
Gravitational Waves with GStreamer Workshop
Writing a GStreamer element in Python

Leo Singer

LIGO Laboratory, California Institute of Technology

November 8, 2010

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 1 / 26

Introduction

In this tutorial, you will learn how to create your first GStreamer element
in Python.

We will start by defining a simple problem. Then, we will walk through the
steps needed to create an element from scratch, finally completing an
element that solves this problem.

If, at the end, you have time to spare, you we encourage you to try one of
the Bonus projects to make your first GStreamer element more powerful.

Some of these tasks will teach you more about GStreamer, and some of
them will teach you more about designing algorithms and data structures
for stream programming.

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 2 / 26

Who is this tutorial for?

This tutorial assumes that you have:

gstreamer, gst-plugins-base, gst-python, and gstlal installed

Understanding of core GStreamer concepts like caps, pads, and buffers

Previous experience with Python

Exposure to big-O notation

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 3 / 26

1 Problem Definition
Applications

2 Code Walkthrough
Element skeleton
Add pad templates and caps
Adding properties
Pause to admire your work
Implement desired behavior
Test!

3 Bonus
Circular FIFO
Heap
Arbitrary rank order
Gap support
Support more media types

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 4 / 26

Problem Definition

Sliding maximum of n elements

x [k] x [k − 0]

x [k − 1]

max

x [k − 2]

max

. . .

. . . max y [k]

x [k − n + 1]

...

For this tutorial, we are going to write a GStreamer element that
computes the maximum of the previous n elements.

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 5 / 26

Problem Definition
Applications

The sliding maximum is the simplest example of a rank order filter, a
handy signal processing tool with a lot of applications:

Welch spectral estimator and related methods

Smoothing lossily decompressed signals (especially images)

Robust parameter estimation

Detrending

Outlier rejection

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 6 / 26

Code Walkthrough

1 Problem Definition
Applications

2 Code Walkthrough
Element skeleton
Add pad templates and caps
Adding properties
Pause to admire your work
Implement desired behavior
Test!

3 Bonus
Circular FIFO
Heap
Arbitrary rank order
Gap support
Support more media types

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 7 / 26

Element skeleton
Choosing a base class

First, choose a GStreamer base class that matches your problem.

Base class Uses Examples

GstElement Any number of pads tee,
lal skymap

GstBaseSrc One source pad audiotestsrc,
lal framesrc

GstBaseSink One sink pad alsasink,
lal gracedbsink

GstBaseTransform One sink, one source pad audioiirfilter,
lal whiten

GstBin Contains other elements playbin,
lal fakeligosrc

GstPipeline A special bin present in
every GStreamer app

N/A

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 8 / 26

http://www.gstreamer.net/data/doc/gstreamer/head/gstreamer/html/GstElement.html
http://www.gstreamer.net/data/doc/gstreamer/head/gstreamer-libs/html/GstBaseSrc.html
http://www.gstreamer.net/data/doc/gstreamer/head/gstreamer-libs/html/GstBaseSink.html
http://www.gstreamer.net/data/doc/gstreamer/head/gstreamer-libs/html/GstBaseTransform.html
http://www.gstreamer.net/data/doc/gstreamer/head/gstreamer/html/GstBin.html
http://www.gstreamer.net/data/doc/gstreamer/head/gstreamer/html/GstPipeline.html

Element skeleton
Choosing a base class

For this project, GstBaseTransform is a good match. We have a single
input and a single output, and there is exactly one output sample for every
input sample.






 
 









Figure: An instance of the new element class sliding max, derived from
GstBaseTransform

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 9 / 26

Element skeleton
Getting started

If you are writing an element class that will only be used in one
application, then you can define the class in any Python module and
instantiate it the same way as any other Python class.

If your element may be used again, you might want to put it into a
plugin so that it can be used by any GStreamer application.

For example, putting an element in a plugin makes it so that you can use
it with gst-launch:

$ gst-launch freq=400 ! sliding_max n=8 ! autoaudiosink

This requires just a little bit of boilerplate code, much of which is
streamlined by the gstlal.pipeutil module.

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 10 / 26

Element skeleton
Getting started

Start a file called sliding_max.py in the directory
~/.gstreamer-0.10/plugins/python/ . You may have to create this
directory.

This is one of a few places that GStreamer automatically looks for Python
elements.

(In the gstlal source code, Python elements are kept in gst/python/.
These get installed to ${PREFIX}/lib/gstreamer-0.10/python/.)

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 11 / 26

http://www.lsc-group.phys.uwm.edu/cgit/gstlal/tree/gst/python

Element skeleton
Code listing

Start out with the following minimal subclass of GstBaseTransform:

from gstlal.pipeutil import *

class sliding_max(gst.BaseTransform):

__gstdetails__ = (

"Sliding maximum",

"Filter",

"Sliding maximum of past n samples",

"Albert Einstein <albert.einstein@ligo.org>"

)

Register element class

gstlal_element_register(sliding_max)

Listing 1: Element skeleton: sliding max.py

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 12 / 26

Add pad templates and caps

from gstlal.pipeutil import *

class sliding_max(gst.BaseTransform):

__gstdetails__ = (...)

__gsttemplates__ = (

gst.PadTemplate("sink",

gst.PAD_SINK, gst.PAD_ALWAYS,

gst.caps_from_string("""

audio/x-raw-float,

endianness = (int) BYTE_ORDER,

width = (int) {32, 64},

channels = (int) 1

""")

),

gst.PadTemplate("src",

gst.PAD_SRC, gst.PAD_ALWAYS,

gst.caps_from_string("""

audio/x-raw-float,

endianness = (int) BYTE_ORDER,

width = (int) {32, 64},

channels = (int) 1

""")

)

)

Register element class

gstlal_element_register(sliding_max)

Listing 2: Adding caps

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 13 / 26

Adding properties
Code listing

from gstlal.pipeutil import *

class sliding_max(gst.BaseTransform):

__gstdetails__ = (...)

__gsttemplates__ = (...)

__gproperties__ = {

’n’: (

gobject.TYPE_UINT,

’Window length’,

’Number of samples in sliding window’,

1, gobject.G_MAXUINT, 16, # min, max, default

gobject.PARAM_READWRITE | gobject.PARAM_CONSTRUCT

),

}

def do_set_property(self, prop, val):

"""gobject->set_property virtual method."""

if prop.name == ’n’:

self.n = val

def do_get_property(self, prop):

"""gobject->get_property virtual method."""

if prop.name == ’n’:

return self.n

Register element class

gstlal_element_register(sliding_max)

Listing 3: sliding max.py with properties added

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 14 / 26

Pause to admire your work
Checking caps, properties with gst-inspect

$ gst-inspect sliding_max

Factory Details:

Long name: Sliding maximum

Class: Filter

Description: Sliding maximum of past n samples.

Author(s): Albert Einstein <albert.einstein@ligo.org>

Rank: none (0)

Plugin Details:

Name: python

Description: loader for plugins written in python

Filename: xxx/gstreamer-0.10/libgstpython.so

Version: 0.10.19.1

License: LGPL

Source module: gst-python

Binary package: GStreamer Python Bindings

Origin URL: http://gstreamer.freedesktop.org

GObject

+----GstObject

+----GstElement

+----GstBaseTransform

+----sliding_max+sliding_max

Pad Templates:

SRC template: ’src’

Availability: Always

Capabilities:

audio/x-raw-float

endianness: 1234

width: { 32, 64 }

channels: 1

SINK template: ’sink’

Availability: Always

Capabilities:

audio/x-raw-float

endianness: 1234

width: { 32, 64 }

channels: 1

...

Element Properties:

name : The name of the object

flags: readable, writable

String. Default: null Current: "sliding_max+sliding_max0"

qos : Handle Quality-of-Service events

flags: readable, writable

Boolean. Default: false Current: false

n : Number of samples in sliding window

flags: readable, writable

Unsigned Integer. Range: 1 - 4294967295 Default: 16 Current: 16

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 15 / 26

Implement desired behavior
Code listing
from gstlal.pipeutil import *

from gstlal import pipeio

import numpy

class sliding_max(gst.BaseTransform):

...

def do_start(self):

"""GstBaseTransform->start virtual method."""

self.history = []

return True

def do_transform(self, inbuf, outbuf):

"""GstBaseTransform->transform virtual method."""

Convert received buffer to Numpy array.

x = pipeio.array_from_audio_buffer(inbuf)

Create output array.

y = numpy.zeros(x.shape, dtype=x.dtype)

Do the dirty work.

for i, xi in enumerate(x):

self.history.append(xi)

while len(self.history) > self.n: self.history.pop(0)

y[i] = max(self.history)

Copy output to buffer.

outbuf[:len(y.data)] = y.data

Done!

return gst.FLOW_OK

Register element class

gstlal_element_register(sliding_max)

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 16 / 26

Test!
This simple pipeline will produce two ASCII data files, x.txt and y.txt.
$ gst-launch \

audiotestsrc wave=pink-noise num-buffers=1 samplesperbuffer=128 \

! audio/x-raw-float,rate=16384,width=64 ! tee name=in_tee \

\

in_tee. ! queue ! lal_nxydump ! filesink location=x.txt sync=false \

in_tee. ! queue ! sliding_max n=4 ! lal_nxydump ! filesink location=y.txt sync=false

0 20 40 60 80 100 120 140
sample

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

si
g
n
a
l

sliding_max

input
output

Figure: Filter input, x.txt, and output, y.txt, plotted with matplotlib.

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 17 / 26

Bonus

1 Problem Definition
Applications

2 Code Walkthrough
Element skeleton
Add pad templates and caps
Adding properties
Pause to admire your work
Implement desired behavior
Test!

3 Bonus
Circular FIFO
Heap
Arbitrary rank order
Gap support
Support more media types

For the remainder of this tutorial, we
encourage you to try one of the
‘Bonus’ projects.
You can work alone, or with a
partner, or in small groups.
The first two are designed to
illustrate the differences between
conventional batch algorithms and
algorithms that are well suited for
stream processing or
low-latency/realtime applications.
The last bonus three bonus projects
are designed to teach you more
about GStreamer.

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 18 / 26

Bonus
Circular FIFO

If you are worried about the performance impact of storing the filter’s
history in a Python list, good!

With a Python list, it takes O(n) operations to replace the oldest sample
in the history.

If we use a circular FIFO or ring buffer instead, updating the history takes
O(1) operations. Circular FIFOs occur often in the Linux kernel and also
in DSP applications.

x0

x1

x2

x3

x4

x5 x5

x1

x2

x3

x4

The Python class collections.deque can be used as a circular FIFO.

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 19 / 26

Bonus
Heap

a0

a1

a3 a4

a2

a5 a6

A heap is another data structure that is useful for
this problem. A (max-)heap is a binary tree in which
every node is greater than either of its children.
A heap is often stored in an array, so one can write
this condition as:

∀k : a[k] > a[2k + 1], a[k] > a[2k + 2]

The maximum value in a heap is always the value at
the root, a0.

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 20 / 26

Bonus
Heap

What we want is a combination of a (max-)heap and a ring buffer.

(x0, k0)

(x1, k1)

(x3, k3) (x4, k4)

(x2, k2)

(x5, k5) (x6, k6)

j0

j1

j2

j3

j4

Each entry in the heap is an ordered pair consisting of a value from the
input stream, and its index in the input stream.

Each entry in the ring buffer refers to one of the past n samples of the
input stream in chronological order. But the ring buffer does not store the
input samples themselves — it stores their ranks in the heap.

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 21 / 26

Bonus
Heap

Using this combination of a heap and a circular FIFO, deletion of the
oldest element is at worst O(log n), and so is insertion of a new element.

However, on average, both operations are O(1). (Why? Hint: about half
of the elements in a heap are leaves.)

For this project, write a version of sliding max that uses this or a similar
data structure to implement the sliding maximum in O(1) operations per
sample.

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 22 / 26

Bonus
Heap

0 500 1000 1500 2000 2500 3000 3500 4000 4500
history length

0

50

100

150

200

ru
n
 t

im
e
 (

se
co

n
d
s)

Speed comparsion of sliding max and sliding heap

sliding max
sliding heap

Figure: Running time comparison of sliding max and sliding heap for various
history lengths n. Notice that the running time of the sliding max increases
linearly with history length, and yet the sliding heap is unaffected.

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 23 / 26

Bonus
Arbitrary rank order

For this project, turn your element into a general rank-order filter.

Add a new property, k . For k < n, your element should return the kth
largest number from the past n samples of history. (k = 0⇒ minimum,
k = n − 1⇒ maximum)

Once you have done this, your element can now serve as median filter, or
it can also compute the upper or lower quartile, ...

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 24 / 26

Bonus
Gap support

A gap buffer is a special buffer that is understood to contain neutral data,
or ‘silence’. Some elements, especially codecs, are able to process gap
buffers differently in order to speed quickly over them.

For this project, add gap support to your element. Assume that a gap
consists of zeros. Here’s a skeleton to get you started:

def __init__(self):

super(sliding_max, self).__init__()

self.set_gap_aware(True)

def do_transform(self, inbuf, outbuf):

...

if inbuf.flag_is_set(gst.BUFFER_FLAG_GAP):

... # Special case for gap buffers

else:

... # Special case for normal buffers

...

Hint: what effect does a gap of n samples have on the filter’s history?

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 25 / 26

Bonus
Support more media types

The original version of sliding max only supports single-channel single or
double precision floating point streams.

For this project, modify your element to accept more media types,
including:

integers of different widths (8, 16, 32, 64)

signed or unsigned

multiple channels

This will involve modifying the caps that the pads accept.
__gsttemplates__ = (

gst.PadTemplate("sink",

gst.PAD_SINK, gst.PAD_ALWAYS,

gst.caps_from_string("""

audio/x-raw-float,

endianness = (int) BYTE_ORDER,

width = (int) {32, 64},

channels = (int) 1;

audio/x-raw-int, ...

L Singer (LIGO Caltech) LIGO-G1001050-v3 November 8, 2010 26 / 26

	Outline
	Problem Definition
	Applications

	Code Walkthrough
	Element skeleton
	Add pad templates and caps
	Adding properties
	Pause to admire your work
	Implement desired behavior
	Test!

	Bonus
	Circular FIFO
	Heap
	Arbitrary rank order
	Gap support
	Support more media types

