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This document aims to represent the GriPhyN/LIGO problem as three layers (Figure 1): 

1. The Physics Layer, which looks at GriPhyN/LIGO from the point of view of physics research: what 
data is collected and what kind of analysis is performed on the data. 

2. The Virtual Data Layer, which describes the opportunities of the Virtual Data Grid for support of the 
LIGO data and the operations performed on it.  

3. The GriPhyN Layer, which describes how the virtual data will be stored and handled with the use of 
the Globus Replica Catalog and the Metadata Catalog. Also, how the data transformations will be 
provided and their results stored. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: GriPhyN Design Decomposition 
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1 Physics 
LIGO (Laser Interferometer Gravitational-Wave Observatory) is a multi-university (Caltech, MIT, …) 
project designed to build detectors for gravitational waves. Currently, there are two observatories in the 
United States, one of which recently went through the “first lock” phase1, in which initial calibration data 
was collected. More information on the project can be found at http://www.ligo.caltech.edu.  

The observatories aim to detect gravitational waves predicted by Einstein’s theory of relativity, which 
described gravity as a curvature of the fabric of time and space. The gravitational waves are believed to 
be generated by moving masses, however they are so weak, that so far they have not been directly 

detected (although their indirect influence has been observed in 1974 in a binary pulsar2). One of the 
measurable manifestations of gravitational waves is expected to be such pulsars. As the binary pulsars 
draw closer together, the gravitational wave is expected to increase until the actual coalescence and then 
eventually decrease. Although, the occurrence of coalescing pulsars is believed to be infrequent, estimates 
predict one observation per year3. Additionally, LIGO will be used to detect the mergers of black holes 
and neutron stars and black holes with black holes, and these are expected to occur more frequently. 
Other signals may come from supernova explosions and from "starquakes" in neutron stars. Besides 
abrupt signals such as these, continuous-wave signals are expected, for example from rapidly spinning 
neutron stars. 
                                                      
1 http://www.ligo.caltech.edu/LIGO_web/firstlock/ 
2 “Laser Interferometer Gravitational Wave Observatory Data Analysis System”, by J.K. Blackburn, LIGO 
document #P000009-00-E, http://admdbsrv.ligo.caltech.edu/pubdcc 
3 “An Antenna Tuned to the Songs of Gravity”, by G.H. Sanders and D. Beckett, Sky & Telescope, October 2000. 

 
 
Figure 2: High aerial shot of the LIGO Hanford Observatory shows the twin arms of the 
installation stretching into the Washington desert. The two-kilometer optical cavities span between 
the corner station building and the buildings midway down each arm. Evacuated beam tubes 
between the buildings provide a clear path for the laser light. A four-kilometer interferometer is 
currently being installed that shares these same beam tubes1. 

http://www.ligo.caltech.edu/
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The current Hanford interferometer (Figure 2) has two two-kilometer “arms” attached to a central station. 
Each of the arms contains test masses, which can be acted upon by gravitational waves. A passing 
gravitational wave is expected to reduce the distance between the test masses in one arm and increase it in 
the other (because of the L-shape of the arms). To detect that change, a laser light is generated at the 
central station (central point of the L), then split into two beams and sent into each arm of the 
interferometer. The changes in the mass positions cause a misalignment of the light in the two instrument 
arms and that interference can then be detected. However, phenomena such as earthquakes, acoustic noise 
or laser fluctuations can also cause beam interference. In order to obtain a clean gravitational wave signal, 
significant amount of data needs to be collected (including data from seismometers, microphones, etc.) 
and analyzed (for example, to eliminate noise).  

The raw data collected during experiments is a collection of continuous time series at various frequencies 
(e.g., 16kHz, 16Hz, 1Hz, etc.).  The amount of data expected to be generated and cataloged each year is in 
the order of tens of terabytes.  The gravitational channel is less than 1% of all data collected.  Analysis on 
the data is performed in both time and Fourier domains. Requirements are to be able to perform single 
channel analysis over a long period of time as well as multi-channel analysis over a short time period.  

1.1 Data in LIGO 
The data in LIGO is gathered as a collection of time series ranging in frequency from 16 kHz down to 1 
Hz. Each scalar time series is represented by a sequence of 2-byte integers. Time is represented by GPS 
time, the number of seconds since an epoch in 1981, and it is therefore a 9-digit number, possibly 
followed by 9 more digits for nanosecond accuracy. Data is stored in Frame files, a standard format 
accepted throughout the gravitational wave community. Such a file can hold a set of time-series with 
different frequencies, together with metadata about channel names, time intervals, frequencies, file 
provenance, etc.  In LIGO, the Frames containing the raw data encompass an interval of time of one 
second and result in about 2Mb of data.  

In addition to the raw time series, there are many derived data products. Channels can be combined, 
filtered and processed in many ways. In addition to the time domain, data can be transformed into other 
domains, such as frequency (Fourier transform, power spectrum), the wavelet basis, or other spaces. 
Knowledge is finally extracted from the data through pattern matching algorithms; these create 
collections of candidate events, for example inspiral events or candidate pulsars. Each event comes with a 
significance (signal-to-noise ratio): we will pay close attention to highly significant (high SNR) events, 
and make statistical analyses of low SNR events. 

1.2 Data organization in LIGO 
Much effort in LIGO has been devoted to the development of a naming scheme for the data, which is 
appropriate for LIGO Data Analysis System (LDAS). The LIGO data model splits data from metadata 
explicitly. Bulk data is stored in Frame files, as explained above, and metadata is stored in a relational 
database, IBM DB2. There is also an XML format called LIGO-LW4 for representing annotated, 
structured scientific data, that is used for communication between the distributed services of LDAS. 

In general, a file may contain more than one Frame, so we distinguish a new word: FrameFile, for a file 
that may contain many frames. Raw data files contain only one frame, and they are named by the 
interferometer that produced the data (H: Hanford, L: Livingston), then the 9-digit GPS time 
corresponding to the beginning of the data. (Note: in 2011, this time will become a 10-digit quantity). 
There is a one or two letter indication of what kind of data is in the file, (F: full, R: reduced, T: trend, etc). 
So an example of a raw data frame might be H-276354635.F. 

                                                      
4 Also called Extensible Scientific Data Language, http://www.cacr.caltech.edu/XSIL/ 
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For long-term archiving, rather larger files are wanted than the 2 megabyte, one second raw frames, so 
there are collection-based files, some as multi-frame FrameFiles, some as Unix tar format. In either case, 
an additional attribute is in the file name saying how many frames there are, for example H-
276354635.F.n200 would be expected to contain 200 frames. 

One table of the metadatabase contains FrameSets, which is an abstraction of the FrameFile concept, 
which recognises that a FrameFile may be stored in many places: perhaps on tape at the observatory, on 
disk in several places, in deep archive. A FrameSet is a FrameFile together with the physical locations 
where it is stored. One of the primary reasons for the metadatabase is to keep a searchable catalog of 
FrameSets. 

Each frame file records the names of all of the approximately one thousand channels that constitute that 
frame. In general, however, the name set does not change for thousands or tens of thousands of one-
second frames. Therefore, we keep a ChannelSet object, which is a list of channel names together with an 
ID number. Thus the catalog of frames need only store the ChannelSet ID rather than the whole set of 
names. 

The metadatabase also keeps collections of Events. An event may be a candidate for an astrophysical 
event such as a black-hole merger or pulsar, or it may refer to a condition of the LIGO instrument, the 
breaking of a feedback loop or the RF signal from a nearby lightning strike. The generic Event really has 
only two variables: type and significance (also called Signal to Noise Ratio, or SNR). Very significant 
events are examined closely, and insignificant events used for generating histograms and other statistical 
reports. The event type distinguishes the remaining data in the record, which may be times, filter number, 
or other numbers. Also the Event may store Blob (Binary large object) data, whose meaning depends on 
the event type, for example a snippet of a time series or a power spectrum. 

1.3 Computational aspects, Pulsar Search  
LDAS is designed primarily to analyze the data stream in real time to find inspiral events, and secondarily 
to make a long-term archive of a suitable subset of the full LIGO data stream. A primary focus of the 
GriPhyN effort is to use this archive for a full-scale search in this archive, for the continuous-wave 
sources. This search can use any amount of computational resources, since the search can be done at 
essentially arbitrary depth and detail. 

If a massive, rotating ellipsoid does not have coincident rotational and inertial axes, then it emits 
gravitational radiation. However, it is very weak unless the object is extremely dense, rotating quickly, 
and has a large quadrupole moment. While the estimates of such parameters in astrophysically-significant 
situations are vague, it is expected that such sources will be very faint. The search is computationally 
intensive primarily because it must search a large parameter space. The principle dimensions of the search 
space are position in the sky, frequency, and rate of change of frequency. 

The search is implemented as a pipeline of data transformations (Figure 3). As a first step, instrumental 
data is stored into an archive. Next, since, as noted above, the raw data comes from the instrument as 
short (1 second) Frames with all the channels, some processing geared towards the removal (“cleaning”) 
of certain instrumental signatures needs to be done. For example, naturally occurring seismic vibration 
can be subtracted from the data using the channels from the sensitive seismometer that is part of the LIGO 
data stream.  The short-duration frames are then combined into much longer frames in a transpose 
operation, and further data-conditioning filters are applied. We now have removed instrumental signature, 
and measured the actual deformation of space-time geometry at the LIGO site.  
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This data is then used to conduct the pulsar search. Since the data needed to conduct the search is a  long 
(~6 months, 2×1011 points) stretch of a single channel the gravity-wave channel, the 1D time-series is 
broken into many small segments, and the power-spectra of these segments are stacked to make a large 
frequency-time image, perhaps 4×105 on each side. The pulsar search consists of searching for coherent 
signals in this image. A source would appear on the frequency-time image as a wavering line, whose 
frequency might be 1 kHz, but modulated by several Hz over periods of 1 day and 1 year, and also with a 
secular variation due to slowing of the source.  

The pulsar search can be parallelized by splitting the possible frequencies into bins, and each processor 
searching a given bin. The search involves selecting sky position and frequency slowing, and searching 
for statistically-significant signals.  Once a pulsar source has been detected, the result is cataloged as an 
event data structure, which describes the pulsar’s position in the sky, the signal-to-noise ratio, time etc…. 
LIGO has invested a significant amount of effort into software development2, however, efficient data 
delivery is still an open problem. 

Figure 3: Data Analysis Pipeline for Pulsar Search 
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1.4 Event Identification Computation Pipeline 
During the search for astrophysical events a long duration one dimensional time series is processed by a 
variety of filters, most of which (~90%) consist of FFT transformations. These filters than produce a new 
time series which represents the signal to noise ratio in the data. A threshold is applied to each of the new 
time series in order to extract possible events. These events are cataloged in the LIGO database. If an 
event appears to be interesting from the point of view of astrophysics, it is further investigated. In order to 
determine if the event is significant, the raw data containing instrumentation channels needs to be 
reexamined. It is possible that the occurrence of the event was triggered by some phenomena such as 
lightning strikes, acoustic noise, seismic activity, etc… These phenomena are recorded by various 
instruments present in the LIGO system and can be found in the raw data channels. To eliminate the 
influence of the above occurrences, multiple instrumentation channels must be examined and compared to 
the occurrence of the event. The location of the raw data channels can be found in the LIGO database. 
Since the event is pinpointed in time, only small portions of the many channels (that possibly needs to be 
processed) need to be examined.  This computational pipeline clearly demonstrates the need for efficient 
indexing and processing of data in various views:  

• a long time interval single channel data, such as the initial data being filtered, and  

• the many channel, short time interval such as the instrument data needed to add confidence to 

the observation of events.   

2 GriPhyN/LIGO Virtual Data 
A key component needed to implement the data pipeline is a virtual data service; a system to dynamically 
create data products requested during the various stages. The data could possibly be already processed in 
a certain way, it may be in a file on a storage system, it may be cached, or it may need to be created 
through computation. The full elaboration of this system will allow complex data pipelines to be set up as 
virtual data objects, with existing data being transformed in diverse ways. 

In the extreme, only raw data needs to exist in some archive(s). The rest of the requests for data, such as 
obtaining a single channel of data ranging over a large time interval can be derived from the original data 
set. At the other extreme, every single data product that has been created (even if it represents an 
intermediate step not referred to again) can be archived. Clearly, neither extreme is an efficient solution, 
however with the use of the Virtual Data Grid  (VDG) technology, one can bridge the two extremes. The 
raw data is of course kept and some of the derived data products are archived as well.  In this light, there 
are many opportunities for virtual data technology along the entire data pipeline, as each step does not 
need to refer to the raw data, but make use of data products already computed. Additionally, data can be 
distributed along various storage systems, providing opportunities for intelligent data retrieval and 
replication. 

The virtual data in the two examples above can be listed as: 

• single frames containing all the channels of raw data 

• cleaned, short time duration frames 

• long time duration, single channel raw data frames 

• signal to noise ratio time series (resulting from applying filters to raw time series) 

• short interval power spectra for a given channel 

• frequency images for a given channel and time interval 
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• candidate signals from a given frequency-time image 

• fully characterized event  

VDG will provide transparent access to above virtual data products. To efficiently satisfy requests for 
data, the VDG needs to make decisions about the instantiation of the various objects. The following are 
some examples of VDG support for LIGO data: 

• Raw data vs. cleaned data channels. Most likely, only the virtual data representing the most 

interesting clean channels should be instantiated. 

• Various views of data. Support for easy access to data composed from smaller pieces of data, 

such as access to long duration frames that could have been already processed from many 

short duration frames. Not all such long time data frames need to exist physically. Most 

likely, only the often-used gravitational wave channel frames should be archived, but many of 

the engineering channels do not.   

• Time-frequency image. Most likely the entire frequency-time image will not be archived. 

However, all its components (short power spectra) might be instantiated. The VDG can then 

compose the desired frequency-time images on demand. 

• Signals retrieved from images. Although many signals can be extracted from a time-

frequency image, some signals might have a very high noise-to-signal ratio and thus might 

not be often accessed. In this case, the VDG might not instantiate the corresponding virtual 

data. However, very strong signals, likely to be accessed often, might be replicated more than 

once. 

• Interesting events. Given a strong signal representing a particularly promising event, the 

engineering data related to the time period of the occurrence of the event will most likely be 

accessed and filtered often. In this case, the VDG might instantiate preprocessed engineering 

data channels, data that might otherwise exist only in its raw form. 

2.1 Simple Virtual Data Request Scenario  
We assume that the interaction of the LIGO system with the Virtual Data Grid will be made in the form of 
requests. First let us take a simple model of the virtual data Universe, by assuming a Cartesian product of 
a time interval with a set of channels: In reality, of course, it is not so simple. There are sections of 
missing data, multiple interferometers, data recorded in different formats, and so on. The interesting data 
has been transformed and filtered, there are multiple interferometers. Thus there is (in principle) a map 
from (channel C, time interval I) to a 2-byte integer whenever the channel is in C and the time in I.  The 
raw data are one-second files containing all the channels and these can be processed (for some special 
channels) to on-the-fly files with a much longer time interval, but each with only one channel. 

In the following, we consider requests for the data from a subdomain of the full domain. Each request is 
for the data from a subset of the channels for a subinterval of the full time interval. Thus, a request might 
be written in as:  
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T0=700004893, T1=700007847; IFO_DCDM_1, IFO_Seis_*  

where IFO_DCDM_1, is a channel, and IFO_Seis_* is a regular expression on channel names that maps 
to the three coordinates of the seismometer IFO_Seis_x, IFO_Seis_y, and IFO_Seis_z. Our first task is to 
create a naming scheme for the virtual data object, each name being a combination of the name of a time 
interval and the name of a set of channels. 

This could be satisfied if there is a suitable superset file in the replica database, for example this one:  

T0=70004000, T1=700008000; IFO_DCDM_1, IFO_Seis_x, IFO_Seis_y, IFO_Seis_z, IFO_DP   

Thus, we need to be able to decide if a given Virtual Data Object (VDO) contains another, or what set of 

VDO's can be used to create the requested VDO. Tools could be used to combine multiple files (C1,I1), 

(C2,I2), ... perhaps as:  

• The new file could be (union Ci, intersect Ii), a channel union tool, or  

• The new file could be (intersect Ci, union Ii), an interval union tool. 

We could thus respond to requests by composing existing files from the distributed storage to form the 
requested file.  

In addition to these compositions, there will be requests for transformations performed on the data, such 
as request for files, which are Fourier transforms of the time series data, as those used in the frequency-
time image.  

Issue: We need to know more about the transformations (capture the knowledge about how they are 
performed which results are temporary and which need to be persistent). We need to know how many 
transformation there are (order of magnitude), are they well defined in terms of inputs, outputs and 
computational requirements. This information is needed in order to be able to execute the transformations 
on data sets as well as to determine how to describe them.  

2.2 Generalized Virtual Data Description 
The goal of the GriPhyN system is to make it easy for an application or user to access data. As a starting 
point, we will require that all requests be made in the form:  

(1) a range of time t0 to t1 (specified in GPS seconds) , followed by 

(2) a list of virtual channels (described below). 

Consequently, GriPhyN would return a set of virtual channels for the specified time interval.  

Virtual Channels 

A virtual channel is a time series, like a real channel, but it may be derived from actual channels, but not 
correspond to a channel in the raw data. Some examples of virtual channels are:  

• An actual recorded channel, "raw".  

• An actual recorded channel, but downsampled or resampled to a different sampling rate.  
• An arithmetic combination of channels, for example 2C1 + 3C2, where C1 and C2 are existing 

channels. 
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• The actual channel, convolved with a particular calibration response function, and scaled. For 

example, the X component of the acceleration.  

• The virtual channel might be computed from the actual data channels in different ways depending 

upon what time interval is requested (eg, the calibrations changed, the channels were hooked up 

differently, etc).  

• A virtual channel could be defined in terms of transformations applied to other virtual channels.  

In short, the virtual channels are a set of transformations applied to the real data.  

The set of virtual channels would be extendable by the user. As the project progresses, one may want to 
extend the set of virtual channels to include additional, useful transformations. Thus, if a user is willing to 
define a virtual channel by specifying all the necessary transformations, it will be entered in the catalog 
and will be available to all users, programs, and services. New channels can be created from the raw data 
channels by parameterized filters, for example decimation, heterodyning, whitening, principle 
components, autocorrelation, and so forth. 

Data naming 

A crucial step in the creation of the GriPhyN Virtual Data model is the naming scheme for virtual data 
objects. Semantically, we might think of names as a set of keyword-value pairs, extended by 
transformations, perhaps something like (T0=123,T1=456,Chan=[A,B*,C?]).pca().decimate(500). The 
first part in parentheses is the keyword-value set, the rest is a sequence of (perhaps parameterized) filters. 
We could also think of using names that contain an SQL query, or in another language. The syntax could 
also be expressed in other ways, as XML, or with metacharacters escaped to build a posix-like file name. 
We could use a syntax like protocol://virtual-data-name to express these different syntax in one extensible 
syntax. However, decisions on naming Virtual Data must be premised on existing schemes described in 
Section 1.2. 

3 GriPhyN Support  
The goal of GriPhyN is to satisfy user data requests transparently. When a request for a set of virtual 
channels spanning a given time interval is made, the application (user program) does not need to have any 
knowledge about the actual data location, or even if the data has been pre-computed.  GriPhyN will 
deliver the requested virtual channels by either retrieving existing data from long term storage, data 
caches containing previously requested virtual channels, or by calculating the desired channels from the 
available data (if possible).   

When satisfying requests from users, data may be in slow or fast storage, on tape, at great distance, or on 
nearby spinning disk. The data may be in small pieces (~1 second) or in long contiguous intervals (~1 
day), and conversion from one to another requires computational resources. A given request for the data 
from a given time interval can thus be constructed by joining many local, small files, by fetching a distant 
file that contains the entire interval, or by a combination of these techniques. The heart of this project is 
the understanding and solution of this optimization problem, and an implementation of a real data server 
using GriPhyN tools.  

3.1 User Requests 
The initial implementation of theGriPhyN system will accept requests in the semantic form: 

  to,t1; A,B,C, … where to, t1 is a time interval, and A, B, C,  …  are virtual channels. 
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We assume that the order in which the channels are listed does not affect the outcome of the request. The 
syntax of the virtual channel is yet to be determined. In the simplest form, a virtual channel resulting from 
a transformation Trx on a channel Cy would be Trx(Cy); additional attributes (such as transformation 
parameters or other input channels) can be specified as additional parameters in  the list: Trx(Cy, Cz, t0, 
….), depending on the transformation. The transformation specific information will be stored in the 
Transformation Catalog described below. 

3.2 Data access, cost performance estimation  
The request is initially received by the Request Manager (Figure 4) and sent for processing to the 
Metadata Catalog, which provides the set of logical files that satisfies the request, if such exists. The 
files names are retrieved from the Metadata Catalog based on a set of attributes. A possible metadata 
catalog is the SRB system developed at SDSC http://www.npaci.edu/DICE/SRB/index.html.  

The logical files found in the Metadata Catalog are sent to the Replica Catalog, which maps them to a 
unique file id. The information about the actual file existence and location (provided by the Replica 
Catalog) are passed to the Request Manager, which makes a determination about how to deliver the data.  

If the requested data is present, the Request Manager still needs to determine whether it is cheaper to 
recalculate the data or access it. When considering the cost of referencing data, the cost of accessing 
various replicas of the data (if present) needs to be estimated. If the data is not present, the possibility and 
cost of data calculation needs to be evaluated. In order to make these decisions, the Request Manager 
queries the Information Catalog. The latter can provide information about the available computational 
resources, network latencies, and bandwidth, etc… 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: GriPhyN Architecture 
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The Request Planner is in charge of creating a plan for the execution of the transformations on a given 
data set and/or creating a plan for the retrieval of data from a storage system. The Request Planner has 
access to the system information retrieved by the Request Manager. To evaluate the cost of re-
computation, the cost of the transformations needs to be known. This information, as well as the input and 
parameters required by a given transformation, code location, etc… are stored in the Transformation 
Catalog. Initially, it will be up to the user to specify the transformation, to indicate whether the 
transformation is deterministic, and, if so, how the cost of the transformation varies with the size of the 
set being transformed (linear, quadratic, N log N, …). This would enable the Request Planner to estimate 
the relative costs of computation vs. caching, and so on. The system would possibly keep a record of how 
long the various transformations took, and could use this performance history to estimate costs. This 
record and the analytical performance estimates will be maintained in the Transformation Catalog. 

The performance data needed in the evaluation of re-computation and replica access costs (such as 
network performance, availability of computational resources, etc.) will be provided by information 
services such as the NWS: ws.npaci.edu/NWS/ or GIIS: ww.globus.org/toolkit/information-
infrastructure.html.  

Once the request planner decides on a course of action the Request Executor is put in charge of carrying 
out the plan which involves the allocation of resources, data movement, fault monitoring, etc. The 
Request Executor will use the existing Globus infrastructure to access the data and the computational 
Grid. 

As a result of the completion of the request, the various catalogs might need to be updated. 

3.3 Proactive Data Replication  
Simply, just retrieving data from the replica catalog is not sufficient. The system must take a proactive 
approach to creating replica files and decide whether the results of transformations will be needed again. 
For example, if there is a request for a single channel spanning a long time interval and the replica catalog 
contains only files which are multi-channel spanning short time periods, then a significant amount of 
processing is needed to create the requested file (many files need to be opened and a small amount of data 
needs to be retrieved from each of them). However, once this transformation is performed, the resulting 
data can be placed in the replica catalog for future use, thus reducing the cost of subsequent requests. New 
replicas should also be created for frequently accessed data, if accessing the data from the available 
locations is too costly. For example, it may be useful to replicate data that initially resides on tape to a 
local file system. Since the Request Manager has information about data existence, location and 
computation costs, it will also be responsible for making decisions about replica creation.  

Issues: 

• Since physicists use both single channel data over long periods of time and multiple channel data over 

short time intervals, we need to provide a dual view of the data: both time indexed and channel 

indexed. We also need to do that efficiently, therefore we need to consider how we will view the data: 

for example as a small chunk: a 1-second Frame with a single channel, or will we allow files that span 

multiple channels and longer time intervals. Obviously, indexing into a regular data set is easiest, but 

the cost of data retrieval can be much higher. 
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• Not all data will be viewed as a series, as some data analysis will produce events and these need to be 

accommodated in the virtual data world.  

• We need to decide whether to use the LIGO metadata catalog (need to find out more about it), or start 

something new with SRB for the purposes of the project. Similarly, the use of the LIGO DB2 replica 

catalog needs to be evaluated.   

• We need to capture the knowledge behind the transformations and their inter-relationship in order to 

be able to index the data efficiently, and provide consistent results. 

• We need to be able to determine how long the results of a given transformation are kept. Maybe 

allowing the user to indicate the data priority would be a good solution. We can have a range of 

priorities: do not catalog, keep if space available, … never delete. 

• We need a decision-making facility that can support proactive replica creation. 

 
Existing Software: 
 
• LIGO Data Analysis System (LDAS). 

• Frame manipulation: we are currently developing Frame manipulation tools based on the FrameCPP 
library provided by LDAS. 

• Metadata catalog: SRB: http://www.npaci.edu/DICE/SRB/index.html, MCAT: 
http://www.npaci.edu/DICE/SRB/mcat.html, LIGO DB2, running under Solaris, accessible by a Tcl-
based language.  

• Replica catalog: Globus: http://www.globus.org, LIGO DB2  

• Transformation catalog: Globus, Condor: http://www.cs.wisc.edu/condor/. 

•  Request planner: HRM , Matchmaker: http://www.cs.wisc.edu/condor/publications.html. 

• Request executor: HRM, Condor, GridFTP: http://www.globus.org/datagrid/, SRB, WAFT: 
http://www-cse.ucsd.edu/~marzullo/WAFT/index.html. 
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