U.S. DEPARTMENT OF COMMERCE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY ELECTRONICS & ELECTRICAL ENGINEERING LABORATORY Boulder, Colorado 80305 # Report of Calibration (42110CA/42111CA) # LASER POWER METER Labsphere Model: 3P-LPM-040-SL, S/N 05076191 Keithley Current Amplifier Model: 428, S/N 1154940 Keithley Digital Multimeter Model: 2100, S/N 1148559 Submitted by: ATTN: Richard Savage 127124 North Route 10 Richmond, WA 99354 ## **Calibration Summary** The laser power meter was compared to NIST standard calorimeters at a wavelength of 1047 nm (Diode laser). The laser beam had a nominal diameter of 5 mm at the detector entrance, and the test detector was centered in the incident beam. The power impinging upon the test instrument was measured concurrently using a calibrated beamsplitter and a NIST standard calorimeter (see Figure 1). The beamsplitter ratio was calibrated for each data set using two NIST standard calorimeters. Before the measurements began, the test instrument was allowed to reach equilibrium with the laboratory environment. Readings were recorded from the test multimeter via USB connection. The calibration factor was then found by dividing the test instrument reading by the calculated incident power. The ambient temperature during these measurements was 21 ± 1 °C. The detector diode temperature controller was set to -10 °C. A summary of the measurements is given in Table I. If the readings of the test instrument are <u>divided</u> by the appropriate calibration factor listed in the table, then, on the average, the resulting values will agree with those of the NIST measurement system. | Table I. Calibration Results | | | | | | | | |------------------------------|------------------------|---|-----------------------|--------------------------|-------------------------|--|--| | Wavelength | Nominal
Input Power | N | Standard
Deviation | Calibration Factor (V/W) | Expanded
Uncertainty | | | | 1047 nm | 99 mW | 4 | 0.19 % | 3.1991 | ± 0.88 % | | | | 1047 nm | 316 mW | 4 | 0.12 % | 3.1919 | ± 0.86 % | | | Page: 1 of 4 NIST ID: Folder #: 814788 Toluci w. 274725-07 Date of Calibration: 20-Sep-2007 24-Sep-2007 Date of Report: Reference: P.O. 815-7-2058 06-Sep-2007 #### LASER POWER METER Labsphere Model: 3P-LPM-040-SL, S/N 05076191 Keithley Current Amplifier Model: 428, S/N 1154940 Keithley Digital Multimeter Model: 2100, S/N 1148559 Figure 1. Measurement Setup #### **Uncertainty Assessment** The uncertainty estimates for the NIST laser energy measurements are assessed following guidelines given in NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results" by Barry N. Taylor and Chris E. Kuyatt, 1994 Edition. To establish the uncertainty limits, the error sources are separated into (1) Type B errors, whose magnitudes are determined by subjective judgement or other non-statistical method, and (2) Type A errors, whose magnitudes are obtained statistically from a series of measurements. All the Type B error components are assumed to be independent and have rectangular or uniform distributions (that is, each has an equal probability of being within the region, $\pm \delta_i$, and zero probability of being outside that region). If the distribution is rectangular, the standard uncertainty, σ_s , for each Type B error component is equal to $\delta_i/3^{16}$ and the total "standard deviation" is approximated by $(\Sigma \sigma_s^2)^{16}$, where the summation is performed over all Type B error components. The Type A errors are assumed to be independent and normally distributed, and consequently the standard deviation, S_r, for each component is Page: NIST ID: 2 of 4 Folder #: 814788 Date of Calibration: 274725-07 Date of Report: 20-Sep-2007 Reference: 24-Sep-2007 P.O. 815-7-2058 06-Sep-2007 #### LASER POWER METER Labsphere Model: 3P-LPM-040-SL, S/N 05076191 Keithley Current Amplifier Model: 428, S/N 1154940 Keithley Digital Multimeter Model: 2100, S/N 1148559 $$S_r = \sqrt{\frac{\sum_x^2 - \frac{(\sum x)^2}{N}}{N-1}},$$ where the x values represent the individual measurements and N is the number of x values used for a particular Type A error component. The standard deviation of the mean is S_r/N^3 , and the total standard uncertainty of the mean is $[\Sigma(S_r^2/N)]^3$, where the summation is carried out for all the Type A error components. The expanded uncertainty is determined by combining the Type A and Type B "standard uncertainties" in quadrature and multiplying this result by an expansion factor of 2. The expanded uncertainty, U, is then $$U = 2\sqrt{\sum \sigma_s^2 + \sum \frac{S_r^2}{N}}.$$ The values used to calculate the NIST uncertainties are listed in Tables II and III for the power levels tested. The number of decimal places used in reporting the mean value of the calibration factor listed in Table I was determined by expressing the total NIST uncertainty to two significant digits. | Table II. NIST Measurement Uncertainties at 1047 nm, 100 mW | | | | | | | | |---|--|--------|----|--|--|--|--| | Source | Туре В | Туре А | | | | | | | 504166 | δ_{i} | Sr | N | | | | | | Standard Calorimeter | | | | | | | | | Inequivalence | 0.15 % | | | | | | | | Absorptivity | 0.01 % | | | | | | | | Electronics | 0.10 % | 0.10 % | 30 | | | | | | Heater Leads | 0.01 % | | | | | | | | Window Trans | 0.11 % | 0.02 % | 6 | | | | | | Measurements | | | | | | | | | Inject time | 0.05 % | | | | | | | | Laser power drift | 0.50 % | | | | | | | | Laser pointing stability | 0.50 % | | | | | | | | Standard meter ratio | | 0.02 % | 8 | | | | | | Transfer meter ratio | PRINCE AND DESCRIPTION OF THE PRINCE AND ADDRESS ADD | 0.19 % | 4 | | | | | | Relative Expanded Uncertainty (k=2) | | | | | | | | Page: 3 of 4 NIST ID: 814788 Folder #: 274725-07 Date of Calibration: 20-Sep-2007 Date of Report: 24-Sep-2007 Reference: P.O. 815-7-2058 06-Sep-2007 ## LASER POWER METER Labsphere Model: 3P-LPM-040-SL, S/N 05076191 Keithley Current Amplifier Model: 428, S/N 1154940 Keithley Digital Multimeter Model: 2100, S/N 1148559 | Table II. NIST Measurement Uncertainties at 1047 nm, 300 mW | | | | | | | |---|-----------------------|----------------|----|--|--|--| | Source | Туре В | Type A | | | | | | Source | δ_{i} | S _r | N | | | | | Standard Calorimeter | | | | | | | | Inequivalence | 0.15 % | | | | | | | Absorptivity | 0.01 % | | | | | | | Electronics | 0.10 % | 0.10 % | 30 | | | | | Heater Leads | 0.01 % | | | | | | | Window Trans | 0.11 % | 0.02 % | 6 | | | | | Measurements | | | | | | | | Inject time | 0.05 % | | | | | | | Laser power drift | 0.50 % | | | | | | | Laser pointing stability | 0.50 % | | | | | | | Standard meter ratio | | 0.02 % | 8 | | | | | Transfer meter ratio | | 0.12 % | 4 | | | | | Relative Expanded Unce | 0. | 86 % | | | | | For the Director, National Institute of Standards and Technology Calibrated By: Marla L. Dowell, Group Leader Sources, Detectors and Displays Group Optoelectronics Division Joshua Hadler, Physicist Sources, Detectors and Displays Group Optoelectronics Division John Lehman, Project Leader Sources, Detectors and Displays Group Optoelectronics Division Page: 4 of 4 NIST ID: 814788 Folder #: 274725-07 Date of Calibration: 20-Sep-2007 Date of Report: 24-Sep-2007 Reference: P.O. 815-7-2058 06-Sep-2007