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• Ground-based gravitational wave DA is traditionally 
divided into four categories:

Category
Short Duration Long Duration

Theoretical
Waveform

Binary Inspirals Pulsars

No 
Theoretical
Waveform

Unmodeled Bursts Stochastic Background
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• Data analysts are usually divided into four groups based 
on the categories of signal they are looking for.

• Questions:

“Are these categories fundamental or just convenient?”

“Do all signals fit neatly into just one category?”

“Is there one search method that is optimal for all signals 
in each category?”
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Formulation: IFOs
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From “Einstein’s Messengers”
National Science Foundation
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Formulation: IFOs
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From “Einstein’s Messengers”
National Science Foundation
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• From our instruments we get strain data 

  

Formulation: Data

7

Noise Signal
h(t) = n(t) + s(t)n(t) s(t)

h(t)
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• From our instruments we get strain data 

  

• From our instruments we get strain data 

• Signal (usually) is deterministic (possibly           )

• Noise is stochastic - eg Gaussian (ideally)

  

Formulation: Data

7

Noise Signal

h(t)

p(n) � exp
�
�n · n

2 �

�n n
n

hi = ni + sini si

si� 0
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• Neyman-Pearson: Optimal statistic is Likelihood• Neyman-Pearson: Optimal statistic is Likelihood

• The measure         projects the integrand from the 
space of all possible signals down onto the subspace 
of signals we are searching for, denoted by    .

D[s]s

Formulation: Likelihood

8

�[h] =
�

p(h|n + s)
p(h|n)

D[s]

�
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• Neyman-Pearson: Optimal statistic is Likelihood• Neyman-Pearson: Optimal statistic is Likelihood

• Probabilities of     derive from distribution of    , egh n

p(h|n + s) � e�
(h�s)·(h�s)

2 �n s
s s

Formulation: Likelihood

8

Signal

�[h] =
�

p(h|n + s)
p(h|n)

D[s]
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• Neyman-Pearson: Optimal statistic is Likelihood• Neyman-Pearson: Optimal statistic is Likelihood

• Probabilities of     derive from distribution of    , egh n

p(h|n + s) � e�
(h�s)·(h�s)

2 �n s
s s

Noise

Formulation: Likelihood

8

Signal

�[h] =
�

p(h|n + s)
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• Putting this together for Gaussian noise:

Formulation: Power

9

� ⇥
�

�
exp(h� · s� s · s/2) dss s s s

h

� h�
s
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• Putting this together for Gaussian noise:

Formulation: Power

9

� ⇥
�

�
exp(h� · s� s · s/2) dss s s s

• Putting this together for Gaussian noise:

• Note that     is monotonic in length of 
projection,         , so        is equivalent statistic.

• Power of projected data,         , is also eqivalent 
optimal statistic and is most commonly used.

�
|h�|

|h�|2
|h�|
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• For more than one detector, simply substitute:

Formulation: Power2.0

10

h = Ak(�) hk(t)
Detector
Antenna
Pattern

Detector
Data
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• For more than one detector, simply substitute:

• Eg, for two detectors with Gaussian noise, optimal 
statistic is

|h�|2 = | [A1h1 + A2h2]� |2

= A2
1|h2

1|� + A2
2|h2

2|�
+ 2A1A2[h1 · h2]�

• For more than one detector, simply substitute:

Formulation: Power2.0

10

h = Ak(�) hk(t)
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h = Ak(�) hk(t)
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• For more than one detector, simply substitute:

• Eg, for two detectors with Gaussian noise, optimal 
statistic is

|h�|2 = | [A1h1 + A2h2]� |2

= A2
1|h2

1|� + A2
2|h2

2|�
+ 2A1A2[h1 · h2]�

• For more than one detector, simply substitute:

Formulation: Power2.0

10

cross
power

h = Ak(�) hk(t)

auto
power
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• For the cases where we know the signal    we are 
looking for, the measure becomes a Dirac delta: 

• Integrating against this measure,                         .

• This is nothing but the signal-to-noise ratio of the 
matched filter search.

• If you are searching for one of a finite set of signals, 
search for each individually - template bank.

• This is how we search for binaries and pulsars.

Application: we know   .

11

s

ŝ

h� = h · ŝ/|ŝ|2
D[s] = �(s� ŝ) ds
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Application:    is random.

12

s
• For stochastic backgrounds, by central limit 

theorem, resulting signal is random and Gaussian.

• Sum of Gaussians,                 , is Gaussian.             .

• If                  then                          regardless of 
whether signal exists, so can’t use auto-power.

• However,  for two instruments with data      and      
of length    , noises      and      are uncorrelated, so      
                      , but     and      are correlated, so
                 .

• So, in the limit of large enough    ,                          .

h� = h

h� · h� � n · n

h = n + s

�2
n � �2

s

N
h1 h2

n1 n2

n1 · n2 �
�

N s1 s2

N h1 · h2 � s1 · s2

s1 · s2 � N
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Application:   not known.

13

s
• For a determinate signal that is not completely 

known we can again apply likelihood.

• In this case,          encodes what we know about 
the signal.

• Eg, to search for signals that last       seconds,  use 
data segments       of that duration.  If additionally 
signal frequencies are known to be in band      , use 
data segments       restricted to that band.

• So, for a single detector, an optimal statistic is auto-
power for data segments restricted to           .

D[s]

h�

�t

�f
h�

�t �f
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• How do we practically restrict to data segments of 
dimension            ?

- take a slice of detector data
  and Fourier transform it.

Application:   not known.s

�t �f
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  magnitudes on a vertical line.
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• How do we practically restrict to data segments of 
dimension            ?

- take a slice of detector data
  and Fourier transform it.

- plot the Fourier coefficient
  magnitudes on a vertical line.

- repeat for subsequent slices
  of data.

- then we can search for boxes 
  with statistical significance.
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• In an ideal world, these four data analysis groups 
and these methods would be the end of the story, 
but ...

• In reality:
- signals are never exactly known
- no theoretical model for noise statistics 
- false alarm probabilities can’t be calculated 
- narrowband noise “lines” can mask signals
- “glitches” (burst of noise) mimic real signals
- noise not really uncorrelated between detectors
- ...

Application: real life

15
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• Consider the problem looking for bursts in real 
noise. 

• Power no longer optimal because loud glitches also 
cause large auto-power.

• Question:  Who knows how to search for signals 
when you can’t tell the signal from a detector’s 
noise?

• Answer:  Analysts who look for stochastic 
backgrounds!

Migration: burst? glitch?

16
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• Idea: Use cross-power to look for unmodeled burst 
signals in glitchy data.

• Led by: LIGO stochastic analysis group

• Called: STAMP - Stochastic Transient Analysis Multi-
detector Pipeline.

• Uses: analysis code and expertise from
- stochastic analyses
- unmodeled burst analyses
- pulsar analyses

Migration: STAMP

17
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• Uses a TF representation of cross-power to project 
onto signal space.

Migration: how it works

18
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• Uses a TF representation of cross-power to project 
onto signal space.

Migration: how it works

18

Curve Search
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�
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• So far, the STAMP group have produced:
- a methods paper (PRD 83, 083004)
- a detector noise paper (CQG 28, 235008)
- a long GRB upper limits paper (PRD 88, 122004)

• Group is currently working on:
- an all-sky search
- an neutron star r-mode search

• Contributors include:
current - Marie Anne Bizouard, Samuel Franco, Patrice Hello, Nelson Christensen, Eric Thrane, Shivaraj 
Kandhasamy, Tanner Prestegard, Patrick Meyers, Jialun Luo, Michael Coughlin, Bernard Whiting,  Antonis Mytidis.

past - Christian Ott, Steven Dorsher, Stefanos Giampanis, Vuk Mandic, Peter Raffai, WGA

Migration: activity

19
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• All “four types” of LIGO-Virgo data analysis have a 
lot in common:

•  use the same data 

• based on likelihood 

• the only difference is signal space we project on.

• Expertise and tools are portable across many 
analyses.

• STAMP is proving to be an example of fruitful 
interactions between analysts from different camps.

Conclusion

20

Friday, March 28, 2014


