
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LIGO-T000050-00Technical Note E- 4/14/00

Requirements for LDAS Database
User Interface Tools

P. Shawhan

Distribution of this draft:

LDAS Group; LIGO Scientific Collaboration

California Institute of Technology
LIGO Project - MS 51-33

Pasadena CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project - MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working note
of the LIGO Project

Table of Contents

Index

File /home/pshawhan/metadb/doc/InterfaceToolsReq.fm — printed April 14, 2000

LIGO-T000050-00

3
3
4
. 4
5
. 6

Contents

1 INTRODUCTION .
2 GENERAL REQUIREMENTS. .
3 REQUIREMENTS FOR SPECIFIC CASES .

3.1 Online Event Generation .
3.2 Offline Analysis Program Interface. .
3.3 Graphical User Interface .

4 SOCKET COMMUNICATION EXAMPLES . 6
4.1 Tcl . 6
4.2 perl .. 6
page 2 of 7

LIGO-T000050-00

s
es, a
bout
ata-
LIGO-

re-
r-

e” of
 the
tline

ith the
n the
o fig-

 in
s and

iary
n into

rma-
se
 will

e an
bmit-
is pro-

ents of
lay the

 data-
 above.

fini-
cifi-
1 INTRODUCTION
The LIGO Data Analysis System (LDAS) includes a database to store “metadata” of variou
types, including catalogs of raw data files, astrophysical and environmental event candidat
record of the state of each interferometer as a function of time, and summary information a
data quality and environmental conditions. These types of information, and the relational d
base tables which have been implemented to store them, have been described in detail in
T990101-02, “Table Definitions for LDAS Metadata / Event Database”.

The LDAS software design, described in LIGO-T990001-06, “LIGO Data Analysis System P
liminary Design”, includes several components (referred to as “application-programmer inte
faces”, or “APIs”) which work together to provide remote access to the database, format
translation, job management, and scripting capabilities. These APIs make up the “LDAS sid
the database interface, and their implementation in software is nearly complete. However,
LDAS preliminary design did not cover the “user side” of the database interface, except to ou
the communication protocol between a generalized “user API” and the core LDAS system.

Over the past several months, there has been further thought about how users will interact w
database. This has led to the realization that there should be a set of standardized tools o
“user side” of the interface to facilitate insertion and retrieval, rather than leaving each user t
ure it out for himself/herself. There are three distinct situations:

1. Various programs run continuously at each LIGO interferometer site to analyze the data
near-real time. These include the LDAS online search for astrophysical event candidate
numerous online diagnostics and data-monitoring programs to detect transients in auxil
and environmental channels. All of these programs need to be able to insert informatio
the database while continuing to run.

2. Offline analysis programs may use information from the database, or generate new info
tion to be inserted, or both. Thus, an offline program should be able to submit a databa
query and parse the results. A given offline job operates on a fixed amount of data, and
therefore end after a finite length of time, so its output can be written to a single file. Whil
analysis program is being developed, the output file generally should not actually be su
ted to the database, but just checked by a human; on the other hand, a finalized analys
gram should be able to submit its output file automatically.

3. A general-purpose graphical user interface is needed to allow users to explore the cont
the database. It should help the user construct appropriate database queries, and disp
results in a readable manner as rapidly as possible.

The rest of this document describes the general requirements for interacting with the LDAS
base, and then discusses some specific requirements for each of the three situations listed

2 GENERAL REQUIREMENTS
All data input to or output from the database will be in the form of a “LIGO lightweight” file.
This is an XML (eXtensible Mark-up Language) file with a LIGO-specific document type de
tion, which has been described in LIGO-T990023-01, “LDAS Lightweight Data Format Spe
cation” (but with “XSIL” to be replaced by “LIGO_LW”). In general, a LIGO_LW file can
page 3 of 7

LIGO-T000050-00

ed in
con-

sible

 user-
ized to
entific

user
AS

 data-

is
ad
ery is
on

 dif-

ng of
ific

ble to
the
other
uanti-

a fair

tain
a limit

at
 was

e-
contain several different types of data objects, but all database input and output will be stor
one or more TABLE objects, with reasonably deterministic object naming and file formatting
ventions. This simplifies the task of creating tools for database input/output.

Data is inserted into the database by putting the relevant LIGO_LW file in a directory acces
via http or anonymous ftp and then sending a “putMetaData” command to the LDAS
managerAPI, over a network socket, specifying the file location as well as the user’s LDAS
name and password. The LDAS username is used to determine whether that user is author
insert data into the database, since database additions must be approved by the LIGO Sci
Collaboration (through a procedure to be determined). An email message will be sent to the
when the insertion succeeds (or fails); this information is also written to a log file on the LD
web server.

Data is retrieved from the database by sending a “getMetaData” command to the LDAS
managerAPI, specifying a query expressed in SQL (the native language of the commercial

base underlying the LDAS system)1 and the desired return protocol, e.g. creating a file which
retrievable through the LDAS web server. All registered LDAS usernames will be able to re
from any database table. An email message will be sent to the user when handling of the qu
complete, indicating the location of the results file; this information is also written to a log file
the LDAS web server.

Section 4 contains some examples of socket communication with the LDAS managerAPI in
ferent languages.

The two main goals of user interface tools are to facilitate the correct formatting and/or parsi
LIGO_LW documents and to streamline communication with the LDAS managerAPI. Spec
requirements are discussed in the following sections.

3 REQUIREMENTS FOR SPECIFIC CASES

3.1. Online Event Generation

As mentioned in Section 1, online programs process the data as it is collected and must be a
insert information into the database while continuing to run. This information will often be in
form of events (or “triggers”, conventionally used to describe transients detected in channels
than the gravity-wave signal), although periodic summary information (spectra, statistical q
ties for key channels, etc.) will also be produced. The database insertion procedure requires
amount of sophistication because of a number of issues:

• It is desirable to buffer events and insert many at the same time, because there is a cer
overhead associated with any database transaction. On the other hand, there should be
to the amount of time an event may sit in a buffer before being inserted.

• Management of LIGO_LW files is simplified if they are written to a directory created for th
purpose, rather than a user’s home directory or the current directory when the program

1. In the future, special-purpose LDAS commands may be created to submit common qu
ries without using SQL.
page 4 of 7

LIGO-T000050-00

API
re or
have

e from
 is

ilable

SS
eep a

d
mmu-

ary to
 to an
unica-
m

.

 list of
 a
tu-
tten
ost all
quen-

ML
ons.

ut to
ause

ich
ission.

rs.

l

started.

• Once written, LIGO_LW files need to be transmitted to LDAS by contacting the manager
at the appropriate site. After a file is transmitted, it should probably be archived somewhe
perhaps simply deleted—but in either case, only after the database insertion is known to
succeeded. But an online program should not be expected to wait for the status messag
LDAS before continuing to process more data, so a certain degree of asynchronous flow
needed.

• A database downtime should not prevent online programs from generating events; the
LIGO_LW files should be kept somewhere, and then inserted when the database is ava
again.

• Every database entry made by a process is tagged with a unique “process ID” which is
assigned when the first information from that process (including its entry in the PROCE
database table) is inserted into the database. Since the LDAS metaDataAPI does not k
persistent record of the process ID assigned, it must be retrieved from the database an
included in all later files submitted by the process. This requires some asynchronous co
nication.

It is not reasonable to expect the many online programs to all have the sophistication necess
address the issues listed above. Therefore, all online programs will send event information
intermediate process which will handle buffering, correct use of process IDs, and all comm
tion with the LDAS managerAPI. For the Data Monitoring Tool (DMT) computers, a progra
called the “trigger manager” has been written to do this; for the LDAS online (and perhaps
offline) event searches, these functions will probably be performed by the eventMonitorAPI

3.2. Offline Analysis Program Interface

Offline analysis programs need to be able to read from the database—for example, to get a
locked segments to be analyzed—as well as write to it. Reading normally involves sending
query to the LDAS managerAPI and getting the resulting LIGO_LW file onto a local disk; ac
ally, one can read from any LIGO_LW file containing one or more table objects, e.g. a file wri
by some other offline analysis program but not ingested into the database. I believe that alm
analyses will just need to loop over the rows in a table, so the LIGO_LW file can be read se
tially rather than building a memory image of the complete document (as is done by true X
parsers). This allows us to read arbitrarily large files without worrying about memory limitati

The output of an analysis job will normally be a single LIGO_LW file with one or more table
objects. It may just be kept on disk for inspection with the graphical user interface and/or inp
other analysis programs, or it may be submitted for ingestion into the LDAS database. Bec
all the information is contained in a single file, ingestion is fairly straightforward and will not
require a “trigger manager” or similar process. However, the user will still have to specify wh
database site to connect to and provide an LDAS username and password with write perm

“Offline analysis” will be done on many computer systems, not just LDAS computing cluste
Therefore, the sequential input/output interface described above should be included in the
LIGO/LSC Algorithm Library (LAL). Thus it will need to be written in C, perhaps with some Tc
helper scripts to simplify communication with LDAS.
page 5 of 7

LIGO-T000050-00

r it is
 is, it
the
ould
e not

 que-
 to the
In the
them,

to

he
3.3. Graphical User Interface

The graphical user interface should display table information in a convenient fashion, whethe
returned by a database query or is from a disk file written by some analysis program. That
should be a general-purpose LIGO_LW table viewer. It should provide features to simplify
task of cross-referencing information between database tables known to be related, but sh
also be able to display unfamiliar tables. Ideally, it should be easy to use even for someon
familiar with the organization of the LDAS database.

The graphical user interface should provide point-and-click methods to construct database
ries. Simple queries should be the simplest to construct and execute. Queries will be sent
LDAS managerAPI, so the user will have to enter his/her LDAS username and password.
interest of fast turnaround, the program should automatically retrieve the results and display
circumventing the LDAS email notification method which is better suited for lengthy jobs.

It is highly desirable for the graphical user interface to be usable on any computer system,
whether or not other LDAS software is installed. Installation should be reasonably simple,
encourage people to explore the contents of the database.

4 SOCKET COMMUNICATION EXAMPLES
This section contains some code fragments which demonstrate how to communicate with t
LDAS managerAPI.

4.1. Tcl
;##- Open a socket to the LDAS managerAPI
if { [catch {socket $hostName $port} sockId] } {
 puts "Unable to connect to LDAS manager"
 return ""
}

;##- Send the LDAS command (which was constructed previously)
puts $sockId $ldascmd

;##- Get the response from the managerAPI and print it out
flush $sockId
set jobInfo [read $sockId]
puts $jobInfo

;##- Close the socket connection
close $sockId

4.2. perl
##- Open a socket to the LDAS managerAPI
use IO::Socket;
$sockId = IO::Socket::INET->new(Proto => "tcp",
 PeerAddr => $hostName,
 PeerPort => $port)
 or die "Unable to connect to LDAS manager, aborting";
page 6 of 7

LIGO-T000050-00
##- Send the LDAS command (which was constructed previously)
print $sockId $ldascmd;

##- Get the response from the managerAPI and print it out
@jobInfo = <$sockId>;
print @jobInfo;

##- Close the socket connection
close $sockId;
page 7 of 7

	File /home/pshawhan/metadb/doc/InterfaceToolsReq.fm — printed April 14, 2000
	Laser Interferometer Gravitational Wave Observatory
	- LIGO -
	Contents
	1 Introduction 3
	2 General Requirements 3
	3 Requirements for Specific Cases 4
	3.1 Online Event Generation 4
	3.2 Offline Analysis Program Interface 5
	3.3 Graphical User Interface 6

	4 Socket Communication Examples 6
	4.1 Tcl 6
	4.2 perl 6

	1 Introduction
	1. Various programs run continuously at each LIGO interferometer site to analyze the data in near...
	2. Offline analysis programs may use information from the database, or generate new information t...
	3. A general-purpose graphical user interface is needed to allow users to explore the contents of...

	2 General Requirements
	3 Requirements for Specific Cases
	3.1. Online Event Generation
	3.2. Offline Analysis Program Interface
	3.3. Graphical User Interface

	4 Socket Communication Examples
	4.1. Tcl
	4.2. perl

