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Abstract 
 
 

   There are gravitational wave sources (such as supernovae and binary black hole mergers), which 
emit waveforms for which no good model exists. The filtering of such burst signals should be as 
general as possible with minimal a priori assumptions on the waveforms. Those filters are very 
sensitive to non-stationary noise (producing fake signals) as well as to gravitational wave bursts. 
Such fake signals can be dramatically reduced when working in coincidence with other detectors. 
This work focuses on optimizing burst search algorithms by characterizing certain classes of 
modeled bursts in the time-frequency plane.  
 
 
 
 
 
1. Introduction 
 
 

       LIGO (Laser Interferometer Gravitational-Wave Observatory) is a facility dedicated to the 
detection of cosmic gravitational waves. Gravitational waves were predicted long time ago, but 
because detection techniques were not sufficiently advanced, could not have been detected because 
their effect on objects on Earth are exceedingly small.  
 
 
                         Strength of gravitational force 

                    
 
 
 As we can see in the given table, gravitational force is very weak, but at large scales (planets, 
stars,…) it dominates. 
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     The method used for detecting such small oscillations is the laser interferometer.  The device that 
is used is a Michelson interferometer. It can detect displacements much less than the diameter of a 
nucleus (amplitudes of displacements caused by gravitational wave emission are about 10-20m). It 
consists of a laser that emits electromagnetic waves of very precise frequency in order not to affect 
the measurements. 
 
 
 This electromagnetic wave goes through a 
semi-transparent mirror, which splits it into 
2 components. Each one of them enters a 
Fabry-Perot resonant cavity in each of the 
two arms of the Michelson interferometer in 
which the very small displacement caused 
by a possible gravitational wave is amplified 
many times (the number of bounces of the 
light in the Fabry-Perot resonant cavity). 
Differential motion of the two Fabry-Perot 
cavities is detected in the Michelson dark 
port and is the signature of gravitational 
waves.  

   In order to detect such small displacements 
the device must be isolated from all 
environmental noise. 

 
 
   In order to reduce the effort of an accidental source of vibrations located on Earth there are two 
observatories and three interferometer detectors: Hanford, WA (4km and 2km interferometers) and 
Livingston, LA (4km interferometer). There is a 40m LIGO interferometer prototype in Caltech.  
 

 
                                                                                  LIGO at Hanford, Washington 
 
 
 
   The distance between two interferometers at Hanford and Livingston is 3030km which means that 
they should detect a same event within +/- 10ms.      
 The sources of gravitational waves are very massive objects. Those massive objects emit 
gravitational waves when they are accelerated to speeds close to the speed of light. Typical 
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gravitational wave sources are black holes or neutron stars that orbit one another, and supernova 
explosions. 
 
  There are different kinds of gravitational wave signals. Some of them are well modeled while for 
some signals accurate mathematical models don’t exist. There are well modeled signals for binary  
black hole or neutron star inspirals. Anticipated sources for which the physics is too complex to 
allow computation of detailed gravitational waveforms include core-collapse of massive stars in 
supernovae, and the accretion induced collapse of white dwarfs. It is also very difficult to obtain 
gravitational waveforms from black hole mergers because the gravitational radiation from them 
results from highly non- linear self- interaction of the gravitational field. Zwerger Muller [8] catalog 
is a first attempt at predicting the complex behavior of SN explosions and resulting gravitational 
radiation, serving only as a preliminary guide to the kinds of waveforms we might be looking for. 
There are 78 waveforms computed 

   There are different filter techniques for modeled and unmodeled gravitational wave signals. The    
most highly developed technique for detecting gravitational waves (for waveforms which are known    
in advance) is matched template filtering. 
 
  In searching for unmodeled burst sources filter techniques should be as general as possible and 
with minimal a priori assumptions on the waveforms. One such filter technique is the excess power 
statistic [6].  The excess power statistic is a method that compares power of the data in the estimated 
frequency band and for the estimated duration to the known statistical distribution of the noise 
power. The signal is detectable if the excess power is much greater than the fluctuations in the noise 
power. 

 
 Other filter techniques that have been explored in the literature [7] include:  
 
• Filters based on autocorrelation such as Norm filter (NF, which computes the maximum of the 

autocorrelation of the data, and NA filter, which looks at the norm of the autocorrelation 
function).  

• The bin counting method BC - computes the number of bins (in a time frequency spectrograms) 
in a window size N those value exceeds some threshold which is chosen by maximizing the 
signal to noise ratio. 

• Linearfit filter LF - fits the data to a straight line in a window of size N. There are two cases: if 
only noise is in the data, the slope and the offset of the fitted line are zero on average which is 
not case if there is noise + signal. 

• Advanced Linearfit filter ALF - we obtain this filter if we take uncorrelated combinations of the 
slope and offset (which are two correlated random variables). 

• The peak correlator filter is based on correlating the data with peak (or pulse) templates.  
 
 
2. Methods and algorithms 
  
   In many burst search algorithms (such as excess power, bin counting, etc), the data are binned in 
the time-frequency plane. Preliminary models (such as “ZM” supernova collapse waveforms 
generated by Zwerger and Muller [8]) suggest that the GW bursts occupy a limited duration and 
bandwidth in the time-frequency plane, and it is of interest (for designing and tuning search 
algorithms) to explore the regions in that plane where the models predict the largest signal strength 
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to appear. The goal of this work is to determine the time frequency binning which maximizes the 
strength of the signal in the presence of random noise. White noise is used for now, but colored 
noise should be used for future studies. 
 We used  two algorithms. 
 
 
 I Algorithm   
 
 

• Calculate mean noise power for each frequency and all time bins 
• Calculate S/N for fixed time and each frequency bin. If it is above chosen threshold add up 

power of all frequency bins in each time bin 
• Calculate total (s+n power)/expected noise power and plot it vs number of fft points (nfft) 
• Repeat algorithm for 78 ZM waveforms 

 
   
 
 II Algorithm 
 
 

• Use all possible bin size combinations for 10Hz<∆f<1000Hz and 0.01s<∆t<1s 
• Calculate (s+n)power/expected noise power for each bin and different bin size 
• Make 3D plot with ∆t vs ∆f vs bin power only for bins which S/N exceed threshold 
• Repeat algorithm for 78 ZMwaveform 

 
 
 
The analysis in the time frequency domain is done by making spectrograms of the signals. 
I generated one second of white noise sampled by 4096 Hz. All ZM waveforms which are used are 
resampled to 4096 frequency and normalized. There are next relations between parameters which 
we use to make spectrogram and ∆t and ∆f: 
  

 
P - sampling frequency, 16384, but can be downsampled (eg, to 2048) to reduce computation time 
with little loss of sensitivity 
window size = P/∆f        

      number of overlap = P-1-(window size / ∆t) 
      nfft = window size 
      number of overlap < window size  
                                               
 
 
  The Matlab function specgram computes the windowed discrete-time Fourier transform of a signal 
using a sliding window. The spectrogram is the magnitude of this function. Different values for the 
parameters give us different bin size.  
  The function which was used has the form: 
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 specgram( X, nfft, sampling frequency, window size,  number of overlap). 
 
 The next pictures show one waveform from the ZM catalog and its spectrogram, and spectrogram 
of the white noise. 
 
 
 

                 
 
                       ZM waveform                                                                  White noise 
 
 
  
 
 
 
 
 

                      
 
        spectrogram of the ZM waveform                                 spectrogram of the white noise 
 
 
 
I Algorithm results 
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  Results of the first algorithm are shown in the next two graphs. Number of fft points (nfft) is from 64 
to 2048. The first graph represents signal to noise ratio vs nfft. There are plotted values for all 78 ZM 
waveforms. Next graph shows number of maximum signal to noise ratios for each signal, and we can 
concluded that almost all  s/n maximums  for all signals are for nfft = 64. This reflects the fact that the 
ZM bursts are of short duration; most of their amplitude occurs over less than 5ms (82 samples). 
 

                
                                            S/N for all 78 ZM waveforms vs nfft 
 
 
 
 
 
The next two graphs show total power of the ZM signal (calculated only for bins which S/N ratio 
exceeds a threshold of 3) and spectrogram of the same signal. For number of fft points = 64 the bin size 
is ∆t=0.0078s and ∆f=64Hz. 
 

           
 
      Total power of the signal for nfft=64                                NFFT=64;  ∆t=0.0078s;  ∆f=64Hz; 
 
  The next four graphs represent the total signal power for nfft=16 and 1024 and their spectrograms. If 
we compare total signal power (calculated only for bins which S/N exceed given threshold) for nfft=16 
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(∆t=0.002s, ∆f=256 Hz) and nfft=1024 (∆t=0.125s, ∆f=4Hz) we can see that the total signal power in 
the first case is ~ two orders of magnitude bigger then the total signal power in the second case. 
    

                   
 
       Total signal power for nfft=16                                        Total signal power for nfft=1024 
 
 
 
 
 

                    
 
            NFFT=16;  ∆t=0.002s; ∆f=256Hz;                     NFFT=1024;  ∆t=0.125s;  ∆f=4Hz; 
 
 
II Algorithm results 
 
 
II Algorithm results are shown in the next two graphs. In the first graph are plotted  S/N values 
calculated for each bin and plotted only for bins which the  S/N exceeds a threshold of 3. The second 
graph is the same as the first one but with zoomed area. 
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               S/N for each bin that exceed threshold vs ∆t vs ∆t     
 
 
 
 
  We can see here that maximum S/N ratio is for bins which duration is ∆t ~ 2ms and ∆f ~ 1000 kHz 
 
 
 
 
3. Conclusion 
 
 
 
  Both algorithms give the same results. It is better to use larger ∆f and smaler ∆t.  The size of ∆t is 
limited by our sampling frequency. If sampling frequency is P=4096, ∆t is >=0.000244s. 
   White noise was used in this work. Real detector noise will contain significant colored components. 
This means that this analysis should be repeated  using colored noise. Generally speaking, the excess 
power method is a useful tool for characterizing and investigeting the non-Gaussian components of the 
noise. It can provide a simple and automated procedure for garnering statistical information about noise 
bursts.  
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