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We present an approximate analysis of a nonlinear effect of parametric
oscillatory instability in FFP interferometer. The basis for this effect is the ex-
citation of the additional (Stokes) optical mode with frequency- w; and of the
mirror’s elastic mode with frequency w,, when the optical energy stored in the
FP resonator main mode with frequency wg exceeds the certain threshold énd
the frequencies are related as wg ~ wy + wy,. This effect is undesirable in laser
gravitational wave antennae because it may create a specific upper limit for the
value of energy stored in FP resonator. In order to avoid it the detailed anal-
ysis of the mirror’s elastic modes and FP resonator optical modes structure is

necessary.

I. INTRODUCTION

The full scale terrestrial gravitational wave antennae are in process of assembling and tuning
at present. One of these antennae (LIGO-I project) sensitivity expressed in terms of the metric
perturbation amplitude is projected to achieve soon the level of h >~ 1 x 10~2! [1,2]. In 2006 the
projected level of sensitivity has to be not less than h ~ 1 x 10722 [3]. This value is scheduled to
achieve by substantial improvement of the test masses (mirrors in the big FP resohator) isolation
from different sources of noises and by increasing the optical readout system sensitivity. This
increase is expected to be obtained by rising the value of optical energy & stored in the FP
resonator optical mode: & > 30 J (it corresponds to t-he circulating power W bigger than

1 megaWatt). So high values of & and W may be a source of the nonlinear effects which

will prevent from reaching the projected sensitivity of A ~ 1 x 10722, Authors of this article
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already described two such effects: photo-thermal shot noise [4] (the random absorption of
optical photons in the surface layer of the mirror causes the fluctuating of mirror surface due to
nonzero coefficient of thermal expansion) and photo-refractive shot noise [5] (the same random
absorption of optical photons causes the fluctuations of the reflected wave phase due to the
dependence of refraction index on temperature). In this paper we analyze undesirable effect
of parametric instability — another "trap” of pure dynamical nonlinear origin which (being
ignored) may cause very substantial decrease of the antennae sensitivity and even may make
the antenna unable to work properly.

It is appropriate to remind that nonlinear coupling of elastic and light waves in continuous
media produces Mandelstam-Brillouin scattering. It is a classical parametric effect, however,
it is often explained in terms of quantum physics: one quantum Awy of main optical wave
transforms into ‘two, i. e. hwy in the additional optical wave (Stokes wave: w; < wp) and hewn,
in the elastic wave so that wg = w; + wy, (it is Manly-Raw condition for parametric process).
The irradiation into the anti-Stokes wave is also possible (w; = wy + wp, ), however, in this case
the part of energy is taken from the elastic wave. The physical "mechanism” of this coupling is
the dependence of refractive index on density which is modulated by elastic waves. If the main

~wave power is large enough the stimulated scattering will take place, the amplitudes of elastic
and Stokes waves will increase substantially. The physical description ié the following: the flux
of energy into these waves is so large that before being irradiated from the volume of interaction,
the oscillations with frequencies w, and w,, stimulate each other substantially increasing the
power taken from the main wave. Note that stimulated scattering causes irradiation only into
Stokes wave because for radiation into anti-Stokes wave, the additional energy pump into elastic
wave must take place.

In gravitational wave antennae elastic oscillations in FP resonator mirrors will interact with
optical ones being coupled parametrically due to the boundary conditions on one hand, and due
to the ponderomotive force on the other hand. Two optical modes may play roles of the main
and Stokes waves. High quality factors of these r;'lodes and of the elastic one will increase the
effectiveness of the interaction between them and may give birth to the parametric oscillatory

instability which is similar to stimulated Mandelstam-Brillouin effect [6]. This instability may
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create a specific upper limit for the value of energy &.

It is worth to note that this effect of parametric instability is a particular case of the more
general phenomenon related to the dynamical back action of parametric displacement meter
on mechanical oscillator or free mass. This dynamical back action was analyzed and observed
more than 30 years ago [7,8]. Usually parametric meter consists of high quality factor @ e.m.
resonator (radiofrequency, microwave or optical ones) and high frequency stability pumping
self-sustained oscillator. The displacement of the resonator movable element modulates its
eigenfrequency which in its turn produces the modulation of the e.m. oscillations amplitude
(it can produce also phase or output power modulations). If the experimentalist attaches a
probe mass to the movable element of the meter he is inevitably confronted with the effect
of dynamical back action, the ponderomotive force produces a rigidity and due to finite e.m.
relaxation time — a mechanical friction. Both these values may be positive and negative ones;
Iﬁ the case when the negative friction is sufficiently high the behavior of mechanical oscillator
and meter becomes oscillatory unstable. This effect was observed and explained for the case
when value of mechanical frequency w,, was substantially smaller thz_m the bandwidth of e.m.
resonator [7,8]. In this article we analyze the parametric oscillatory instability in two optical
modes of FP resonator and elastic mode of the mirror. In this case the value of w,, is much
larger than the bandwidth of the optical modes.

In section II we present the analysis of this effect for simplified one-dimensional model
which permits to obtain approximate estimates for the instability conditions. In section III we
present considerations and preliminary estimates for nonsimplified three-dimensional model,

and in section IV — the program of necessary mode numerical analysis.
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II. SIMPLIFIED ONE-DIMENSIONAL MODEL

) i /

FIG. 1. Scheme of FP resonator with movable mirror (a) and frequency diagram (b).

For approximate estimates we present in this section the simplified model analysis where

we assume that:

e The mechanical oscillator (model of mirror) is a lumped one with single mechanical degree

of freedom (eigenfrequency wy, and quality factor Qm = wm [26m).

e This oscillator mass m is the FP resonator right mirror (see fig. 1) having ideal reflectivity

and the value of m is of the order of the total mirror’s mass.

e The left mirror (through which FP resonator is pumped) has an infinite mass, no optical
losses and finite transmittance T = 27 L/(XoQop:) (Ao is the optical wavelength, Qopt Is

the quality factor; L is the distance between the mirrors).

o We take into account only the main mode with {requency wo and relaxation rate & = ‘
wo/2Q¢ and Stokes mode with w; and & = wo/2Q; correspondingly (Qo and Q) are the

quality factors), wp — wy ~ wn.

e Laser is pumping only the main mode which stored energy & is assumed to be a constant

one (approximation of constant field).
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It is possible to calculate at what a level of energy & the Stokes mode and mechanical oscillator
becomes unstable. The origin of this instability can be described qualitatively in the following
way: small mechanical oscillations with the resonance frequency wn, modulate the distance L
that causes the exitation of optical fields with frequencies wp +wn,. Therefore, the Stokes mode
amplitude will rise linearly in time if time interval is shorter than &y ! The presence of two
optical fields with frequencies wo. and w; will produce the component of ponderomotive force
(which is proportional to square of sum field) on difference frequency wo — w;. Thus this force
will increase the initially small amplitude of mechanical oscillations. In other words, we have
to use two equations for Stokes mode and mechanical oscillator and find the conditions when
this "feedback” prevails the damping which exists due to the finite values of @, and @,. Below
we present only the scheme of calculations (see details in Appendix A).

We write down the field components of optical modes and the displacement x of mechanical

oscillator in rotating wave approximation:

Ey = Ao[Doe_iwot + D),
E1 = Al[Dle—iwlt + Dreiwlt],

_ —~twmt % _twmt
z = Xe ™ 4+ X¥emt,

where Dy and D, are the slowly changing complex amplitudes of the main and Stokes modes
correspondingly and X is the slowly changing complex amplitude of mechanical displacement.
Normalizing constants Ao, A; are chosen so that energies & ; stored in each mode are equal

to €,1 = w2 1| Do,1|?/2. Then it is easy to obtain the equations for slowly changing amplitudes:

1X" Dowo _iawt

0:Dy + 6:D1 = I € ) _ (1)
8,X +6,. X = ? Do Diwowy emibwt | (2)
“wm L

where Aw = wg — w; — Wy, is the possible detuning. Remind that we assume Dy as a constant.
One can find the solutions of (1, 2) in the following form Dy(t) = DyeP—8w/2t - X* (1) =
X*eO+8w/2)t 5nd write down the characteristic equation. The parametric oscillatory instability

will appear if real part of one of the characteristic equation roots is positive.
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In LIGO design the values of g and 6; are of the order of the bandwidth the gravitational

burst spectrum is expected to lie in, i.e. ~ 27 x 100 s™*

. On the other hand many efforts were
made to reduce the value of d,, to the lowest possible level and thus to decrease the threshold of
sensitivity caused by Brownian noise. In existing today fused silica mirrors @, ~ 10% —2 x 107

and even for w,, = 107 s~! the value of §,, < 10 s!. Thus we can assume that é,, <« §; and

obtain the instability condition in simple form:

R ‘
x> 1, (3)
(1+4£)
_ & WiWm 2gOQlQm
Ro = 2mL2w2 86,  mL2w? | ()

For estimates we assume parameters corresponding to LIGO-I to be:

W = 2% 10° sec™!, 6, = 5 x 1073 sec”?,

§; = 6 x10%sec™!, w; =~ 2 x 10% sec™!, 5
E ~ 3x10%erg, L = 4x10°cm

m = 10% g,

The mechanical frequency w,, is about the frequency of the lowest mirror elastic (longitudi-
nal or drum) mode and it has the same order as the intermodal interval ~ 7c/L ~ 2 x 10° sec™
between optical modes of FP resonator. The mechanical relaxation rate é,, corresponds to the
loss angle ¢ ~ 5 x 1078 (quality factor Q,, =~ 2 x 107) for fused silica. The value of enefgy &o
corresponds to the value of circulating power about W o c€/2L ~ 103 erg/s = 10° Watt.

For these parameters we have obtained the coefficient Ry estimate for the resonance case

(|aw] < 6y):

Ro ~ 300 > 1

It means that the critical value of stored energy & for the instability initiation will be 300
times smaller than the planned value ~ 3 x 10® erg = 30.J ™.
1Tt is worth to note that if sapphire is chosen then due to the larger value of @, the factor Ry will

be even bigger: Ro = 5 x 10°. It is another argument which is not in favor of this material for mirrors.
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For nonresonance case and planned value of & the "borders” of detuning Aw,,;; within the

system is unstable, are relatively large: Awesr = 61/ Ro =~ 1.7 x 10% sec™?.

III. CONSIDERATIONS OF THREE-DIMENSIONAL MODES ANALYSIS

The numerical estimates for the values of factor Ry and detuning Aw obtained in the pre-
ceding section have to be regarded as some kind of warning about the reality of the ﬁndesirable
parametric instability effect. In the simplified analysis we have ignored the nonuniform distri-
bution of optical fields and of mechanical displacements over the mirror’s surface. It is evident
that more accurate analysis has to be done. Below we present several considerations about

further necessary analysis.

A. The frequency range of "dangerous” optical and elastic modes

The values of the mirror’s radius R and thickness H for LIGO-II are not yet finally defined.
Due to the necessity to decrease the level of thermoelastic and thermorefractive noises [4,5,9,10]
the size of the light spot on the mirror’s surface is likely to be substantially larger than in
LIGO-I and the light density distribution in the spot is not likely to be a gaussian one (to
evade substantial diffractional losses) [10]. Thus the presented below estimates for gaussian
optical modes may be regarded only as the first approximation in which the use of analytical
calculations is still possible.

The resonance conditions |wg — w; — wy| < &; may be obtained with a relatively high
probability for many optical Stokes and mirror elastic modes combinations. If we assume the
main optical mode to be gaussian with waist radius wq of the caustic (the optical field amplitude
distribution in the middle between the mirrors is ~ e~7/*%)), and if we assume also that the
Stokes mode may be described by generalized Laguerre functions (Gauss-Laguerre beams) then
‘the set of frequency distances Awept between the main and Stokes modes is determined by three

integer numbers:

(6)

Te (I&'+2(2N+M) L/\o)7

arctan 3
T TW§
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where A is the wave length, K = 0 £ 1, £2... is the longitudinal index, N =0, 1, 2..., and
M =0,1,2... are the radial and angular indices. .

For wg =~ 5.9 cm the beam radius on the mirror’s surface is equal to w ~ 6 cm, corresponding
to the level of diffractional losses about 20 ppm for mirror radius of R = 14 cm. In this case

the equation (6) has the following form:
Awoptic > (24 K +0.56 N +0.28 M) x 10°s™1, (7)

We see that the distance between optical modes is not so large, 1.e. = 3 X 10*s~!. In units of
optical modes bandwidth 2§; ~ 10%s~! it is about 3 x 10*/24; ~ 30. Thus assuming that the
value of elastic mode frequency can be an arbitrary one we can roughly estimate the probability
that the resonance condition is fulfilled as ~ 1/30.

The order of the distance Aw,g between the frequencies for the first several elastic modes
is about Awmg ~ mv,/d ~ 2 x 10° 57! (d is the dimension of the mirror and v, is the sound
velocity). It is about one order larger than the distance between the optical modes. However

for higher frequencies wy, these intervals become smaller and can be estimated by formula

3
TAW., o

Awpy, ™~ 5
2w?,

Even for w, ~ 6 x 10° s! the intervals between the elastic and optical mo‘des become equal
to each other and has value about ~ 3 x 10%s™!. And for w,, ~ 107 s~! the distances between
elastic modes become of the order of optical bandwidth 26;. Therefore the resonance condition
for these frequencies is practically always fulfilled.

On the other hand according to (4) the factor Ry decreases for higher elastic frequencies
wm. In addition the loss angle in fused silica usually slightly increases for higher frequencies
[11,12). Assuming that the upper value wp, ~ 2 X 108 s™!, Q,,, = 3 x 10° and other parameters
correspond to (5) we obtain Rg o~ 1. Therefore the elastic modes which "deserve” accurate

calculations, lie within the range between several tens and several hundreds kiloHerz. The total

number of these modes is about several hundreds.
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B. The Matching between the Mechanical Displacements and Light Density

Distributions

The simplified model described in section II is approximately valid for the uniform over

all the mirror’s surface distribution of optical field density and pure longitudinal elastic mode.

The equations for this model can be extended for any distributions of mechanical displacements

in the chosen elastic mode and for any distribution of the light field density in chosen optical

modes. This extension can be done by adding a dimensionless factor A in (3):

RoA '
—_— 1, 8
mEt ®
VL f(FL) AFL) w, dRy)?
A= FIRrd, [P faray ©)

Here fo and f, are the functions of the distributions over the mirror’s surface of the optical
fields in the main and Stokes optical modes correspondingly, vector # is the spatial vector of
displacements in elastic mode, u, is the component of @, normal to the mirror’s surface, [ d7,
corresponds to the integration over the mirror’s surface and [ dV — over the mirror’s volume
V.

It is necessary to know the functions fy, fi, @ in order to calculate the factors A for different
mode combinations. But to the best of our knowledge there is no analytical form for @ in the
case of cylinder with free boundary conditions [11]. Our approximate estimates show that
there are substantial number of modes combinations for which factor A is large enough to
satisfy the condition (8) for parameters (5). We do not present the details of these estimates
here because they are rather rough. It is evident that a complete numerical analysis which

includes nongaussian distributions of optical fields is necessary to do.

IV. CONCLUSION

The simplified model analysis of parametric oscillatory instability and considerations about

the real model presented above may be regarded only as the first step along the route to
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obtain a guarantee to evade this nondesirable effect. Summing up we may formulate several

recommendations for the next steps:

1. Due to the finite size of the mirror and to the use of the nongaussian distribution of light
density we think that the accurate numerical analysis of different optical and elastic mode
combinations (candidates for the parametric instability) is inevitably necessary. This

problem (numerical calculations for the elastic modes) has been already solved partialy

[13).

2. In the same time the numerical analysis may not give an absolute guarantee because ;che
fused silica pins and fibers will be attached to the mirror. This attachment will change
the elastic modes frequency values (and may be also the distribution). In addition the
unknown Young modulus and fused silica density inhomogeneity will limit the numerical

| analysis accuracy. Thus the direct measurements for several hundreds of probe mass

elastic modes eigenfrequencies values and quality factors are also necessary.

3. When more "dangerous” candidates of elastic and Stokes modes will be known, their
undesirable influence can be depressed. For example it can be done by small the change

- of mirror’s shape.

4. Tt is also reasonable to perform direct tests of the optical field behavior with smooth
increase of the input optical power: it will be possible to register the appearence of the
phbtons at the Stokes modes and the rise of the @, in the corresponding elastic mode

until the power W in the main optical mode is below the critical value.

We think that the parametric oscillatory instability effect can be excluded in the laser |

gravitational antennae after this detailed investigation.
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APPENDIX A: LAGRANGIAN APPROACH

Let us denote go(t) and ¢1(%) as generalized coordinates for the FP resonator optical modes
with frequencies wo and w; correspondingly, so that their vector potentials (Ao, A1), electrical

(Eo, Ev) and magnetic (Hg, H;) fields are the following:

27 c2 1kiz * —ik;z

Ai(t) =/ 5L (fie — fretk ) a(t),
| 2m ik,«} x_—ikiz

Ez(t) = — 5.1 (fz‘& - fz- e ) 8tq,'(t),
2m ikiz * —ikiz

Hi(t) = g (Fe™ + f1e7%) wia(t),

fi=filFL,2), Si= /Ifi|2JM-

Let also denote z(t) as generalized coordinate of the considered elastic oscillations mode with
displacement spatial distribution described by the vector @(). Now we can write down the

lagrangian:

£=£0+£1 +£m+£int>

_ [ L{Eo)? = (Ho)?) 3 0ig  widd
5”‘/ 8 dri=— 9
_3tQ12 W%Q?
L= 2 2
r _ M(0iz)?  Muwla?
ome 2 2

M=p [ [a(F)dV,

Lint = —/ zus(Ho + H1)2

dr, =
T L

z=0

- X

= —2wowi goq1 B I
5= L) AF)udE
T Vol?dro J 1Py

We consider only one mechanical mode below. Now we can write down the equations of motion

(adding losses in each degree of freedom):
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2z

82q0 + 2600,q0 + wiqo = ~ B wowi gy,
2z
82q1 +28:8,q1 + Wf‘ll =—B T wip Go,

Btzx + 28,.0:x + wfnx = -B
Introducing slowly varying amplitudes we can rewrite these equations as:

go(t) = Do(t) e™°* + Dg(t) €™,
qi(t) = Di(t) e + Di(t) e,
z(t) = X(t) g~iwmt 4 X*(t) ei“”"t7

Aw = wy — wy — Wiy,

1BX Dyw,

atDo + (SoDo = —"——L—-—— 8iAWt,
 BX* D .

0:Dy + 61Dy = Z___I_Jo_wo et (A1)
, BDoD* .

X 48X = I e, (A2)

We can see that this system (A2, A1) coincides with (2, 1) if B =1, and M = m.
For the simplest resonance case dw = 0 it is easy to substitute (A2) into (Al) and to obtain

the condition of parametric instability (in the frequency domain):

1BDows  —t BD§Dywow

Dior =30 = == X 6 T i)
Condition of instability:
| < B?| Do |*wiw;

Mwm L2515m
Now we can express the energy & in mode ”0” in terms of |Dg|?:

ath Wg qg —
2 2

((_iw0)2 [DO e-iwot _ Dg eiwgt]2 +
+ Wi [Dg et L D ei“"’tr) —

= 22| Dol?.

Now we can write down the condition of parametric instability in the following form:
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EOB % Wi,
2mw2 L? 616,
B?m _ vV (f fD(F-L)fl(FJ.)UZdT_“J_)z

M [lfolrd7L [ filPdry [ lEPdV

> 1, (A3)

A=

(Ad)

which accurately coincides with (8, 9).
Let us deduce the instability condition for nonresonance case. We are looking for the solution

of (1, 2) in the following form:

Dy(t) = Die*t, X*(t) = XMt
1Aw 1Aw
A=Ao e M=t

and writing down the characteristic equation as:

Ay +81)(A- + ) — A =0, %—ﬁ‘% = A
The solutions of characteristic equation are:
M = & J;ém L \/_th,
Det = (51 —25’” —~ mzw)z + A
The condition of instability is the folléwing:
RyvDet > & ";5’". (A5)
Using a convenient formula:
Det = a + b,

v Det = g Va? + b2+ a.

we can rewrite the condition (A5) as:

14 6\’ |
%(\/a2+b2+a) >(1; > . (A8)
‘ - 2 2\2
a2+b2=A2+<(51, 45’“) +Af:) +

+m(@1%f—ﬁﬂ (A7)
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Note that for the resonance case (Aw = 0) the solution of (A5 or A6) is known: A > 6,4,,. For
our case 6, < d; it means that A < 6?. Therefore for small detuning Aw < §; we can expand

a® + b? in series in terms of A and rewrite condition (A6) as:

1 A (8 —4,)°
- 2 2 ~ — [
2(\/a+b+a)_2+ 2 4

A g61-5m22 . Aw?
4 4

Ty CEmr | aw
4 + 4
!51—5711)2
14(61_(%;‘_“_éﬁ > 610m,
4 4
5 _ 2 2
Or A> g6, x S 0n) + A7 (A8)

G~ 5.
Let us underline that condition (A8) is obtained for small detuning Aw <« §;. However, con-
sidering situation more attentively one can conclude that expansion in series (and consequently
the formula (A8) ) is valid for the condition:

(61— 6m)?  Aw?
4 + 4

A< - (A9)

We see that this condition is fulfilled for the solution (A8). Therefore we conclude that solution

(A8) is approximately valid for any detunings Aw.
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