LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T1000572-v1 Advanced LIGO UK

28 September 2010

Transmon Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail **J.Greenhalgh@rl.ac.uk** School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360

Fax +44 (0) 141 552 2891

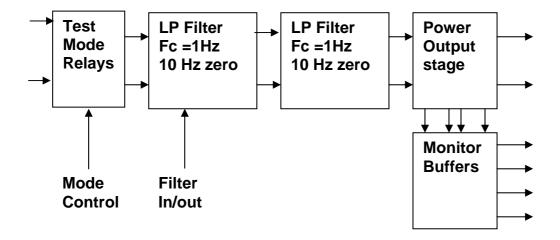
E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm


TRANSMON COIL DRIVER BOARD TEST PLAN

UnitSeri Test Engineer Date	ial No
Contents	
1. Description	
2. Test Equipment	
3. Inspection	
4. Continuity Checks	
5. Test Set Up	
6. Power	
7. Relay operation	
8. Corner Frequency Tests	
9. Monitor Outputs	
10. Distortion	
11. DC Stability	
12. Crosstalk Tests	

13. Dynamic range

1. Description

Block diagram

2. Description

Each Transmon Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

2. Test equipment
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Unit......Serial No

Date

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number

Unit	Serial No
Test Engineer	
Date	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

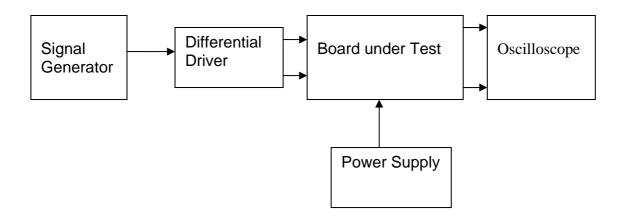
Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Serial No	
Test Engineer		
Date		

4. Continuity Checks

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	4	
5	OV			
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	
2	Imon2P	6	
3	Imon3P	7	
4	Imon4P	8	
5	0V		
6	Imon1N	18	
7	Imon2N	19	
8	Imon3N	20	
9	Imon4N	21	

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1 - = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Serial No	
Test Engineer		
Date		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5			
+15v TP4			
-15v TP6			

All Outputs smooth DC, no oscillation?	
	1

Record Power Supply Currents

Supply	Current
+16.5v	
-16.5v	

If the supplies are correct, proceed to the next test.

Unit	Serial No
Test Engineer	
Date	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	cator	OK?
	ON	OFF	
Ch1			
Ch2			
Ch3			
Ch4			

Test Switches

Channel	Indi	cator	OK?
	ON	OFF	
Ch1			
Ch2			
Ch3			
Ch4			

Unit	Serial No	
Test Engineer		
Date		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1				4.7v to 5v	
Ch2				4.7v to 5v	
Ch3				4.7v to 5v	
Ch4				4.7v to 5v	

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1		4.7 to 5v	
Ch2		4.7 to 5v	
Ch3		4.7 to 5v	
Ch4		4.7 to 5v	

1Hz

	Output	Specification	Pass/Fail
Ch1		3.3v to 3.7v	
Ch2		3.3v to 3.7v	
Ch3		3.3v to 3.7v	
Ch4		3.3v to 3.7v	

10Hz

	Output	Specification	Pass/Fail
Ch1		0.48 to 0.75v	
Ch2		0.48 to 0.75v	
Ch3		0.48 to 0.75v	
Ch4		0.48 to 0.75v	

100Hz

	Output	Specification	Pass/Fail
Ch1		0.4v to 0.5v	
Ch2		0.4v to 0.5v	
Ch3		0.4v to 0.5v	
Ch4		0.4v to 0.5v	

1 KHz

	Output	Specification	Pass/Fail
Ch1		0.4v to 0.5v	
Ch2		0.4v to 0.5v	
Ch3		0.4v to 0.5v	
Ch4		0.4v to 0.5v	

Unit	Serial No
Test Engineer	
Date	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1		4.7v to 5v	
Ch2		4.7v to 5v	
Ch3		4.7v to 5v	
Ch4		4.7v to 5v	

1Hz

	Output	Specification	Pass/Fail
Ch1		3v to 3.4v	
Ch2		3v to 3.4v	
Ch3		3v to 3.4v	
Ch4		3v to 3.4v	

10Hz

	Output	Specification	Pass/Fail
Ch1		0.4v to 0.5v	
Ch2		0.4v to 0.5v	
Ch3		0.4v to 0.5v	
Ch4		0.4v to 0.5v	

100Hz

	Output	Specification	Pass/Fail
Ch1		0.15v to 0.16v	
Ch2		0.15v to 0.16v	
Ch3		0.15v to 0.16v	
Ch4		0.15v to 0.16v	

1 KHz

	Output	Specification	Pass/Fail
Ch1		0.14v to 0.16v	
Ch2		0.14v to 0.16v	
Ch3		0.14v to 0.16v	
Ch4		0.14v to 0.16v	

Unit	Serial No	
Test Engineer		
Date		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v peak input at 10Hz and compare the differential output on each monitor pair with the reference voltages for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: O/P = Mon? (+/- 0.1v)
1	4.9v		Pin 1 to Pin 2		
2	4.9v		Pin 5 to Pin 6		
3	4.9v		Pin 9 to Pin 10		
4	4.9v		Pin 13 to Pin 14		

Current monitors

Ch.	Nominal	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.6v	Pin 3 to Pin 4		
2	1.6v	Pin 7 to Pin 8		
3	1.6v	Pin 11 to Pin 12		
4	1.6v	Pin 15 to Pin 16		

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	
Ch2	
Ch3	
Ch4	

Unit	Serial No	
Test Engineer		
Date		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v								
-7v								
-5v								
-1v								
0v								
1v								
5v								
7v								
10v								

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

Unit	Serial No		
Test Engineer			
Date			

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range.

Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 0.1 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not				
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	7v to 8v		
Ch2	7v to 8v		
Ch3	7v to 8v		
Ch4	7v to 8v		