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Mass Reduction 
 
 
The efforts to reduce the mass of the spring of the spring and in turn reduce increase the resonant 
frequencies of the offload spring (D020408 Double Start Counter wound 
Spring Assembly) have been accomplished largely though a central mass reduction. 
Material from the middle of the spring which finite element analysis (FEA) results 
depicted as having little involvement of the 
performance of the spring was removed. 
Additional weight reduction was 
accomplished by reducing the overall length 
of the actual spring (D020406) by one inch. 
FEA indicated  this section was as virtually  
“inactive”. 
 
Of course, this mitigated the necessitated a change in 
geometry of the spring connectors (D020407) which resulted in an additional weight 
reduction. Further weight reductions where accomplished by lightening holes in the 
connector. 
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Figure 1: Spring Geometry Comparison 
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The resulting bottom line is that the spring mass was reduced by 22% and preliminary 
FEA stress results indicate a very modest decrease in the factor of safety (in the 
magnitude of 1% to 2 %). 
 
Several scenarios where entertained to evaluate the  greatest increase in resonant 
frequency and the down selections where base on those results. 
 
 
Modal Analysis 
 
 
After  the preliminary analysis indicated that the stress levels where in an acceptable 
level, modal analysis where performed on the resulting candidates. Because our base line 
has changed, I went ahead an ran the analysis for the LASTI (as installed) configuration 
as well as  the proposed lighter and shorter configuration. I also included an analysis of 
an intermediate configuration that keeps the same length as the LASTI model, but 
employs the central mass reduction as well as the four lightening holes in the end 
connectors. 
 
Interestingly enough, it is very hard to compare FEA models in the constrained mode 
because no two model are exactly the same, even in the event of using the same mesh 
size (.325 and .1625 respectively). The models are very sensitive to the location of the of 
the constraints. Constraints that are further out (from the middle) result in  a higher 
resonant frequency and the converse of that yields opposite results. Of course this is  a 
reasonable result and indicates that we should take great care in the position of the 
fasteners when installed so we can better predict what resonant frequencies to expect. I 
am pretty certain that the offload springs at LASTI are installed .5” to 1” further away 
from the origin than the original analysis constraints were placed. This is because the 
springs are two inches longer (to accommodate installation).  Effects of  constraint 
placement will be discussed later in this report. 
 
Because we are not quite sure just what class  of boundary conditions the springs are 
under, I ran analysis with clamped, pinned, and free boundary conditions. The pinned  
analysis results where exactly the same as the clamped results , which led me to believe 
that the software didn’t work. But after a little more thought, I realized that the solid brick 
elements have no rotation so those effects would probably not have any weight on the 
results. The results of the free constraints resulted in the near zero modes which arise 
because of the six degrees of freedom that are not being constrained. Dennis Coyne 
reminded me that you have to tell ALGOR to expect rigid body modes through a 
software toggle. 
 



 
 
 
Approach 
 
For the pinned analysis, I constrained the spring on there each end connector  1.95 inches from 
the  end  over a distance of 1.3 inches . This is probably further away from the edge of the 
spring than is installed at LASTI, but for comparative purpose, it should be just fine. (I 
intend to ask Ken Mason to measure what the actual conditions are for the final cut)  
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Figure 2: Spring Constraints (for pinned condition) 

 
The mesh size for the down select round was .325 inches. Of course the physical property 
data was included the typical values for C300 maraging steel and 4340 steel. 
 
 
 
 
Results 
 
For ease of comparison, the results of the free constrained results best illustrates the net 
improvement (gain)  of the resonant frequencies and are used for the down-select process.  
I have include the pinned results for a further comparison. 
 
 
Configuration LASTI (Baseline) Proposed 

Configuration 
Central  Mass 
Reduction with 
End Connector 
Mass Reduction 

 Free Pinned Free Pinned Free Pinned 
Running mode 1 112.08 134.521 128.70 134.96 114.93 142.66 
Running mode 2 114.43 136.62 129.85 137.46 115.70 144.93 
Drum mode 1 180.799 214.38 217.50 214.06 181.64 234.07 
Drum mode 2 195.87 N/A 241.27 N/A 195.62 N/A 
“S” mode 1 255.78 277.30 266.51 291.75 257.70 281.70 
“S” mode 2 257.64 280.06 272.01 294.67 261.95 283.24 
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Baseline Plot Results 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

  

Figure 3: LASTI 
Baseline Running 1st BendingMode 

1 (free constraints) 

Figure 4: LASTI 
Baseline Running 1st BendingMode 

2  (free constraints) 

Figure 5: LASTI Baseline 
Drum Extensional Mode 1 (free 

constraints) 

   

Figure 6: LASTI 
Baseline Drum  Radial Mode 2 

(free constraints) 

Figure 7: LASTI 
Baseline “S” 2nd BendingMode 1 

(free constraints) 

Figure 8: LASTI Baseline 
“S”  2nd bending Mode 2 (free 

constraints) 
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Figure 9: LASTI 
Baseline Running Mode 
1 (pinned constraints) 

Figure 10: LASTI 
Baseline Running Mode 
2  (pinned constraints) 

Figure 11: LASTI 
Baseline Drum Mode 1 

(pinned constraints) 

 

 

 

Figure 12: LASTI 
Baseline “S”  Mode 
(pinned constraints) 

 Figure 13: LASTI 
Baseline “S”  Mode 2 
(pinned constraints) 



 
 
Proposed Configuration Plot Results 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

Figure 14: Proposed 
Configuration Running 

Mode 1 (free 
constraints) 

Figure 15: Proposed 
Configuration Running 

Mode 2  (free 
constraints) 

Figure 16: Proposed 
Configuration Baseline 

Drum Mode 1 (free 
constraints) 

   

Figure 17: Proposed 
Configuration Drum  

Mode 2 (free 
constraints) 

Figure 18: Proposed 
Configuration “S” Mode 

1 (free constraints) 

Figure 19: Proposed 
Configuration “S”  Mode 

2 (free constraints) 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Clearly,  the comparison between the LASTI configuration and the Proposed 
configuration yields a substantial gain in resonant frequency. When comparing only the 
free constrained condition, the resonant frequency increased by 20.02%. It could be 
further argued that this weight reduction scheme is more favorable that the third scheme 
presented (Central  Mass Reduction with End Connector Mass Reduction). 
 

 
  

Figure 20: LASTI 
Baseline Running Mode 
1 (pinned constraints) 

Figure 21: LASTI 
Baseline Running Mode 
2  (pinned constraints) 

Figure 22: LASTI 
Baseline Drum Mode 1 

(pinned constraints) 

 

 

 

Figure 23: LASTI 
Baseline “S”  Mode 
(pinned constraints) 

 Figure 24: LASTI 
Baseline “S”  Mode 2 
(pinned constraints) 



Although we would like to believe that this is the actual gain, common sense and 
experience predicate refining the model to gain a better sense of the true nature of the 
weight reduction. 
 
The mesh size was decreased by a factor of two (.1625”) and the analysis was rerun for 
the following four conditions: 
 

• LASTI Baseline free constrained condition 
• LASTI Baseline pinned constrained condition 
• Proposed Configuration free constrained condition 
• Proposed Configuration pinned constrained condition 

 
Configuration LASTI (Baseline) Proposed 

Configuration 
 Free Pinned Free Pinned 
Running mode 1 83.64 125.26 93.56 125.26 
Running mode 2 85.33 126.02 94.33 126.74 
Drum mode 1 132.15 188.83 153.59 192.3 
Drum mode 2 156.09 N/A 188.02 N/A 
“S” mode 1 193.74 236.02 198.37 243.82 
“S” mode 2 194.41 238.42 200.91 244.28 

 
 
 

 
Figure 25: LASTI 
Baseline Running 

Mode 1 (free 
constraints) 

Figure 26: LASTI 
Baseline Running 
Mode 1 (pinned 

constraints) 
 
 
 
 

 



 
Figure 27: Proposed 

Configuration 
Running Mode 1 
(free constraints) 

Figure 28: Proposed 
Configuration 

Running Mode 1 
(pinned constraints) 

 
 
 
 
The results of the refined model, while not offering  such as large increase, does offer a 
more reasonable result. Comparing the free constrained condition, the gain in resonant 
frequency is advertised as 11.86%. I feel more comfortable with this result as a previous 
batch of results indicated similar results and was advertised in my last weeks weekly 
update. 
 
In order to gain confidence in the modal analysis results, Jonathan Kern led me down a 
path to collect data via the frequency analyzer  and microphone setup. The spring was 
suspended by a wire and bumped with a calibrated wire cutter. Although the tests were 
performed numerous times, for the sake of brevity,  I have only included one  set of 
results. (It is worth mentioning that the a baseline data of the ambient noise was taken 
and was subsequently subtracted from the bump test data)  While the setup may be crude, 
I do feel that  a) the it is a reasonable approach, and  b) the data does correlate reasonably 
well with the analyzed results.  
 
 



Bump Test: Offload Spring Frequency Response
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Figure 29: Frequency Response Plot 

 
 

I have highlighted the interesting peaks for consideration and welcome any comments 
that you could afford.  Of course there is still much to be learned about the results and 
there are several factors that still concern me:  
 
First and foremost, the fact that even though the mesh size is specified, I can’t guarantee 
the resulting size of the mesh which in turns lends itself to error in a comparative 
analysis.  Furthermore,  I am not sure what the  resulting two drum modes (as a result of 
an unconstrained  boundary condition) mean and why my results don’t produce a drum 
mode similar to the constrained condition. I am sure it  has to do with the fact that the 
mass at the end can move, but I don’t yet understand the mechanism. 
 
All-n-all, I am confident that the proposed mass reduction does result in a substantial 
increase in resonant frequency and that it merits the rework of the spring. At present, my 
intent is to run a third party verification of the mode shapes using ANSYS, and am 
waiting for your input and concerns. 
 
 
 



 
 
Constraint Evaluation 
 
Coming soon 
 
Static Stress Analysis 
 
Pending review 
 
Final Production Drawings 
 
Pending review 
 
Spring stiffness Matrix formulation of Production Spring 
 
Pending Review 
 
  
 
 
 
 





Revised EPI offload spring finite element analysis input to be included in E030237-01 
 D. Coyne 
Revised 5/23/2003 
 
X.X Boundary Conditions 
Varying boundary conditions were applied to the springs using restraints on nodes in the 
model. These analyses were conducted with Algor and I-DEAS. The results (Table 1), for 
the bending modes, agree with expectations based on the ratio of frequencies for simple 
beams with these same varying boundary conditions. 
 
The nth frequency, ωn, of a vibrating uniform beam is given by the following equation: 


( ) 42 / LEILnn ρβω =  
where the product of the nth eigenvalue, βn, and the beam length, L, depends upon the 
boundary conditions and is given in Table X. 
 
The ratio of the 1st frequencies for Guided-Pinned to Free-Free, based on the beam 
equation, is 0.33 which compares well with the ratio of FEA results of 0.35. Not sure why 
the pinned-pinned beam frequencies are the same as for the guided-pinned condition (the 
extensional modes for the guided-pinned case are lower as expected). 
 
Table X: Beam vibration eigenvalues vs boundary condition 


Boundary Condition (βn L) 
Free – Free β1 L = 4.73 


β2 L = 7.85 
β3 L = 11.00 
β4 L = 14.14 
… 
βn L = (2n+1) π/2 , n large 


Fixed – Fixed same as Free – Free 
Pinned – Pinned βn L = n π 
Guided – Pinned βn L = (2n-1) π/2 
 
 







Table X: Effect of varying boundary conditions on the spring elastic mode frequencies (Hz) 
Spring Version: Shortened, with the counter-propagating helixes joined over 2 complete spirals and with lightening holes in the 
connectors: 


 
 


Boundary 
Condition 


Free – Free Pinned - 
Pinned 


Guided - Pinned Fixed - 
Fixed 


Approximate Interface 
Compliance  


# Nodes 
# Elements 


Element order 


28849 
43451 
linear 


28849 
43451 
linear 


21879 
9664 
parabolic 


28849 
43451 
linear 


21879 
9664 
parabolic 


21879 
9670 
parabolic 


21879 
9670 
parabolic 


FEA Code Algor I-DEAS I-DEAS I-DEAS I-DEAS I-DEAS I-DEAS 
1 93.6 91.0 31.7 31.5 31.7 84.9 64.7 
2 94.3 91.9 32.1 31.9 32.1 91.7 71.0 
3 153.6 148.6 134.6 86.9 83.7 161.2 137.5 
4 188.0 184.6 136.7 88.4 87.4 188.4 161.4 
5 198.4 193.2 183.4 135.7 134.6 194.2 171.4 
6 200.9 195.8 203.6 138.5 136.7 203.2 203.0 
7  278.4 327.4 247.1 242.3 313.0 278.1 
8  329.1 330.6  249.9 359.9 347.9 


 
 







 
Fixed-Fixed, Mode 1 


 
Fixed-Fixed, Mode 3 


 







Fixed-Fixed, Mode 4 


 
Fixed-Fixed, Mode 5 


 







Fixed-Fixed, Mode 6 


 
Fixed-Fixed, Mode 7 


 







Guided-Pinned, Mode 1 


 
Guided-Pinned, Mode 3 


 







Guided-Pinned, Mode 4 


 







The actual boundary conditions depend upon the stiffness of the interfacing structure and 
attachments. Consider the interface connections for the spring in the EPI assembly, as 
shown in the cross-sectional view of Figure X. The bolted joints at the ends of the springs 
include two spherical washer sets (on both sides of the attaching plate), the load cell on 
the top attachment and hex nuts (on both sides of the attaching plate). The compliance of 
this bolted assembly in translational directions is calculated1. At the lower attachment 
point, the interfacing plate is very short and stiff. The compliance of this plate is assumed 
to be negligible. The adjusting plate at the spring top attachment is modeled as an annular 
plate with central forces and torques to determine it's compliance2. The six bolts used to 
adjust the length and tip/tilt of the adjusting plate and then to lock it into position are 
modeled as cantilevered springs. The resulting stiffnesses at the top and bottom of the 
springs (1.95 inch from each end) are: 
Kupper = {1.01e8, 9.58e7, 1.41e8, 7.81e11, 7.88e11, 5.92e11} 
Klower = {1.0e+22, 1.0e+22, 9.65e+8, 1.0e+22, 1.0e+22, 1.0e+22} 
where 1e20 simply represents "high" stiffness, the order is {x, y, z, Rx, Ry, Rz} and the 
units are mN/mm for the translational stiffnesses and mm-mN/rad for the rotational 
stiffnesses. 
 
Frequencies of the elastic modes of the spring with the attachment flexibility included are 
shown in Table X. 


stiff plate attachment, 
modeled as bolted joint 
for translational stiffness; 
assumed to be rigid in 
rotation 


 bolted joint translational 
stiffness modeled 


translational & rotational 
compliance of an annular 
plate with central 
forces/torques included 


6 adjustment bolts 
modeled as 
cantilevered beams 


 
 


                                                 
1 A. Slocum, Precision Machine Design, pg 366-374. 
2 Roark's Formulas for stress & Strain, 6th ed., Table 24, case 20  







Interface Compliance Model 


 
 
Interface Compliance Model Detail, showing the placement of linear springs to represent 
the translational and angular compliance of the support points 


 







Interface Compliance Model, Mode 1 


 
Interface Compliance Model, Mode 2 


 







Interface Compliance Model, Mode 3 


 
Interface Compliance Model, Mode 4 


 







Interface Compliance Model, Mode 5 


 
Interface Compliance Model, Mode 6 


 







Interface Compliance Model, Mode 7 


 
Interface Compliance Model, Mode 8 


 







%================================== 
% EPI Spring attachment stiffnesses 
%================================== 
 
%================================== 
% TOP INTERFACE 
%================================== 
% Bolts for Top adjusting plate assy 
% 3 lock down 1/2"-13 UNC bolts at a radius of 2.75" with 1.0" length 
% 3 adjustment ? bolts at same radius into radial grooves 
% model as cantilevered beams for lateral stiffness, Kbs 
R = 2.75;       % radius of bolt hole, in. 
E = 29e6;       % steel elastic modulus, psi 
nu = 0.29;      % steel Poisson's ratio 
Lb = 1.0;       % bolt cantilevered length, in 
rb = 0.4056/2;  % bolt thread minor radius 
Ab = pi*rb^2;   % bolt stress area, in^2 
Ib = pi*rb^4/4; % bolt cross sectional area moment, in^4 
Kbc = 3*E*Ib/Lb^3;  % bolt cantilevered stiffness, lb/in 
Kbz = E*Ab/Lb;      % bolt longituidinal stiffness, lb/in 
 
% lateral stiffness of Top adjusting plate assy due to 6 attachment/adjustment bolts: 
Ktx = Kbc*(4+2*cos(pi/3));      % lb/in 
Kty = Kbc*(3+2*sin(pi/3));      % lb/in 
% vertical stiffness of assy due to 6 attachment/adjustment bolts: 
Ktz = 6*Kbz;                    % lb/in 
% rotational stiffnesses of assy due to 6 attachment/adjustment bolts: 
Ktrz = 6*Kbc*R^2;                 % in-lb/rad 
Ktrx = 4*Kbz*R^2*sin(pi/3);       % in-lb/rad 
Ktry = Kbz*R^2*(4*cos(pi/3)+2);   % in-lb/rad 
 
% Spring bolted interface to the Top adjusting plate assy 
% includes load cell, spherical washer sets and nuts on the threaded spring 
% connectors 
% bolted joint stiffness is per 
% A. Slocum, Precision Machine Design, pg 366-374. 
% Note: these equations are for a bolted joint to a semi-infinite "bed" so 
% its an approximation for this situation. 
Dh = 1.126;         % nut outer diameter, in 
Db = 0.813;         % spring connector minor thread diameter, in 
Dc = 0.844;         % hole diameter in sph. wsh set, load cell and adj. plate, in 
th = 0.665;         % nut thickness, in 
t = 2*0.5 + 1.0 + 0.75;          % "flange" thickness (2 x sph. wsh set + load cell + adj. plate), in 
tt = th;        % thread engagement in the "bed" (nut thickness), in 
 
% "flange" compressional stiffness: 
Kfc = pi*E*Dc/log(((Dc-Dh-2*t)*(Dc+Dh))/((Dc+Dh+2*t)*(Dc-Dh))); 
% "flange" shear stiffness: 
Kfs = pi*t*E/((1+nu)*log(2)); 
% "bed" shear stiffness: 
Kbs = pi*Db*E/((1+nu)*log(2)); 
% connector stiffness: 
Kc = pi*E*Db^2/(4*(Db/2+t)); 
% spring/plate interface extensional stiffness: 
Kspz = 1/(1/Kfc+1/Kfs+1/Kbs+1/Kc); 
 







% spring/plate interface lateral stiffness is very high when the pre-load 
% torque (load) is high (A.Slocum, pg. 373) 
Kspx = 1e20; 
Kspy = 1e20; 
% rotational stiffness of the spring/plate interface is assumed to be very high 
Ksprx = 1e20; 
Kspry = 1e20; 
Ksprz = 1e20; 
 
% Plate stiffnesses: 
% Kpx, Kpy, Kprz are very high 
Kpx = 1e20; 
Kpy = Kpx; 
Kprz = 1e20; 
% stiffness for a central load normal to the circular plate, Roark's 
% Formula's for Stress & Strain, 6th ed., Table 24, case 16 
% should really include a term for shear deflection of plate since it is 
% thick relative to the span 
tp = 0.75;                          % adjustment plate thickness, in 
D = E*tp^3/(12*(1-nu^2)); 
Kpz = 16*pi*D*(1+nu)/(R^3*(3+nu));  % lb/in 
% stiffness for a central applied moment about an axis in the plane of the 
% plate, for a circular plate: Roark's Formulas for stress & Strain, 6th 
% ed., Table 24, case 20 for simply supported trunnion with 
% b/a = Dh/2/R = 0.20 
Kprx = E*tp^3/1.645;    % in-lb/rad 
Kpry = Kprx; 
 
% Total Stiffness at the top attachment: 
K1x = 1/(1/Ktx + 1/Kspx + 1/Kpx); 
K1y = 1/(1/Kty + 1/Kspy + 1/Kpy); 
K1z = 1/(1/Ktz + 1/Kspz + 1/Kpz); 
K1rx = 1/(1/Ktrx + 1/Ksprx + 1/Kprx); 
K1ry = 1/(1/Ktry + 1/Kspry + 1/Kpry); 
K1rz = 1/(1/Ktrz + 1/Ksprz + 1/Kprz); 
K1 = [K1x, K1y, K1z, K1rx, K1ry, K1rz]; 
 
%================================== 
% BOTTOM INTERFACE 
%================================== 
% The "boot" is a stiff structure. It is assumed that all of the compliance 
% is in the spring/attachment interface. 
% Spring bolted interface to the Top adjusting plate assy 
% includes load cell, spherical washer sets and nuts on the threaded spring 
% connectors 
% bolted joint stiffness is per 
% A. Slocum, Precision Machine Design, pg 366-374. 
% Note: these equations are for a bolted joint to a semi-infinite "bed" so 
% its an approximation for this situation. 
Dh = 1.126;         % nut outer diameter, in 
Db = 0.813;         % spring connector minor thread diameter, in 
Dc = 0.844;         % hole diameter in sph. wsh set, load cell and adj. plate, in 
th = 0.665;         % nut thickness, in 
t = 2*0.5 + 0.75;          % "flange" thickness (2 x sph. wsh set + boot plate thickness), in 
tt = th;        % thread engagement in the "bed" (nut thickness), in 
 







% "flange" compressional stiffness: 
Kfc = pi*E*Dc/log(((Dc-Dh-2*t)*(Dc+Dh))/((Dc+Dh+2*t)*(Dc-Dh))); 
% "flange" shear stiffness: 
Kfs = pi*t*E/((1+nu)*log(2)); 
% "bed" shear stiffness: 
Kbs = pi*Db*E/((1+nu)*log(2)); 
% connector stiffness: 
Kc = pi*E*Db^2/(4*(Db/2+t)); 
% spring/plate interface extensional stiffness: 
Kspz = 1/(1/Kfc+1/Kfs+1/Kbs+1/Kc); 
 
% spring/plate interface lateral stiffness is very high when the pre-load 
% torque (load) is high (A.Slocum, pg. 373) 
Kspx = 1e20; 
Kspy = 1e20; 
 
% Total Stiffness at the top attachment: 
K2x = Kspx; 
K2y = Kspy; 
K2z = Kspz; 
K2rx = 1e20; 
K2ry = 1e20; 
K2rz = 1e20; 
K2 = [K2x K2y K2z K2rx K2ry K2rz]; 
 
%================================== 
% convert to mN/mm and mm-mN/mm 
%================================== 
% top attachment, translational stiffness (mN/mm): 
(4.44822e3 / 25.4) * K1(1) 
(4.44822e3 / 25.4) * K1(2) 
(4.44822e3 / 25.4) * K1(3) 
% top attachment, rotational stiffness (mm-mN/rad): 
(4.44822e3 * 25.4) * K1(4) 
(4.44822e3 * 25.4) * K1(5) 
(4.44822e3 * 25.4) * K1(6) 
% top attachment, translational stiffness (mN/mm): 
(4.44822e3 / 25.4) * K2(1) 
(4.44822e3 / 25.4) * K2(2) 
(4.44822e3 / 25.4) * K2(3) 
% top attachment, rotational stiffness (mm-mN/rad): 
(4.44822e3 * 25.4) * K2(4) 
(4.44822e3 * 25.4) * K2(5) 
(4.44822e3 * 25.4) * K2(6) 
 








Analytical Compliance Results for the Machined Springs 
 
 


 
Measured Compliance Results for the Machined Springs 


dx 


(M) 
6.12204 E−05  7.49779 E−07  2.17079 E−08  3.46452 E−05  0.000144244 3.46754 E−05  Fx 


(N) 
dy 


(M) 
4.32477 E−08  5.80187 E−05  2.44776 E−09  0.000167167 3.98522 E−06  3.80632 E−06  Fy 


(N) 
dz 


(M) 
3.38175 E−05  3.3794 E−05  1.02947 E−06  0.001637619 0.001637531 0.001637636 Fz 


(N) 
?x 


(rad) 
1.0823 E−08  4.37313 E−06  2.41194 E−10  1.54197 E−05  3.60972 E−07  3.95026 E−07  Tx 


(NM) 
T y 


(rad) 
4.63083 E−06  7.1263 E−08  2.0959 E−09  3.35091 E−06  −1.23412 E−05  3.3441 E−06  Ty 


(NM) 
T z 


(rad) 
¶ ¶ ¶ ¶ ¶ 5.53377 E−12  Tz 


(NM) 


dx 


(M) 
6.01734 E−05  2.28397 E−08  −8.79328 E−08     Fx 


(N) 
dy 


(M) 
5.59572 E−08  5.68856 E−05  −6.16671 E−08     Fy 


(N) 
dz 


(M) 
5.70992 E−08  6.8519 E−08  9.82106 E-07    Fz 


(N) 
?x 


(rad) 
   0.00034864 −0.000295003  −0.000295003  Tx 


(NM) 
T y 


(rad) 
   −0.000241366  0.00091183 0.000241366 Ty 


(NM) 
T z 


(rad) 
   0.00020382 −0.00020382  −0.000788464  Tz 


(NM) 







