

SIS 2010 Stationary Interferometer Simulation

- One time loss vs total loss
- SIS as interferometer simulator
 - » FFT-based field calculation written in C++
 - » FP and coupled cavity with BS
 - Fast simulation of stable cavity
 - » Signal sideband generation
- SIS as analysis tool
 - » Random surface specified by analytic form or by real surface map
 - » Thermal lensing
 - » Calculation tools : PSD, modal expansion, etc
 - » Looping
- Future of SIS

matlab class : Hankel toolkit

G1001007-v1

One time loss vs total loss simulation needed even for semi-quantitative loss estimation

•Loss depends on the lock condition

•Loss due to mode mismatch shows similar relation, but much more complicated

G1001007-v1

SIS Motivation and usage

- AdvLIGO design tool
- Interferometer configuration trade study
 - » Demonstrated that the stable configuration is more immune to imperfection
- Effect of finite size optics
 - » RM3&BS, flat, wedge angle, baffle, etc
 - » Changed from symmetric arm design (6cm) to slightly asymmetric (5.3cm)
- Tolerance of radius of curvature of COC mirrors
- Surface aberration requirements and delivery check
 - » Test mass and recycling cavity mirrors see afternoon talk
- Subsystem performance simulation
 - » TCS, ISC, COC, AOC, ...
- Parametric instability
 - » highly distorted field, hard to be expressed by simple functions

SIS cavity system

SIS field calculation

- FFT-based field calculation written in C++
 - » fftw as the FFT library
- Fast calculation of stationary field in a FP cavity
 - » MIT method by using two round trips to make best guess
- Fast calculation of stable recycling cavity
 - » Adaptive grid algorithm with tweaks to avoid computational round off error
- Lock using promptly reflected CR as a local oscillator
 - » Closer to real lock algorithm, but not quite
- Signal sideband generated by oscillating mirrors
- Telescope to guide large field to detector with small aperture

Using SIS main menu of actions

ng analysis Field calculation	<pre>lock calcField signalGen timeTrace telescope delL modeAmp saveField mirrorInfo storeMap summary simSpec</pre>		Lock the cavity Calculate stationary field Generate audio signal by sinusoidal motion of mirrors Move mirror and save field evolution calculate telescope outputs Print and set the cavity length Decompose a field by LG or HG Save field in a file View mirror information Store mirror maps Print summary status Set simulation parameters
setting	simSpec loadSimSpec runSpec	•	Set simulation parameters load simulation setup Set run conditions, like convergence criteria

SIS analysis tool - 1

Random phasemap

- » Mirror phasemaps generated whose PSD matches with a given form
- » Simple one (PSD~f⁻²) was used to set aLIGO test mass RMS requirement
- » FFT inverse FFT method used to generate random map based on actual mirror phasemaps (a.la. Bondu)
 - Realistic requirements with realistic defects
 - Requirements for the future interferometer LG33 beam
- Thermal deformation
 - » Hello-Vinet formula for a cylindrical mirror built-in
- Mode expansion
 - » Resulting fields can be expanded by predefined modes
 - Ease of understanding various effects

SIS analysis tool - 2

- Any maps (reflection, transmission, surface deformation) can be specified by data files or analytic formula or combination.
 - » HR_surface = DATAFILE("TEM02_w60cm_N512.dat") + 1e-9* zernikeFlat(2,2,r/r0,theta)
- Looping
 - » Repeated simulation with different parameters
 - Calculate fields with ROC(ITM) = 1900:10:2100, ROC(ETM) = 2100:10:2300, and store locked cavity length, power, beam size on each mass
 - » Repeat for convergence search
 - Self consistent field with thermal deformation
 - No deformation -> field -> thermal bump -> field -> new thermal bump ->
 ... repeat until the change of the power becomes small

G1001007-v1

Future of SIS

Physics

- » Simulation of Power recycled configuration
- » Simulation of dual recycled configuration
- » Realistic locking
- » Auto alignment control
- » BS thermal lens

Computing

- » Speed up
 - Fast algorithm of finding stationary fields in a given cavity configuration
 - Adaption of GPU
 - Adaption of parallelization by taking advantage of multi-core CPU
- » Better interface to matlab

Hankel toolkit

• Field calculation using Discrete Hankel Transformation

» Under the constraint that the system is axi-symmetric, fields can be calculated with the same accuracy as FFT-based calculation with a huge speed gain. (no need of stationary field building process, it is analytic)

• matlab class : HankelTK, CavityTK

- » Interactions and propagation with magnification
- » Field calculation using modal model can be directly converted to Hankel based code

• Example

- » Round trip loss in an aLIGO arm with unbalanced absorption
- » SIS and Hankel : 200 ppm loss for 0ppm 1ppm absorption, 10 ppm loss for 1ppm-1ppm absorption
- » Modal model using n+m < 20 : only qualitative relation, not quantitative

G1001007-v1

mirror rms requirement

LIGO Thermoelastic bumps affect resonating mode

Large loss when absorptions

G1001007-v1

Using SIS specification file

```
ITM.opt.T = 0.005
ITM.opt.R = 1 - ITM.opt.T
ITM.opt.ROC = 1971
ITM.opt.trans_phase = THERMALPHASE( beamWidth, PsubsPwr, PcoatPwr )
ITM.opt.HR_phase = THERMOELASTIC( beamWidth, PsubsPwr, PcoatPwr ) + rr/
(2*ROC_TCS) + DATAFILE( ITMMAP.dat )
```

```
ETM.opt.ROC = 2191
ETM.oscillation.amplitude = 1e-15 % 1e-9*x for rotational oscillation
ETM.opt.HR_phase = THERMOELASTIC( beamWidth, PsubsPwr, PcoatPwr ) + rr/
(2*ROC_TCS) + DATAFILE( ETMMAP.dat )
```

```
inputBeam.beamType = "LG"
inputBeam.power = 1
inputBeam.waistSize = 0
inputBeam.waistPosition = 0
inputBeam.matchToCavity = 1 % calculate waistSize and waistPosition to match
with the cold cavity
```