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Stochastic background

origin:

I astrophysical?

I cosmological?

properties:

I isotropic

I gaussian

I completely characterized by H(f ) = 〈h(f )2〉

Reference:

I Bruce Allen, “The stochastic gravity-wave background:
sources and detection,” gr-qc/9604033v3.



analysis procedure

Ingredients for stochastic background data analysis:

I ΩGW

I correlation analysis

I overlap reduction function

I optimal filter



ΩGW(f )

ΩGW: energy density in gravitational waves, as a fraction of the
critical density, per logarithmic frequency interval.

ΩGW(f ) =
f

ρcritical

dρGW

df
=

32π3

3H0
2
f 3H(f )

where H(f ) is the strain-squared power spectral density.

Models assume some power-law dependence:

ΩGW(f ) = Ωα

(
f

100 Hz

)α
We measure H(f ) and report Ωα.



How do we measure it?

Use two detectors and look for correlations. Consider two
co-located detectors:

s1(t) = h1(t) + n1(t)

s2(t) = h2(t) + n2(t)

where:
hi is the signal seen in detector i
ni is the noise seen in detector i
assume h1(t) = h2(t) (detectors see same signal)

〈s1s2〉 = 〈h2〉+ 〈n1h〉+ 〈n2h〉+ 〈n1n2〉

1

T

∫ T

0
s1(t)s2(t)dt −→ 〈h2〉



correlation analysis

We can make an estimator for Ωα:

Y =

∫
32π3

3H2
0

(
100 Hz

f

)α
f 3s1(f )s2(f )∗Q(f )df

where Q is some weighting function (filter, kernel) we can choose
however we want, subject to

∫
Q(f )df = 1.

Note that 〈Y 〉 = Ωα because 〈s1(f )s2(f )〉 = H(f ).



γ(f ): the overlap function

Due to geometry, the observed correlation is attenuated when
detectors are separated or rotated.

I separation in space

I difference in orientation



γ(f ): the overlap function

separation in space

For part of the cycle, the detectors are correlated; for part of the
cycle they are anti-correlated.

〈h1h2〉 = 〈sin(ωt) sin(ωt + k∆x)〉 ∼ cos(k∆x)



γ(f ): the overlap function

difference in orientation

x

y

x

y

co-located detectors, rotated 90 degrees, have γ = −1.



γ(f ): the overlap function
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Putting γ(f ) into the estimator

We need to correct for the attenuation quantified by γ:

Y =

∫
32π3

3H2
0

(
100 Hz

f

)α f 3

γ(f )
s1(f )s2(f )∗Q(f )df

Now we are almost ready to pick Q(f ). (Any will do, but some are
better...)



optimal estimators

Suppose xi are independent measurements (random variables) all
with mean x but with error bars (standard deviations) σi .

We can form a weighted average:

x =
∑

aixi

subject to
∑

ai = 1 so that 〈x〉 = 〈xi 〉.

The weighted average has variance:

σ2 =
∑

ai
2σi

2

Problem: find {ai} such that σ2 is minimized.



optimal estimators

In forming a linear combination of measurements

x =
∑

aixi subject to
∑

ai = 1

the optimal choice is to weight by inverse variance:

ai = N
1

σi
2

with normalization N =
1∑ 1
σi

2

in which case:

1

σ2
=
∑ 1

σi
2



variances add like resistors in parallel!



How do we know the variance of our estimates?

〈s1s2〉 = 〈h2〉+���〈n1h〉+���〈n2h〉+����〈n1n2〉

var{s1s2} = ����var{h2}+�����var{n1h}+�����var{n2h}+ var{n1n2}

I By stationarity assumption, var{h2} = 0

I In low signal-to-noise regime, var{n1h} << var{n1n2}.
I In low signal-to-noise regime, the variance of the correlation is

given by the power spectral density of the detector output –
which we measure all the time!



Detector PSDs - noise variance
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LHO 4km - (2007.03.18) S5: Binary Inspiral Range (1.4/1.4 Msun) = 16.3 Mpc

LLO 4km - (2006.06.04) S5: Binary Inspiral Range (1.4/1.4 Msun) = 15.1 Mpc

LHO 2km - (2007.05.14) S5: Binary Inspiral Range (1.4/1.4 Msun) = 7.8 Mpc
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S5 Performance - May 2007       LIGO-G070366-00-E



Putting it all together

Y =

∫
Y (f )df and σY

2 =

∫
σY (f )2df

Y (f ) =
32π3

3H2
0

(
100 Hz

f

)α f 3

γ(f )
s1(f )s2(f )∗Q(f )

σ2(f ) =

[
32π3

3H2
0

(
100 Hz

f

)α f 3

γ(f )

]2

P1(f )P2(f )

Q(f ) ∼ 1

σ(f )2

Y =
3H2

0

32π3

∫ (
f

100 Hz

)α γ(f )

f 3P1(f )P2(f )
s1(f )s2(f )∗df



the Nature paper

I The LIGO Scientific Collaboration and the Virgo
Collaboration, “An upper limit on the stochastic gravitational-
wave background of cosmological origin,” Nature 490,
990-994 (2009).

ΩGW
0 < 6.9× 10−6 at 95% confidence



the big-bang nucleosynthesis (BBN) limit

The BBN limit is:∫ ∞
0

ΩGW (f )d(log f ) < 1.5× 10−5

Our limit is: ∫ 169.25 Hz

41.5 Hz
ΩGW (f )d(log f ) < 9.7× 10−6

Did we beat it?


