will behave like a beam with a non-uniform cross-section at the clamping point. 
This could be modeled with an FEA program?). Therefore the fillet radius was chosen to 
be 1mm. This gives a good compromise between pivot point ambiguity and stress 
concentration factors. For example, increasing the radius to 2mm doesn’t help too much 
with stress concentration but will make the pivot point ambiguity worse. It is possible 
that the radius could be reduced to 0.5mm, although the total stress starts to get 
uncomfortably close to the fatigue stress of maraging 300 (which has an asymptotic value 
of 8.5x108N/m2) 
 
Stage #1  Stage #2 
M=208kg M=134kg 
Rflexure=1.8mm Rflexure=1.5mm 
L=0.141m L=0.134m 
Vp=27.6mm Vp=24mm 
Leff=85.9mm Leff=85.9mm 
Rsf=1mm Rsf=1mm 
σtension=2x108N/m2 σtension=1.9x108N/m2 
σbending=1.1x108N/m2 σbending=1.1x108N/m2 
Ktension=1.6 Ktension=1.5 
Kbending=1.4 Kbending=1.3 
 

Table 1. Parameters for method #1. 
 
Stage #1  Stage #2 
M=208kg M=134kg 
Rflexure=2mm Rflexure=2mm 
L=0.123m L=0.125m 
Vp=18.6mm Vp=19.5mm 
Leff=85.9mm Leff=85.9mm 
Rsf=1mm Rsf=1mm 
σtension=1.6x108N/m2 σtension=1.0x108N/m2 
σbending=1.8x108N/m2 σbending=1.7x108N/m2 
Ktension=1.6 Ktension=1.6 
Kbending=1.4 Kbending=1.4 
 

Table 2. Parameters for method #2. 
 
1 Eastman. F.S., 1935, Flexure pivots to replace knife edges and ball bearings, Bull. 
Univ. Washington Eng. Station No. 86; see also 1937 J. Aeronaut. Sci. 5 16-21 
 
2 Young, W.C., Roark’s Formulas for Stress and Strain, 6th edition 
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Figure 1. Rendering of the spring/flexure assembly
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Figure 2. Section view of the spring/flexure assembly
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Figure 3. Stress concentration factors
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Appendix A: Virtual Pivot Point of a Cantilever Beam which  
   is Constrained to Parallel Translate 

 
Consider the cantilever beam shown in figure A1. In this derivation L is the length 
of the beam, E is the Young’s modulus, I is the second moment of area (πR4/4 for 
a circular cross-section of radius R), P is the tension and W is the transverse force. 
A virtual pivot point exists at a distance Vp from either end of the beam.  
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Figure A1. Geometry of the beam 
 

The right end of the beam is fixed while the left end is allowed to parallel 
translate. This results in moments M1 and M2 acting on either end. The moment 
acting to the right of a point x is given by, 
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Differentiating twice with respect to x gives 
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where EI
Pk =2 . The general solution to this equation is in terms of hyperbolic 

sines and cosines 
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Utilising the boundary conditions M=M1 at x=0 and M=M2 at x=L gives, after 
some algebra 
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The deflection of the beam as a function of x can then be obtained by substituting 
equation (4) into equation (1) 
 

( ) PxLWMkxMkx
kL

kLMMy /)cosh()sinh(
)sinh(

)cosh(
21

12






−+−+







 −=  

 (5) 
 

and the angle of the beam is then given by dx
dy  
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Applying the boundary conditions θ=0 at x=0 and θ=0 at x=L gives, after some 
manipulation 
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The position of the virtual pivot point can be obtained by calculating y(x=L/2) 
and θ(x=L/2) 
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where small angle approximations have been made. Finally, the bending stress in 
the beam can be obtained from 
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With R=1.5mm, E=2x1011N/m2, L=0.1175m, P=1.98x103N and S=25.6N the 
position of the virtual pivot point is 15.3mm from the end of the beam. Plots for 
the deflection, angle and bending stress are shown on the following pages. For 
comparison, the position of the virtual pivot point for a cantilever beam which is 
allowed to freely rotate is given by 
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which is 19.9mm using the numbers above. 
 
 
 
 

  
 
 




