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Calculation of the Photothermal Effect

m Thermal Expansion Noise

Thermal expansion noise, in which absorbed light heats a mirror and causes it to expand, was brought to our attention by
Braginsky et a [1]. Wethen had an ideafor an experiment which could measure this effect. First, construct an interferome-
ter from a metal mirror and a dielectric mirror. If the metal mirror has high thermal expansion, low heat capacity, and
high thermal conductivity, then the effect will be noticeable. Then, we modulate the intensity of the laser into the IFO.
Thiswill heat the surface of the metal mirror, which will change the length of the cavity. This, we can measure either with
this modulated beam or with another probe beam. And, since we can do the modulation at a known frequency, we can
make a lock-in measurement of the thermal expansion effect.

To analyze this effect, we model the mirror as an infinite half-space of material. For the simple, 1-d calculation, pretend

that the mirror isilluminated by a uniform light whoseintensity varies, perhaps as g (1 - coqwt]). The heat equation for
this systemis[2]:

[_(;'_X)Z ¥ o-%] ux, t) = o f(x, t)

f(x, t) = o(X)SIn[w]
And the displacement of the surface of the mirror is

dit) = fo‘”p% u(x, t) d x

where u(x,t) isthe thermal energy density of the material aboveequilibrium, f(x,t) isthe thermal forcing function, and the
constant o = a™ = pC/A. Weshall solvethis in the steady-state general case of an oscillating beam intensity.

The standard Green's function solution to the diffusion equation in D dimensionsis:

G(X, X} §) = —— = 20{/% e Veapx]

G(x t; X', t') = (4ra|t—t' |y PR edarn

Then, invoking the magic of Green's functions,
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uex, t) = fotalt’G(x, t: X, t"Yh(x’, t")

m 1 dimension

For a step function perturbation,
h(X ,t')= &X' )&t )P(energy/area),
ux, t) = Pfotclt’(47ra|t—t’|)—1/2 earh
a o t ) N —(X—X'),2
dit)= 2& [“dx [dt'4ralt-t' ) eme
Integrating first in x, then in t', we get

di) = 5, t,

which corresponds to constant thermal expansion of the mirror, as expected.

For an oscillatory perturbation,

h(x ,t')= AX )&t )sin(«t')P(energy/area),

ux, t) =P ['dt' 4ralt—t' )P emrosin(wt)

—(x=X)?
dty= P& [“ax [dt @ralt-t)2emrrsn(wt)
Note that h(x',t'<0)= 0. This makes the integration easier, and it turns out that this doesn’t affect the result for large t.
Thisis only true in one dimension. Since we integrate thermal expansion over the variable X, al the time terms other than
in the driving force disappear from the integral. The physical explanation is that since heat deposited in the mirror only
diffusesin one direction, away from the mirror surface, and since therma expansion is linear wrt thermal energy, the
mirror is a perfect integrator of thermal energy.

Using the same trick, integrating first in x and then in t', we get

dt) = + 5.¢ coswt)

Note the 90 degree phase shift in the displacement measurement relative to the input.
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Here' sa plot of the amplitude of the response of the mirror, in centimeters, for Aluminum, Sapphire, and Fused Silica for
.001 watt / cm? of heat being absorbed by the mirror. All units are cgs.

<< Graphi cs’ Ani mati on'
<< Graphi cs' Graphi cs*
<< Graphi cs’ Col ors*

Al um num = {a - 23.1*10'6, A-2.37%107, p-2.7, C—>.897*107};

Sapphire = {a>5%10°% A5 0.4%107, p>4, C>0.79+107};

FusedSilica = {a »0.55%10°%, A>0.014+107, p>2.2, C->0.67%10"};
Pa

ResponselD[P_, w_, Material _] : = /. Material;
2wpC

LogLogP! ot [{ResponselD[10% 2xv, A um num],
ResponselD[10% 2 nxv, Sapphire], ResponselD[10% 2 =xv, FusedSilical}, {v, 1, 1000},
Pl ot Styl e - {RGBCol or [0, 0, 1], RG&Col or [0, 1, 0], RG&BCol or [1, O, 0]},

Frame - True, FranelLabel - {"Frequency (Hz)", "Di spl acenent anplitude (cm)"}1;
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m 3dimensions

Same thing, but in 3-d. To do this, we add a gaussian beam profile to the thermal forcing function and the y and z
coordinates.to the Green' sfunction. Let x’ = x1 for Mathematica’ shenefit. To make the calculation simpler, I'mgoing to
|leave out the laser power and the material properties until then end. 1’1l assume that Poisson’ sratio is zero. Later, we can
handle nonzero o with the transformation & - «(1+0), and only be off by geometric factors of order unity for small
perturbations.

h(y,zt) is the thermal forcing function -- the amount of power per area per time deposited on the mirror surface. Implicit
in histhe laser power, which we will remember for later. We do not have to take h(x' ,t'< 0) = 0, aswe did in the 1-D
case. Later, we'llintegrate the perturbation time, t',from -co to t.
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G(x,y,zt;xX,y,Z,t) isthe standard three-dimensional Green’sfunction for heat diffusion. [2]

_ A
a_pc.

-{y?+22) 1
hiy_, z_, t_1=E" 2 E“' —; (« length? &)
r2

GIx_, y_, z_, t_, x1_, yl_, z1_, t1_] =

- - —(x2+(y-y1)2+(z-21)2
(4ra (t —'[l))_3/2|: ( );;/(t—ti) ); (% ti me 372 )

The thermal energy density in the material is what we will use to calculate the motion of the mirror surface. By the
standard Green’ sfunction equations,

ux, ¥,z t; t)= [Gx, y, z t; X', Y, Z, t)h(y, z t)d(y', Z)

and

ux, ¥,z t) = fux y, z t; t')dt

We should also integrate out t', but it turns out that it will be easier to do this later. Remember: we'restill missing the laser
power term in the Mathematica equations.

ul[x_, vy, z_,t_,tl 1 =Integrate[G[X, vy, z, t, x1, y1, z1, t1] h[yl, z1, t1],

{yl, -c0, ®}, {z1, -o, ©}];

We now know the thermal energy density in the mirror material. We can integrate this energy density over depth to
calculate the displacement of the surface of the mirror.

diy, z t; )= & Jux y, zHd X

diy, z t) = [d(y,z t; t")dt’

It turns out to be easier to first integrate the Green’sfunction and the source function over x, then to integrate over the
source variablesy’ and z'. This gives us the amount of heat energy below a point on the surface of the mirror. Multiplying
by a/pC converts the heat energy into an actual distance.
The missing constants are now A2g<.

dify_, z_, t_, t1 1 = Sinplify[Integrate[G[x, vy, z, t, x1, y1, z1, t1] h[yl, z1, t1],

{X! 0! C!)}, {yl! =00, C!)}, {Zl! =, C!)}]]
(» length )

$Abort ed
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dify, z, t, t1]

i (4 (tt1)t12wCo (iy2+iz2+4r2t1w))

Ce 4t A-4t12+Cr2p Jo)
(t-t1) x C
27r\/ U \/ufu (4t A -4t1A+Cr2p)

Now, we can integrate over t’ to calculate the displacement of a point on the mirror. Well, actually, we can’t. We can solve
it numerically, or integrate out y and z first, which wewill do when we cal cul ate the measured signal.

SurfaceDisplacenent [y_, z_,t_, r_,a, w]:=

y2+z2-it1 (r2+4at-4atl) e
e r2+4a (t-t1)

Nintegrate|

, {t1, 0, t};
2r (r2+d4a(t -tl)) ¢ }]

We can evaluate that integral numerically, but we'rereally interested in the signal we measure with an interferometer.
With the Pound-Drever-Hall technique, we measure the amplitude, not the power, of the returned light. So, we want to
average the surface displacement over the amplitude of the electric field at the mirror. This is different than the calcalcula-
tion that Braginsky made! Since the light amplitude falls off slower than the intensity, this actually leads to a smaller
measurement, as we sample more of the region of mirror that is less displaced. This is what accountsfor the 3r2 term

| am now assuming that the surface displacement changes are small compared to the dynamic range of the PDH error
signal, and that the electric field is that of a Gaussian TEM 0O mode.

flwb) = [dy, z t; t)ECY, Dd(y, z t)

e : Pa
The missing constants are still +C-

42422

E 2
Fieldly_, z_] = i (%« normalized =)
yr2
y2+z2-it1 (r2+4at-4at1) o
e r2+4a (t-t1)
fl-= Fieldly, z1;
2 (r2+4a (t -tl))
Sinplify[f1l]
y2422 i (4 (t-t1) t12wCp (iy2riz24r2t10))
Ce 12 ° 4t a4tiacrip I

2mr2 (4t A-4t1x+Cr2p)
f2 = Integrate[fl, {y, -o, ®}, {zZ, -, ©}];
Simplifyl[f2]

Ce]itlwp
8t x-8rntlAx+4Cnr2p

WEe'llintegrate this function by hand, since the computer doesn’tdo it very well. This is a tabulated integral, which Mathe-
matica knows as
edX e a

rac
bx ¢ ¥ =7 EXP|ntEQFa|EI[T+ax]
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So, integrating, we get...

t pceﬂtlw a1
.8t A+4Crr2p-8xtla

eiwﬁeiwt . . r2 .
= (Expl ntegral Ei [-i wﬁ] + n)
What is that, you ask?
Forx — oo, Ei(£iX) > %inm.

Forx>>1,Ei(-ix)+in=-x1e'x

So, approximately, for large frequency,

f(t) let 2a

,oC 8a7T rzow

f(w) =

47Tr2pCa)

Or, in display form:

flw)= £& k (El[-iw L] +in)

WhereEl(z) = - [ e™'/tdt

These are the results:

. Pa 1 2a .
Response3DApprox [P_, r_, w_, Material ] =2 — —— /. Material;
pC 8an r2uw

Response3D[P_, r _, w_, Material _] : =

Pa 1 L2 L irle
e*za ® |-Explntegral E [-

pC 8ar

]-I x| /. Material

For now, let’slook at expected sensitivity plots for some materials.We'll take the spot radius to be 0.04 cm and the varia-
tion in the laser power absorbed by the surface to be 400 mW peak-peak. Remember, dimensions are in cgs. The x axisis
the frequency at which the laser power varies, and the y axis is the distance in cm that will be measured by the PDH error
sgnal.

Notethat in this formula, P is the square root of the spectral density of the absorbed power. For excitations driven by shot
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noise, the variation in the thermal forcing function is £1° (Braginsty et a, 1999). For example, 5 mW of shot noise
excited phonons should give a response of

Thermal Forcing = Sqrt [6.6 10727 310%°510%/7107*];
LogLogPI ot [{0. 01 Abs [Response3D[Ther nal Forci ng, 0.015, 2 xf, FusedSilicall,
0. 01 Abs [Response3D[Ther mal Forci ng, 0.015, 2 nf, Sapphire]l},
{f, 0.1, 10000}, GidLi nes -» None,
Ti cks -» None,
Pl ot Styl e - {{Red, Thi ckness[0.002], Dashing[{0.01, 0.013}1},
{Bl ue, Thi ckness [0.002], Dashing[{0.01, 0.01}1}},
FrameTi cks » {Automatic, Table[{10™, -n}, {n, 10, 25}]1},
Pl ot Range -» {{107%, 10%}, {10725, 1071933,
| mageSi ze » {800, 600}, Frane - True, Aspect Rati oFi xed - Fal se,
FraneLabel - {"Frequency (Hz)", "RM5S Noise (Log(m/rHz))",
"Phot ot hermal Noi se", "RM5 Noise (Log(m/rHz))"}1;
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m Sine wave perturbation

For an oscillatory perturbation, here’ swhat you get (1 W = 10erg/s):
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LogLogPI ot [{
Response3DAppr ox [4 108, 0.04, 2 xv, Al uni num],
Response3DApprox [4 108, 0.04, 2 v, Sapphire],
Response3DAppr ox [4 108, 0.04, 2 xv, FusedSilical},
{v, 1, 1000}, Pl ot Style » {R@Col or [0, O, 1], RGBCol or [0, 1, O],
RGBCol or [1, 0, 0]}, Frane - True,
FranelLabel - {"Frequency (Hz)", "D splacenment anplitude (cm)"}1;

0. 00001 ¢

1. x10°% |

1. x107

1. x10°8 |

Di spl acenment anplitude (cm)

1. x10° L

20 50 100 200 500 1000
Frequency (Hz)

Now, the exact results for all three materials, using the same experiment conditions, with magnitude and phase. The black
line indicates the apprioximate result from above.

Laser Power = 2.510% « 0.01; (+ 1%absorption is realistic for Al uninum &)
Spot Si ze = 0. 04;
MaxFreq = 5000;
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LogLogPI ot [{
Abs [Response3D[Laser Power, Spot Size, 2 xv, Al um num]],
Abs [Response3D[Laser Power, Spot Si ze, 2 v, Sapphirel]l],
Abs [Response3D[Laser Power, Spot Size, 2 nv, FusedSilicall,
Response3DAppr ox [Laser Power , Spot Si ze, 2xv, Al um num]},
{v, 1, MaxFreq}, Pl ot Styl e » {RGBCol or [0, O, 1], RGBCol or [0, 1, O],
RGBCol or [1, 0, 0], GrayLevel [0]}, Frame - True,

FranelLabel - {"Frequency (Hz)", "Di splacenment anplitude (cm)"}1;
LogLi near Pl ot [{

180 . .

—— Arg[Response3D[Laser Power, SpotSize, 2xv, A um num]],
T

180 . .

—— Arg [Response3D[Laser Power, Spot Size, 2 xv, Sapphire]l,
T

180 . -

—— Arg [Response3D[Laser Power, Spot Size, 2 xv, FusedSilica]l }
T

{v, 1, MaxFreq}, PlotStyle - {R@Col or [0, 0, 1], R&Col or [0, 1, O],
RGBCol or [1, 0, 0]}, PlotRange » {0, -90}, Frane - True,
FranelLabel - {"Frequency (Hz)", "Response phase (deg)"}];

1. x1077 |

1. x10°8 |

1. x10° |

1. x10710 |

1. <107 |

Di spl acement anplitude (cm)

50 100 500 1000 5000
Frequency (Hz)



PHOTOT~1.NB

11

-20 L
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Now, compare what effect the spot size has on a mirror. For this example, take P=1mW (absorbed power variation is 2
mW peak-peak), and spot sizes of .1mm, 0.5mm, 1mm, and 2mm on an aluminum mirror. The lighter colors indicate
smaller spots.

Abs [Response3D[10%, 0.01, 2 »x 100, Al umi num]]
Abs [Response3D[10%, 0.05, 2 x 100, Al umi num]]
Abs [Response3D[10%, 0.1, 2 x100, Al unmi num]]
Abs [Response3D[10%, 0.2, 2 x100, Al unmi num]]

1. 2601 x10°°
3.18486 x 10710
1.10598 x10°10

2.99431 <1071t
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LogLogP! ot [{Abs [Response3D[10%, 0.01, 2xv, Al um num]],

Abs [Response3D[10%, 0.05, 2xv, A um num]],

Abs [Response3D[10%, 0.1, 2xv, Al uninum]],

Abs [Response3D[10%, 0.2, 2xv, Aluninum]]}, {v. 1, MaxFreq}, PlotStyle -

{R@&Col or [0, O, 1], RGBCol or [0, O, .75], R@&BCol or [0, O, .5], RG&BCol or [0, O, .251]1},

Di spl acement anplitude (cm)

Frame - True, FranelLabel - {"Frequency (Hz)", "Di spl acenent anplitude (cm)"}1;
1. x107% | 1
1. x10710 | 1
1. x10711 | 1
1. x10712 | 1

10 100 1000
Frequency (Hz)

[any

Neat, eh? The effect should be quite large. Here' sa snapshot of what the mirror surface will look like for an Aluminum
mirror driven at 400 Hz with 400 mW p-p power variation. The spot size is 0.04 cm. The x axis is the distance from the
center of the spot, in cm.

Aly_, t

a
_1 : = Re[Laser Power —

pC

Sur f aceDi spl acenent [y, 0, t, SpotSize, a /. Alum num 2 x400] /. Alum num];

Pl ot [Aly, 0.011, {y, 0, 0.3}, PlotPoints » 25,
Pl ot Range -» {6 1078, -2107%}, Gri dLi nes » Automati c, Frame - True,
FranmelLabel - {"Di stance from spot center (cm)", "Di splacenent anplitude (cm)"}1;

Di spl acenent anplitude (cm)

5x10°
4x10°
3x10°
2x10°
1x10°

-1x10°8

0 0.05 0.1 0.15 0.2 0.25 0.3
Di stance from spot center (cm)
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m Squarewave perturbation

We may want to chop the pump beam intensity instead of varying it continuously. The fourier expansion of a square wave
is

EI n+Dwt+ 1 a2 ]

4 oo
T Re[Zn:o (2n+1)

where w is the angular frequency of the principal mode. To do this, we'll sum the series. So the obviousthing to doisto
recast the displacement measures abovein terms of this expansion. The frequency componentsthat are included are clearly
the odd harmonics.

Squar eResponse3DApprox [P_, r _, w_, Material _] : =
4 (-1)"

sum| ————2
um[ﬂ(Zn + 1)

Response3DApprox [P, r, (2n + 1) w, Material 1, {n, O, Infinity}];

Here' sa plot of the approximate result for the three materials. The black line is the result from the sinusoidal power
variation above, for Aluminum. As you can see, the effect we will see by using a square waveis greater than for a sine
wave, by a factor of 4/7.

LogLogPI ot [{

Squar eResponse3DAppr ox [Laser Power, Spot Size, 2 xv, Al um numj,
Squar eResponse3DAppr ox [Laser Power, Spot Si ze, 2 nv, Sapphire],
Squar eResponse3DAppr ox [Laser Power, Spot Size, 2 xrv, FusedSilical,
Response3DAppr ox [Laser Power , Spot Si ze, 2 xv, Al um num]},

{v, 1, MaxFreq}, PlotStyl e » {RGCol or [0, O, 1], RGBCol or [0, 1, O],

RGBCol or [1, 0, 0], R@&BCol or [0, O, 0]}, Franme - True,
FranelLabel - {"Frequency (Hz)", "D splacenment anplitude (cm)"}1;

1. <1077 L

1. x10°8 L

1. x10°° L

1. x10710

Di spl acement anplitude (cm)

1. x1071 L

100 200 500 1000 2000 5000
Frequency (Hz)

The exact calculation is a little more involved. Here are magnitude and phase for the three materials, compared to the
approximate response for sinusoidal and sguare wave perturbation.
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Squar eResponse3D[P_, r_, w_, Material _] : =

Sum[

4 (-1)"

— Response3D[P, r, (2n + 1) w, Material ], {n, O, Infinity}];
7w (2n + 1)

LogLogPI ot [{

(cm

Di spl acenment anplitude

Abs [Squar eResponse3D[Laser Power, Spot Size, 2 xv, A um num]l],
Abs [Squar eResponse3D[Laser Power, Spot Si ze, 2 xv, Sapphirell,
Abs [Squar eResponse3D[Laser Power, Spot Size, 2 xv, FusedSilicall,
Abs [Squar eResponse3DAppr ox [Laser Power, 0.04, 2xv, Al um num]],
Abs [Response3D[Laser Power, Spot Size, 2xv, A um num]]},

{v, 1, MaxFreq}, PlotStyle - {R@Col or [0, 0, 1], R&Col or [0, 1, O],

RGBCol or [1, 0, 0], GrayLevel [0], GrayLevel [.5]}, Frane - True,

FranelLabel - {"Frequency (Hz)", "Di splacenment anplitude (cm)"}1;
LogLi near Pl ot [{

180

—— Arg [Squar eResponse3D[Laser Power, Spot Size, 2 xv, A um num]],
T

180 . .

—— Arg [Squar eResponse3D[Laser Power, Spot Si ze, 2 xv, Sapphirell,
T

180 . o

—— Arg [Squar eResponse3D[Laser Power, Spot Size, 2 xv, FusedSilicall,
T

180 . .

—— Arg[Response3D[Laser Power, Spot Size, 2 xv, A umi num]] }
T

{v, 1, MaxFreq}, PlotStyle - {R@Col or [0, 0, 1], R&Col or [0, 1, O],

RG&BCol or [1, 0, 0], GrayLevel [0], GrayLevel [0.5]}, PlotRange -» {0, -90},

Frame - True, FraneLabel - {"Frequency (Hz)", "Response phase (deg)"}];
1. x1077
1. x1078
1. x107°
1. x10710
1. x1071! T
50 100 500 1000 5000
Frequency (Hz)
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o
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m Damage threshold

How hot will the mirror spot get? For a rough estimate, take power * C / spot size? / skin depth

_ 104
Ski nDepth =
27
MaxTenp = Laser Power / (CSki nDepth Spot Si ze?) /. Al umi num
1
20000
109448.

m Movie

Thisis an animation of the surface of an auminum mirror with a400 mW variation in power at 400 Hz. The x-axisis the
distance from the center of the spot in cm. The y-axisis the displacement of the mirror from equilibrium. The spot sizeis
0.04 cm.

MyMovi e =
Tabl e [Pl ot [A[y, n/8000], {y, 0, 0.2}, PlotPoints » 25, Pl otRange » {107, - 107"},
GidLi nes » Automatic, PlotStyle - RG@Col or [0, 0, 1], Franme - True,
FranelLabel - {"Di stance from spot center (cm)", "Di splacenent anplitude (cm)"},
Di spl ayFunction - Identity], {n, 19}1;

ShowAni mat i on [MyMovi e];

11077

7.5x10°8

5x10°8

2.5x10°8

0

-2.5x10°8

-5x10°8

Di spl acenment anpl itude (cm)

-7.5x10°8

0 0.05 0.1 0.15 0.2
Di stance from spot center (cm)

Samething in 3-D
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—(y2+x2)
M/Movi e3D = Tabl e [Pl ot 3D[{A[Sqrt [y? +x?], n/8000], Hue[Ewwsz |},
{x, -0.2, 0.2}, {y, -0.2, 0.2}, PlotPoints » 25, PlotRange » {1077, - 107"},
Di spl ayFunction - ldentity, ViewPoint -» {1.718, -2.747, O. 975}], {n, 19}];

ShowAni mat i on [MyMovi e3D];

m Footnotes

[1] Braginsky, Gorodetsky, Vyatchanin, Thermodynamical fluctuations and photo-thermal shot noise in gravitational
wave antennae, Physics L etters A 264 (1999), pp 1-10.
[2] Baker, Sutlief, Green’ sFunctionsin Physics, personal communication, 1997



