LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
 - LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

| Document Type LIGO-T990081-04- E July. 2004 |
| :---: | :---: |
| Time Domain Modal Model |
| in End-to-End simulation package |
| Biplab Bhawal, Matt Evans, |
| Malik Rakhmanov and Hiro Yamamoto |

Distribution of this draft:
xyz

This is an internal working note of the LIGO Project..

California Institute of Technology
LIGO Project - MS 51-33
Pasadena CA 91125
Phone (626) 395-2129
Fax (626) 304-9834
E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project - MS 20B-145
Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014
E-mail: info@ligo.mit.edu WWW: http://www.ligo.caltech.edu/

1 ABSTRACT

In the End to End simulation program for LIGO uses the time domain modal model to simulate the spatial and time evolution of the field in cavities. This note summaries the formulas used in the e2e package. Also included are explicit calculations of fields in a simple cavity to understand how the fields with limited number of spatial modes behave, and to demonstrate model validation methods which are used to validate the e2e code.

2 KEYWORDS

time domain modal model e2e End-to-End simulation

3 TIME DOMAIN MODAL MODEL

3.1. General Formula

In the time domain modal model, a freely propagating field, $\mathrm{E}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$, in a vacuum is expressed using a set of Hermite-Gaussian functions in the following way.

$$
\begin{gather*}
E(x, y, z, t)=\exp (i \omega t) \cdot E(x, y, z) \tag{1}\\
E(x, y, z)=\sum \bar{a}_{m n} \cdot \operatorname{Prop}(z, \bar{z}) \cdot U_{m n}(x, y, z) \tag{2}\\
\operatorname{Prop}(z, \bar{z})=\exp [-i k \cdot(z-\bar{z})] \cdot \exp \left[i(m+n+1)\left(\eta_{00}(z)-\eta_{00}(\bar{z})\right)\right] \tag{3}\\
U_{m n}(x, y, z)=u_{m}(x, z) \cdot u_{n}(y, z) \tag{4}\\
u_{m}(x, z)=\left(\frac{2}{\pi}\right)^{\frac{1}{4}} \cdot \frac{1}{\sqrt{2^{m} m!w(z)}} \cdot H_{m}\left(\frac{\sqrt{2} x}{w(z)}\right) \cdot \exp \left[-x^{2}\left(\frac{1}{w(z)^{2}}+\frac{i k}{2 R(z)}\right)\right] \tag{5}\\
\int d x u_{m}^{*}(x, z) \cdot u_{n}(x, z)=\delta_{m n} \tag{6}
\end{gather*}
$$

Various field properties are defined in Appendix 1. The base of a Hermite-Gaussian function can be characterized by the waist size, w_{0}, and the waist position. In the expression about, the origin of the z coordinate is chosen at the waist position, and the direction of the field propagation is chose to be the positive direction.
Because the Hermite-Gaussian functions, Eq. (5), provides a complete set in the (x,y) space and the field expression, Eq. (1), is a solution of the paraxial approximation of the Maxwell's equation, one can choose any Hermite-Gaussian base, and once chosen, the field is fully described by the coefficients $\overline{\mathrm{a}}_{\mathrm{mn}}$ and $\overline{\mathrm{z}}$.

3.2. Propagation

An initial condition can be specified by a set of amplitudes, $a_{m n}$, of a chosen set of HermiteGaussian functions at a given time \bar{t} at a given location $\overline{\mathrm{z}}$. Then the field propagation can be calculated by Eq. (3), i.e., when an initial condition is given and the amplitudes of all HermiteGaussian modes are calculated, the propagation of fields, or field amplitudes at location z , can be
calculated by multiplying the phase due to the normal wave oscillation, $\mathrm{k}(\mathrm{z}-\overline{\mathrm{z}})$, and the Gouy phase change, $(m+n+1)\left(\eta_{00}(z)-\eta_{00}(\bar{z})\right)$.
The simulation of e2e traces the change of coefficients $a_{m n}$. When a field moves, Eq. (3) is applied to update the coefficients and, when there is any interaction, the coefficient is updated using the matrix operation explained in the next subsection.

3.3. Operation

A operation on a field, like changing the propagation direction or displacing the waist position, can be represented by a mode decomposition matrix, $M_{m n, m^{\prime} n^{\prime}}^{O p}$, which converts one set of coefficients a_{mn} to another.

$$
\begin{align*}
O p[E(x, y, z)]_{z=\bar{z}} & =\sum_{m n} \operatorname{Op}\left[a_{m n} \cdot \operatorname{Prop}(z, \bar{z}) \cdot U_{m n}(x, y, z)\right]_{z=\bar{z}} \tag{7}\\
& =\sum_{m n} a_{m n}^{\prime} \cdot U_{m n}(x, y, \bar{z}) \\
a_{m n}^{\prime} & =\int d x d y U_{m n} *(x, y, \bar{z}) \cdot O p[E(x, y, z)]_{z=\bar{z}} \\
& =\sum_{m^{\prime} n^{\prime}} a_{m^{\prime} n^{\prime}} \int d x d y U_{m^{\prime} n^{\prime}} *(x, y, \bar{z}) \cdot \operatorname{Op}\left[\operatorname{Prop}(z, \bar{z}) \cdot U_{m n}(x, y, z)\right]_{z=\bar{z}} \tag{8}\\
& =\sum_{m^{\prime} n^{\prime}} \bar{a}_{m^{\prime} n^{\prime}} \cdot M_{m n, m^{\prime} n^{\prime}}^{O p}
\end{align*}
$$

In these equations, $[x x x]_{z=\bar{z}}$ means that the value of z is evaluated at $\overline{\mathrm{z}}$ after the operation is applied. An example is an operation to rotate the field direction discussed in the following section. One important point to note is that the mode decomposition matrix is calculated at a given location. The matrix relates a set of amplitudes calculated at a position to another set of amplitudes at the same position. Then the propagator defined in Eq. (3) is used to calculate the field at different locations.
One explicit example will be in order. When the waist position of a field is shifted by $\Delta \mathrm{z}$, the new field can be expressed by using the original field by shifting the z coordinate. A more general discussion is given below, but the following is an explicit calculation up to the first order effect.

$$
\begin{gather*}
u_{0}(x, \bar{z}+\Delta z)=\exp [i \Delta \eta] \cdot\left[a_{0} \cdot u_{0}(x, \bar{z})+a_{2} \cdot u_{2}(x, \bar{z})\right] \\
\Delta \eta=\eta(\bar{z}+\Delta z)-\eta(\bar{z}) \\
a_{0}=\frac{1}{\sqrt{1-i \frac{1}{2} \frac{\Delta z}{z_{0}}}} \quad a_{2}=-i \frac{1}{2 \sqrt{2}} \exp [i 2 \eta(\bar{z})] \frac{\Delta z}{z_{0}} \tag{10}
\end{gather*}
$$

Given these two coefficients, the field at other location z can be calculated using Eq. (3).

4 BASIC OPERATIONS

4.1. Rotation Operator

4.1.1. Rotate around $(0,0, L)$ by θ

$O p[E(x, y, z)]=E(x \cdot \cos \theta-(z-L) \cdot \sin \theta, y, L+x \cdot \sin \theta+(z-L) \cdot \cos \theta)$
The size of θ of interest is $\sim 1 \mu \mathrm{rad}$, and the matrix is calculated by expanding in $\theta / \Theta / \cos (\eta)$, where Θ is the divergence angle which is $\sim 10 \mu \mathrm{rad}$ in LIGO core optics cavities.

4.1.2. Mode decomposition matrix

$$
\begin{aligned}
& M_{m m^{\prime}}^{R o t}=\int d x u_{m}^{*}(x, L) \operatorname{Rot}\left[u_{m^{\prime}}(x, L)\right] \\
&=i^{-|\Delta m|} \frac{\sqrt{m!m^{\prime}!}}{\bar{m}!\cdot|\Delta m|!} e^{-\frac{\hat{\theta}^{2}}{2}} \hat{\theta}^{|\Delta m|} g\left(m, m^{\prime}, \hat{\theta}\right) \\
& \Delta m=m^{\prime}-m \\
& \bar{m}=\min \left(m, m^{\prime}\right) \\
& \hat{\theta}=\frac{w(L)}{w_{0}} \cdot \frac{\theta}{\Theta}=\frac{\theta}{\Theta} / \cos \left(\eta_{00}\right)=\sqrt{1+\left(\frac{L}{z_{0}}\right)^{2}} \cdot \frac{\theta}{w_{0} / z_{0}}=\frac{\sqrt{z_{0}^{2}+L^{2}}}{w_{0}} \cdot \theta \\
& g\left(m, m^{\prime}, x\right)=\bar{m}!\cdot|\Delta m|!\cdot \sum_{r=0}^{m} \frac{(-1)^{r}}{r!(\bar{m}-r)!(|\Delta m|+r)!} x^{2 r} \\
& \Delta m=m^{\prime}-m \\
& \bar{m}=\min \left(m, m^{\prime}\right)
\end{aligned}
$$

When $m \geq m^{\prime}$,

$$
\begin{align*}
\frac{1}{\bar{m}!\cdot|\Delta m|!} g\left(m, m^{\prime}, x\right) & =\sum_{r=0}^{m^{\prime}} \frac{(-1)^{r}}{r!\left(m^{\prime}-r\right)!\left(\left(m-m^{\prime}\right)+r\right)!} x^{2 r} \\
& =(-1)^{m^{\prime}} \sum_{r=0}^{m^{\prime}} \frac{(-1)^{r}}{r!\left(m^{\prime}-r\right)!(m-r)!} x^{2\left(m^{\prime}-r\right)} \tag{16}
\end{align*}
$$

When keeping only up to the second order in θ, this expression becomes in the following simpler form. (Ref[3])

$$
\begin{aligned}
O p\left[u_{m}\right] \cdot \exp \left(\frac{\hat{\theta}^{2}}{2}\right) \sim & \left(1-m \cdot \hat{\theta}^{2}\right) u_{m} \\
& -i \hat{\theta}\left(h_{m-1} \sqrt{m} \cdot u_{m-1}+\sqrt{m+1} \cdot u_{m+1}\right) \\
& -\frac{\hat{\theta}^{2}}{2}\left(h_{m-2} \sqrt{m(m-1)} \cdot u_{m-2}+\sqrt{(m+1)(m+2)} \cdot u_{m+2}\right) \\
h_{i}= & \begin{cases}0 & (i<0) \\
1 & (i \geq 0)\end{cases}
\end{aligned}
$$

4.1.3. Lower order elements

Table 1: $\quad M_{m m^{\prime}}^{\text {Rot }} \operatorname{excluding} \exp \left(-\frac{\hat{\theta}^{2}}{2}\right)$

$\mathrm{m} \backslash \mathrm{m}$	0	1	2	3
0	1	$-i \hat{\theta}$	$-\frac{\hat{\theta}^{2}}{\sqrt{2}}$	$i \frac{\hat{\theta}^{3}}{\sqrt{6}}$
1	$-i \hat{\theta}$	$1-\hat{\theta}^{2}$	$-\sqrt{2} i \hat{\theta}\left(1-\frac{\hat{\theta}^{2}}{2}\right)$	$-\sqrt{\frac{3}{2}} \hat{\theta}^{2}\left(1-\frac{\hat{\theta}^{2}}{3}\right)$
2	$-\frac{\hat{\theta}^{2}}{\sqrt{2}}$	$-\sqrt{2} i \hat{\theta}\left(1-\frac{\hat{\theta}^{2}}{2}\right)$	$1-2 \hat{\theta}^{2}+\frac{\hat{\theta}^{4}}{2}$	$-i \sqrt{3} \hat{\theta}\left(1-\hat{\theta}^{2}+\frac{\hat{\theta}^{4}}{6}\right)$
3	$i \frac{\hat{\theta}^{3}}{\sqrt{6}}$	$-\sqrt{\frac{3}{2}} \hat{\theta}^{2}\left(1-\frac{\hat{\theta}^{2}}{3}\right)$	$-i \sqrt{3} \hat{\theta}\left(1-\hat{\theta}^{2}+\frac{\hat{\theta}^{4}}{6}\right)$	$1-3 \hat{\theta}^{2}+\frac{3 \hat{\theta}^{4}}{2}-\frac{\hat{\theta}^{6}}{6}$

4.1.4. Sanity check

$$
\begin{equation*}
\sum_{m 3} M_{m 1 m 3}^{R o t}(-\hat{\theta}) \cdot M_{m 3 m 2}^{R o t}(\hat{\theta})=\delta_{m 1 m 2} \tag{18}
\end{equation*}
$$

4.1.5. Intuitive meaning of Reflection operator matrix

Simple case reflection coupling from TEM00 mode to TEM01 and TEM10 mode.

$$
\begin{align*}
R_{00 \rightarrow 10}^{R e f-b a c k}\left(\theta_{y a w}\right) & =-i 2 \theta_{y a w} \\
R_{00 \rightarrow 01}^{R e f-b a c k}\left(\theta_{\text {pitch }}\right) & =-i 2 \theta_{\text {pitch }}^{R e f-f r o n t}\left(\theta_{\text {yaw }}\right)=-i 2 \theta_{\text {yaw }} \tag{19}\\
& R_{00 \rightarrow 10}^{\text {Ref }- \text { front }}\left(\theta_{\text {pitch }}\right)=i 2 \theta_{\text {pitch }}
\end{align*}
$$

Figure 2: Reflection by $\theta \mathrm{y}$ or yaw from front and back

Figure 3: Reflection by $\theta \mathrm{x}$ or pitch from front and back

The meaning of the reflection matrix -i 2θ is as follows. In the following calculation, the waist position is assumed to be at the reflection point, and $\mathrm{z} \ll \mathrm{z}_{0}$.

$$
\begin{align*}
E_{r e f} & =H G_{0}-i 2 \hat{\theta} H G_{1}\left(\frac{\sqrt{2} x}{w}\right) \operatorname{Exp}\left[i \eta_{00}\right] \\
& =C \cdot \operatorname{Exp}\left[-\frac{x^{2}}{w^{2}}\right]\left(1-i 2 \frac{\theta}{\Theta} \frac{1}{\sqrt{2}} 2 \frac{\sqrt{2} x}{w} \operatorname{Exp}\left[i \eta_{00}\right]\right) \tag{20}\\
& =C \cdot \operatorname{Exp}\left[-\frac{x^{2}}{w^{2}}\right]\left(1+4 \frac{\theta x z}{w^{2}}-i 4 \frac{\theta}{\Theta} \frac{x}{w}\right)
\end{align*}
$$

Here, the Gouy phased is approximated by $\mathrm{z} / \mathrm{z}_{0}$, and only the linear term on θ is kept. The power along the z direction is calculated as follows where only the lowest order of θ is kept.

$$
\begin{align*}
P_{r e f} & =\left|E_{r e f}\right|^{2} \\
& =|C|^{2} \cdot \operatorname{Exp}\left[-\frac{2 x^{2}}{w^{2}}\right]\left(1+8 \frac{\theta x z}{w^{2}}\right) \\
& =|C|^{2} \cdot \operatorname{Exp}\left[-\frac{2 x^{2}}{w^{2}}+8 \frac{\theta x z}{w^{2}}\right] \tag{21}\\
& =\left\lvert\, C(z)^{2} \cdot \operatorname{Exp}\left[-\frac{2}{w^{2}}(x-2 \theta z)^{2}\right]\right.
\end{align*}
$$

So, the reflected field has the power maximum along the line $x=2 \theta z$, as is naively expected.

4.2. Shift Operator

4.2.1. \quad Shift perpendicular to z axis

4.2.2. Mode decomposition matrix

$$
\begin{align*}
M_{m m^{\prime}}^{s h i f t} & =\int d x u_{m}^{*}(x, L) \operatorname{Shift}\left[u_{m^{\prime}}(x, L)\right] \\
& =(-1)^{m+\max \left(m, m^{\prime}\right)} \frac{\sqrt{m!m^{\prime}!}}{\bar{m}!\cdot|\Delta m|!} \cdot e^{-\frac{\hat{\Delta}^{2}}{2}} \hat{\Delta}^{|\Delta m|} g\left(m, m^{\prime}, \hat{\Delta}\right) \tag{23}\\
\Delta m & =m^{\prime}-m \\
\bar{m} & =\min \left(m, m^{\prime}\right)
\end{align*}
$$

$$
\begin{equation*}
\hat{\Delta}=\frac{\Delta x}{w_{0}} \tag{24}
\end{equation*}
$$

When keeping only up to the second order in Δ, this expression becomes in the following simpler form. (Ref[3])

$$
\begin{align*}
O p\left[u_{m}\right] \cdot \exp \left(\frac{\hat{\Delta}^{2}}{2}\right) \sim & \left(1-m \cdot \hat{\Delta}^{2}\right) u_{m} \\
& -\hat{\Delta}\left(h_{m-1} \sqrt{m} \cdot u_{m-1}-\sqrt{m+1} \cdot u_{m+1}\right) \\
& +\frac{\hat{\Delta}^{2}}{2}\left(h_{m-2} \sqrt{m(m-1)} \cdot u_{m-2}+\sqrt{(m+1)(m+2)} \cdot u_{m+2}\right) \tag{25}\\
h_{i}= & \begin{cases}0 & (i<0) \\
1 & (i \geq 0)\end{cases}
\end{align*}
$$

4.2.3. Lower order elements

Table 2: $M_{m m^{\prime}}^{\text {Shift }} \operatorname{excluding~} \exp \left(-\frac{\hat{\Delta}^{2}}{2}\right)$

$\mathrm{m} \backslash \mathrm{m}$	0	1	2	3
0	1	$-\hat{\Delta}$	$\frac{\hat{\Delta}^{2}}{\sqrt{2}}$	$-\frac{\hat{\Delta}^{3}}{\sqrt{6}}$
1	$\hat{\Delta}$	$1-\hat{\Delta}^{2}$	$-\sqrt{2} \hat{\Delta}\left(1-\frac{\hat{\Delta}^{2}}{2}\right)$	$\sqrt{\frac{3}{2}} \hat{\Delta}^{2}\left(1-\frac{\hat{\Delta}^{2}}{3}\right)$
2	$\frac{\hat{\Delta}^{2}}{\sqrt{2}}$	$\sqrt{2} \hat{\Delta}\left(1-\frac{\hat{\Delta}^{2}}{2}\right)$	$1-2 \hat{\Delta}^{2}+\frac{\hat{\Delta}^{4}}{2}$	$-\sqrt{3} \hat{\Delta}\left(1-\hat{\Delta}^{2}+\frac{\hat{\Delta}^{4}}{6}\right)$
3	$\frac{\hat{\Delta}^{3}}{\sqrt{6}}$	$\sqrt{\frac{3}{2}} \hat{\Delta}^{2}\left(1-\frac{\hat{\Delta}^{2}}{3}\right)$	$\sqrt{3} \hat{\Delta}\left(1-\hat{\Delta}^{2}+\frac{\hat{\Delta}^{4}}{6}\right)$	$1-3 \hat{\Delta}^{2}+\frac{3 \hat{\Delta}^{4}}{2}-\frac{\hat{\Delta}^{6}}{6}$

4.2.4. Sanity check

$$
\begin{equation*}
\sum_{m 3} M_{m 1 m 3}^{s h i f t}(-\hat{\Delta}) \cdot M_{m 3 m 2}^{s h i f t}(\hat{\Delta})=\delta_{m 1 m 2} \tag{26}
\end{equation*}
$$

4.3. Base Change

4.3.1. Change of base of Hermite Gaussian function

This is an operation to express fields based on one base by by another base. One example usage is as follows. When there is a field which does not mode match with a cavity it is going into. Then this base change operation can be used to express the field using the eigen state of the cavity. Second example is a reflection of a field by a mirror whose curvature does not match with that of the field. This is handled in the next section, but it is a special case of this matrix.

4.3.2. Mode decomposition matrix

$$
\begin{align*}
& M_{m m^{\prime}}^{\text {shift }}= \int d x u_{m}^{*}(x, z) \operatorname{Base}\left[u_{m^{\prime}}(x, z)\right] \\
&= \sqrt{\beta \cdot \beta^{\prime}} \sqrt{\frac{m!\cdot m^{\prime}!}{2^{m+m^{\prime}}} \gamma^{-\frac{1}{2}\left(m+m^{\prime}+1\right)}} \\
& \quad\left[\frac{m}{2}\right]\left[\frac{m^{\prime}}{2}\right] \tag{28}\\
& \mathrm{x} \sum_{r=0}^{\sum_{r^{\prime}=0}(-1)^{r+r^{\prime}} \beta^{m-2 r} \beta^{\prime} m^{\prime}-2 r^{\prime} \gamma^{r+r^{\prime}}} \\
& r!r^{\prime}!(m-2 r)!\left(m^{\prime}-2 r^{\prime}\right)!\left(\frac{m+m^{\prime}-2 r-2 r^{\prime}}{2}\right)!
\end{align*}
$$

w and w^{\prime} are waist sizes of each base in the plane of transformation, β and β ' are functions of these values, and the γ is a parameter characterizing the curvature mismatch of two bases. The definitions of these variables are given in Eq. (29). When two bases become the same, γ, β and β 'all become 1 , or $\alpha, \delta \beta$ and $\delta \beta^{\prime}$ ' becomes 0 . If a matrix element is expressed by a sum of terms proportional to $\alpha^{n 1} \delta \alpha^{n 2} \delta \beta^{n 3}$, then the order of magnitue (the smallest value of the sum of powers, i.e., $n 1+n 2+n 3$) of the matrix element is $\left|m-m^{\prime}\right| / 2$.

$$
\begin{gather*}
w=w_{0} \sqrt{1+\frac{z^{2}}{z_{0}^{2}}}, w^{\prime}=w_{0}^{\prime} \sqrt{1+\frac{z^{\prime 2}}{z_{0}^{\prime^{2}}}, R=\frac{z^{2}+z_{0}^{2}}{z}, R^{\prime}=\frac{z^{\prime^{2}}+z_{0}^{\prime^{2}}}{z^{\prime}}} \\
\gamma=1+i \alpha, \alpha=\frac{k}{2}\left(\frac{1}{R^{\prime}}-\frac{1}{R}\right) \frac{w^{2} w^{\prime^{2}}}{w^{2}+w^{\prime 2}} \tag{29}\\
\beta=\sqrt{\frac{2}{1+w^{2} / w^{\prime 2}}}=1+\delta \beta, \beta^{\prime}=\sqrt{\frac{2}{1+w^{\prime 2} / w^{2}}}=1+\delta \beta^{\prime}, \beta^{2}+\beta^{\prime 2}=2
\end{gather*}
$$

The lowest order mode coupling can be expressed in the following simple form.

$$
\begin{align*}
O p\left[u_{m}\right] /\left(\sqrt{\beta \cdot \beta^{\prime}} \gamma^{-m-\frac{1}{2}}\right) & \sim\left(1+m \cdot\left(\delta \beta+\delta \beta^{\prime}\right)\right) u_{m} \\
& -\frac{1}{2} \sqrt{\frac{(m+2)!}{m!}}\left(i \alpha-2 \delta \beta^{\prime}\right) \frac{u_{m+2}}{1+i \alpha} \tag{30}\\
& -\frac{1}{2} h_{m-2} \sqrt{\frac{m!}{(m-2)!}}(i \alpha-2 \delta \beta)(1+i \alpha) u_{m-2} \\
h_{i} & = \begin{cases}0 & (i<0) \\
1 & (i \geq 0)\end{cases}
\end{align*}
$$

The explict energy conservation in the lowest order is shown in the following expression.

$$
\begin{align*}
& |A m p(0 \rightarrow 0)|^{2}=\frac{\beta \beta^{\prime}}{\sqrt{1+\alpha^{2}}} \\
& |A m p(0 \rightarrow 2)|^{2}=\frac{\beta \beta^{\prime}}{\sqrt{1+\alpha^{2}}} \frac{1}{2} \frac{\alpha^{2}+4 \delta \beta^{\prime 2}}{1+\alpha^{2}} \tag{31}\\
& |A m p(0 \rightarrow 0)|^{2}+|A m p(0 \rightarrow 2)|^{2}=1 \text { up to } 2 \text { nd order of } \alpha \text { and } \delta \beta
\end{align*}
$$

4.3.3. Lowest order elements

Table 3: $M_{m m^{\prime}}^{\text {Base }}$ excluding $\sqrt{\beta \cdot \beta^{\prime}} \gamma^{-\frac{1}{2}\left(m+m^{\prime}+1\right)}$

$m \backslash m$	0	1	2	3	4
0	1	0	$\frac{1}{\sqrt{2}}\left(-\gamma+\beta^{\prime 2}\right)$	0	$\sqrt{\frac{3}{8}}\left(\gamma-\beta^{\prime 2}\right)^{2}$
1	0	$\beta \beta^{\prime}$	0	$\sqrt{\frac{3}{2}} \beta \beta^{\prime}\left(-\gamma+\beta^{\prime 2}\right)$	0
2	$\frac{1}{\sqrt{2}}\left(-\gamma+\beta^{2}\right)$	0	$\frac{1}{2}\left(\gamma^{2}-2 \gamma+3 \beta^{2} \beta^{\prime 2}\right)$	0	$\begin{aligned} & -\frac{\sqrt{3}}{4}\left(\gamma-\beta^{\prime 2}\right) \\ & \left(\gamma^{2}-2 \gamma+5 \beta^{2} \beta^{\prime 2}\right) \end{aligned}$
3	0	$\sqrt{\frac{3}{2}} \beta \beta^{\prime}\left(-\gamma+\beta^{2}\right)$	0	$\begin{aligned} & \frac{1}{2} \beta \beta^{\prime} \\ & \left(3 \gamma^{2}-6 \gamma+5 \beta^{2} \beta^{\prime 2}\right) \end{aligned}$	0
4	$\sqrt{\frac{3}{8}}\left(\gamma-\beta^{2}\right)^{2}$	0	$\begin{aligned} & -\frac{\sqrt{3}}{4}\left(\gamma-\beta^{2}\right) \\ & \left(\gamma^{2}-2 \gamma+5 \beta^{2} \beta^{\prime^{2}}\right) \end{aligned}$	0	$\begin{aligned} & \frac{3}{8} \gamma^{4}-\frac{3}{2} \gamma^{3} \\ & +\frac{3}{4} \gamma^{2}\left(2+5 \beta^{2} \beta^{\prime 2}\right) \\ & -\frac{15}{2} \gamma \beta^{2} \beta^{\prime 2}+\frac{35}{8} \beta^{4} \beta^{\prime 4} \end{aligned}$

The explicit expressions of low order terms are shown in Table 3. The matrix elements are expressed using γ, β and β^{\prime}, all of which go to 1 when the two bases are the same. If matrix elements are shown using $\alpha, \delta \beta$ and $\delta \beta^{\prime}$, expressions become longer.

4.3.4. Sanity check

$$
\begin{equation*}
\sum_{m 3} M_{m 1 m 3}^{\text {Base }}\left(\alpha, w, w^{\prime}\right) \cdot M_{m 3 m 2}^{\text {Base }}\left(-\alpha, w^{\prime}, w\right)=\delta_{m 1 m 2} \tag{32}
\end{equation*}
$$

4.4. Reflection by a mirror with non-matching curvature

4.4.1. Basic

This is a special case of the Hermite-Gaussian base change. The reflection by a mirror is given by Eq. (33) and Eq. (34).

$$
\begin{gather*}
z^{\prime}=\frac{L\left(1-\frac{2 R(L)}{R_{m}}\right)}{1+4 \frac{L}{R_{m}}\left(\frac{R(L)}{R_{m}}-1\right)} \tag{33}\\
z_{0}^{\prime}=\frac{z_{0}}{1+4 \frac{L}{R_{m}}\left(\frac{R(L)}{R_{m}}-1\right)} \tag{34}
\end{gather*}
$$

L is the location of the mirror (distance from the waist of the field), and R_{m} and $R(L)$ are the curvatures of the mirror and the incoming field on the mirror. If the mirror curvature matches with that of the beam, $\mathrm{z}^{\prime}=-\mathrm{L}$ and $\mathrm{z}_{0}{ }^{\prime}=\mathrm{z}_{0}$, i.e., the beam is just reflected back.
The curvature of the reflected field, $\mathrm{R}_{\text {ref }}$, is given by Eq. (35). When the mirror curvature matches with that of the incoming field, $\mathrm{R}_{\mathrm{ref}}=-\mathrm{R}(\mathrm{L})$, i.e., expanding (shrinking) field changes to shrinking (expanding) field.

$$
\begin{align*}
& \frac{1}{R(L)}-\frac{1}{R_{\text {ref }}}=\frac{2}{R_{m}} \\
&\left(\frac{1}{R_{\text {in }}}-\frac{1}{R_{\text {out }}}=\frac{1}{f}\right) \tag{35}
\end{align*}
$$

The beam size on the mirror remains the same on reflection.
In the following calculation, the propagation direction of the reflected field is reversed

$$
\begin{equation*}
O p[E(x, y, z)]=E\left(x, y, z^{\prime} ; z_{0}^{\prime}\right) \tag{36}
\end{equation*}
$$

There are two possibilities of reflection. One is that the convergence status changes (Figure 4-a) and another is that the status does not change (Figure 4-b). E.g., when a field is reflected by a
mirror with a curvature matching to the field wave front, a converging field becomes diverging, and a diverging field becomes converging. On the other hand, when a field is reflected by an almost flat mirror, a converging field is still converging and a diverging field diverging.

Blue lines are surfaces of reflection, red lines are incoming fields with the waist at black lines and wave fronts shown by green, and red dashed lines are reflected fields with respective waist and wave front shown by dashed lines.

Figure 4: Reflection (a) with convergence condition change and (b) without.
For two special cases, the reflected field can be expressed using the incoming field. One is when the mirror curvature matches with the wave front of the incoming field, i.e., $\mathrm{Rm}=\mathrm{R}(\mathrm{L})$. With this condition, $\mathrm{z}^{\prime}=-\mathrm{L}$ and $\mathrm{z} 0{ }^{\prime}=\mathrm{z} 0$. The other case is when the mirror curvature is infinity, i.e., $1 / \mathrm{Rm}=$ 0 . With this condition, $\mathrm{z}^{\prime}=\mathrm{L}$ and $\mathrm{z} 0^{\prime}=\mathrm{z} 0$.
When the mirror surface curvature is different from either of these cases, one needs to use perturbative expansion.

$$
\begin{gather*}
\frac{z^{\prime}+L}{z_{0}^{\prime}}=\frac{2 L\left(\frac{R(L)}{R_{m}}-1\right)\left(1-\frac{2 L}{R_{m}}\right)}{z_{0}} \tag{37}\\
\frac{z^{\prime}-L}{z_{0}^{\prime}}=\frac{\frac{-2 L}{R_{m}}\left(2 L\left(\frac{R(L)}{R_{m}}-1\right)+R(L)\right)}{z_{0}} \tag{38}
\end{gather*}
$$

Eq. (37) becomes small if Rm is close to $\mathrm{R}(\mathrm{L})$, while Eq. (38) becomes small when Rm becomes large. I.e., when the mirror curvature is close to the wave front curvature, the new waist position is located at around -L, while for the reflection by an almost flat mirror, the waist is located at around L .
When the new z ' has the opposite sign of L, the convergence condition changes. So the choice of the base can be done by calculating the sign of $L^{*} z^{\prime}$ using Eq. (33). If $z^{\prime} * \mathrm{~L} \geq 0$, then Eq. (38) should be used, otherwise, Eq. (37) should be used, with an appropriate Rayleigh range.
In the following section, $\mathrm{R}(\mathrm{L})$ means the curvature of the incoming field at L , and $\operatorname{Rout}(\mathrm{L})$ is the curvature of the reflected field of the mode base. In short, $\operatorname{Rout}(L)=-R(L)$ for case a) and $\operatorname{Rout}(L)$ $=R(L)$ for case b).

4.4.2. Reflection by a tilted mirror

The derivation here is based on the ABCD matrix for a reflection by a mirror. The ABCD matrix of the reflection of a field with an arbitrary incident angle is given by

$$
\left[\begin{array}{cc}
1 & 0 \tag{39}\\
-2 /\left(R_{m} \cdot \cos \left(\theta_{i n c}\right)\right) & 1
\end{array}\right]
$$

so the following formula can be used for an arbitrary incident field by using Eq. (40) in place of Rm.

$$
\begin{equation*}
R_{m} \cdot \cos \left(\theta_{i n c}\right) \tag{40}
\end{equation*}
$$

4.4.3. Effect of a lens

When a field goes through a lens, the base, waist position and size, is affected. The ABCD matrix for a lens with a focal length f ($\mathrm{f}>0$ for converging lens) is

$$
\left[\begin{array}{cc}
1 & 0 \tag{41}\\
-1 / f & 1
\end{array}\right]
$$

which is the same as that for the reflection by a mirror, Eq. (39), when Rm is replaced by 2 f . From this relation, the matrix for the lens is given by the following formula by replacing Rm by $2 * \mathrm{f}$. The argument for the choice of outgoing beam divergence applies in the same way.

4.4.4. Mode decomposition matrix of the reflection by curvature mismatched mirror

$$
\begin{align*}
M_{m m^{\prime}}^{M i s} & =\int d x u_{m}^{*}(x, L) \operatorname{Ref}\left[u_{m^{\prime}}(x, L)\right] \\
& =\frac{1}{\sqrt{\pi 2^{m+m^{\prime}} m!m^{\prime}!}} \int d \xi H_{m}(\xi) H_{m^{\prime}}(\xi) \operatorname{Exp}\left[-\xi^{2}(1+i \alpha)\right] \tag{42}\\
\alpha & =\frac{k w(L)^{2}}{4}\left(\frac{1}{R_{\text {ref }}}-\frac{1}{R_{\text {out }}}\right)=\frac{L}{2 z_{0}} R(L)\left(\frac{1}{R_{\text {ref }}}-\frac{1}{R_{\text {out }}}\right)
\end{align*}
$$

For the case a), i.e., reflection by a almost curvature matched mirror, α is given by the following expression by eliminating Rref using Eq. (35) and Rout $=-R(L)$,

$$
\begin{equation*}
\alpha=\frac{L}{z_{0}}\left(1-\frac{R(L)}{R_{m}}\right) \tag{43}
\end{equation*}
$$

while for the case b), i.e., reflection by an almost flat mirror, α is given as follows using Eq. (35) and Rout $=R_{m}$:

$$
\begin{equation*}
\alpha=-\frac{L}{z_{0}} \frac{R(L)}{R_{m}} \tag{44}
\end{equation*}
$$

Eq. (42) is the Vinet's formula, except the sign of " i " due to the different convention of $\exp (-\mathrm{ikz})$. As is derived in Appendix 3, the curvature mismatch matrix can be written in the following way. The matrix is symmetric in m and m ', i.e., $M_{m m},=M_{m}{ }^{\prime}$, and the following expression is the one for $m \geq m$ '.

$$
\begin{gather*}
M_{m m^{\prime}}^{M i s}=\frac{1+(-1)^{m+m^{\prime}}}{2} \frac{(i \alpha)^{n_{\min }}}{\frac{m+m^{\prime}+1}{2}} \times \sum_{n=0}^{n_{\max }} c m\left(m, m^{\prime}, n\right) \cdot \alpha^{2 n} \tag{45}\\
(1+i \alpha) \\
n_{\min }=\frac{m-m^{\prime}}{2}, n_{\max }=\frac{\left[\frac{m}{2}\right]+\left[\frac{m^{\prime}}{2}\right]-n_{\min }}{2} \quad\left[m \geq m^{\prime}\right]
\end{gather*}
$$

and the explicit form of the function $\mathrm{cm}\left(\mathrm{m}, \mathrm{m}^{\prime}, \mathrm{n}\right)$ is given by the following formula.

$$
\begin{align*}
& c m\left(m, m^{\prime}, n\right)=(-1)^{n} \sqrt{\frac{m!m^{\prime}!}{2^{m+m^{\prime}}}} \frac{1}{\left(n_{\text {min }}+2 n\right)!} \times \\
& \sum_{r=r_{\min }}^{r_{\max }}(-1)^{r} \frac{\left(m+m^{\prime}-2 r\right)!r!}{\left(\frac{m+m^{\prime}}{2}-r\right)!\left(r-r_{\min }\right)!} \sum_{s=0}^{s_{\max }} \frac{1}{(m-2 u)!\left(m^{\prime}-2 v\right)!u!v!} \tag{46}\\
& r_{\min }=\frac{m-m^{\prime}}{2}+2 n, \quad r_{\text {max }}=\left[\frac{m}{2}\right]+\left[\frac{m^{\prime}}{2}\right] \quad\left[m \geq m^{\prime}\right]
\end{align*}
$$

where $\mathrm{s}_{\text {max }}, \mathrm{u}$ and v are functions of $\mathrm{m}, \mathrm{m}, \mathrm{r}$ and s given as follows.

$$
\begin{align*}
& r_{1}=\left[\frac{m^{\prime}}{2}\right], \quad r_{2}=\left[\frac{m}{2}\right] \quad\left[m \geq m^{\prime}\right] \\
& 0 \leq r \leq r_{1} \quad \Rightarrow s_{\text {max }}=r, \quad u=s, \quad v=r-s \tag{47}\\
& r_{1}<r \leq r_{2} \quad \Rightarrow s_{\text {max }}=r_{1}, \quad u=r+s-r_{1}, v=r_{1}-s \\
& r_{2}<r \leq r_{\text {max }} \Rightarrow s_{\text {max }}=r_{\text {max }}-r, u=r+s-r_{1}, v=r_{1}-s
\end{align*}
$$

The Z_{mm}, (α) by Vinet is related to our formulation as follows:

4.4.5. Lower order elements

Table 4: $M_{m m^{\prime}}^{M i s}$ excluding $(1+i \alpha)^{-\frac{m+m^{\prime}+1}{2}}$

$\mathrm{m} \backslash \mathrm{m}^{\prime}$	0	1	2	3	4	5
0	1	0	$-i \frac{\alpha}{\sqrt{2}}$	0	$-\sqrt{\frac{3}{8}} \alpha^{2}$	0
1	0	1	0	$-i \sqrt{\frac{3}{2}} \alpha$	0	$-\sqrt{\frac{15}{8}} \alpha^{2}$
2	$-i \frac{\alpha}{\sqrt{2}}$	0	$1-\frac{\alpha^{2}}{2}$	0	$-i \sqrt{3} \alpha\left(1-\frac{\alpha^{2}}{4}\right)$	0
3	0	$-i \sqrt{\frac{3}{2}} \alpha$	0	0	0	$-i \sqrt{5} \alpha\left(1-\frac{3}{2} \alpha^{2} \alpha^{2}\right)$
4	$-\sqrt{\frac{3}{8}} \alpha^{2}$	0	$-i \sqrt{3} \alpha\left(1-\frac{\alpha^{2}}{4}\right)$	0	$1-3 \alpha^{2}+\frac{3}{8} \alpha^{4}$	0
5	0	$-\sqrt{\frac{15}{8}} \alpha^{2}$	0	$-i \sqrt{5} \alpha\left(1-\frac{3}{4} \alpha^{2}\right)$	0	$1-5 \alpha^{2}+\frac{15}{8} \alpha^{4}$

This is special case of Table 3. With the following substitution, they match each other: $\gamma=1 _i \alpha$, $\beta=1, \beta^{\prime}=1$. This this case, the beam spot size does not change on reflection, so $w=w^{\prime}$, and $\beta=1$ and $\beta^{\prime}=1$.

4.5. Another sanity check

(1) Rotate at $(0,0)$ by θ, with waist at $(0,0)$
(2) Shift by -L θ toward -x direction, with waist at (-L $\theta, 0$)
(3) Rotate at $(0, \mathrm{~L})$ by $-\theta$, with waist at $\left(0,-\mathrm{L} \theta^{2} / 2\right)$
(4) Move the waist position by $\mathrm{L} \theta^{2} / 2$ toward $+z$ direction to move waist to $(0,0)$

$$
\begin{equation*}
M^{\text {Base }}\left(\Delta z=\frac{L \theta^{2}}{2}\right) M^{\text {Rot }}(L,-\theta) M^{\text {Shift }}(-L \theta) M^{\text {Rot }}(0, \theta)=I \tag{49}
\end{equation*}
$$

5 NULL TEST

Because the same phenomena can be calculated using different set of Hermite-Gaussians, there are several cases which can be used to validate calculating by comparing results using different set of Hermite-Gaussians. In this section, two cases are studied. One is a field in a flat-curved FP cavity with the end mirror tilted, and the other is a field whose waist position is slightly shifted from that of an resonant mode of a FP cavity.

5.1. Tilt

5.2. Waist shift

How many modes are necessary?

$$
\begin{gather*}
E c a v=\frac{t 1}{1-M R 1 \cdot P 21 \cdot M R 2 \cdot P 12} \text { Ein } \tag{50}\\
E_{00}^{c a v}=\frac{t_{1} \cdot E_{00}^{i n}}{\left(1-r_{1} \cdot r_{2} \cdot \exp (i \cdot \varphi)\right) \cdot(1+c 1)+c 2} \tag{51}\\
\text { With } \mathrm{n}+\mathrm{m}<=2, \mathrm{c} 1 \sim \mathrm{real}, \mathrm{O}\left(\alpha^{2}\right), \mathrm{c} 2=\mathrm{real}, \mathrm{O}\left(\alpha^{4}\right) \\
\text { With } \mathrm{n}+\mathrm{m}<=4, \mathrm{c} 1 \sim \mathrm{real}, \mathrm{O}\left(\alpha^{2}\right), \mathrm{c} 2=\mathrm{real}, \mathrm{O}\left(\alpha^{5}\right) \\
\qquad \alpha=\frac{k \cdot w(z)^{2}}{2 \cdot R(z)}\left(1-\frac{R(z)}{R_{m}}\right)=\frac{\Delta z}{z_{0}} \cos (2 \eta) \tag{52}\\
E_{00}^{c a v}=\frac{t_{1} \cdot E_{00}^{i n}}{\left(1-r_{1} \cdot r_{2}\right)} \cdot \frac{1}{(1+c 1)+\frac{c 2}{1-r_{1} \cdot r_{2}}} \tag{53}
\end{gather*}
$$

For a high finess cavity, like locked state LIGO arm, F~10k, 4th order mode is necessary.

6 PHYSICS QUANTITIES

Table 5: Physics parameters of interest

name	value	comment
LIGO ITM curvature	14.18 km	
LIGO ETM curvature	7.4 km	
LIGO Recycling curv	14.9 km	
LIGO ITM Trans / Loss	$3 \% / 50 \mathrm{ppm}$	
LIGO ETM Trans / Loss	$<20 \mathrm{ppm} / 50 \mathrm{ppm}$	
LIGO Recycling T/L	$3 \% / 50 \mathrm{ppm}$	

APPENDIX 1 SUMMARY OF FIELD PROPERTIES

Table 6: field parameters

name	expression	in $\operatorname{COC}(4 k / 2 k)$	in PSL/IOO
waist size	w_{0}	$3.51 / 3.13 \mathrm{~cm}$	
Rayleigh length	$\begin{aligned} z_{0} & =\frac{\pi \cdot w_{0}^{2}}{\lambda}=\frac{k \cdot w_{0}^{2}}{2}=\frac{w_{0}}{\Theta} \\ & =\sqrt{\frac{L\left(R_{1}-L\right)\left(R_{2}-L\right)\left(R_{1}+R_{2}-L\right)}{\left(R_{1}+R_{2}-2 L\right)^{2}}} \end{aligned}$	3.63 / 2.89 km	
Distance to waist	$z_{1}=\frac{L\left(R_{2}-L\right)}{R_{1}+R_{2}-2 L}, z_{2}=\frac{L\left(R_{1}-L\right)}{R_{1}+R_{2}-2 L}$	$\begin{aligned} & 1000,3000 \mathrm{~m} / \\ & 614,1386 \mathrm{~m} \end{aligned}$	
spot size	$w=w_{0} \sqrt{1+\left(\frac{z}{z_{0}}\right)^{2}}$	$\begin{aligned} & 3.64,4.55 \mathrm{~cm} / \\ & 3.20,3.47 \mathrm{~cm} \\ & \text { size @ITM, ETM } \end{aligned}$	
curvature of phase front	$R(z)=\frac{z^{2}+z_{0}^{2}}{z}$		
divergence angle	$\Theta=\frac{\lambda}{\pi \cdot w_{0}}=\frac{w_{0}}{z_{0}}$	$9.7 / 10.8 \mu \mathrm{r}$	
Gouy phase	$\eta(z)=\operatorname{atan}\left(\frac{z}{z_{0}}\right)=\operatorname{angle}\left(\frac{z_{0}+i z}{\left\|z_{0}+i z\right\|}\right)$	$-15.4,39.6 \mathrm{deg}$ $-12.0,25.6 \mathrm{deg}$ η @ITM/етм	
wave number	$k=\frac{2 \pi}{\lambda}=\frac{2}{\Theta \cdot w_{0}}=\frac{2 z_{0}}{w_{0}^{2}}$	$\begin{aligned} & 5.91 \mathrm{e} 6 \sim \text { YAG } \\ & 0.513 \sim 24.5 \mathrm{MHz} \\ & 0.618 \sim 29.5 \mathrm{MHz} \end{aligned}$	人

APPENDIX 2 HERMITE GAUSSIAN FUNCTIONS

$H_{m}(x)$ is the Hermite polynomial of order m. The following relations are used repeatedly in the calculations which follow:

$$
\begin{gather*}
\int_{-\infty}^{\infty} U_{m}^{\dagger}(x, z) U_{n}(x, z) d x=\delta_{m n} \tag{54}\\
2 x H_{m}(x)=H_{m+1}(x)+2 m H_{m-1}(x) \tag{55}\\
\frac{d}{d x} H_{m}(x)=2 m H_{m-1}(x) \tag{56}\\
\int_{-\infty}^{\infty} U_{m}^{\dagger}(x, 0) \frac{H_{i}\left(\sqrt{2} x / w_{0}\right)}{H_{k}\left(\sqrt{2} x / w_{0}\right)} U_{k}(x, 0) d x=\sqrt{\frac{2^{i} i!}{2^{k} k!}} \delta_{m i} \tag{57}
\end{gather*}
$$

Eq. (54) is the orthonormality condition; eqns. Eq. (55) and Eq. (56) are recursion relations to be used to derive Hermite polynomials of any order, beginning with $H_{0}(x)=1$.
In two dimensions the Hermite-Gaussian modes are given by

$$
\begin{equation*}
U_{m n}=U_{m}(x, z) U_{n}(y, z) e^{-i k z} \tag{58}
\end{equation*}
$$

The explicit forma of a few low order Hermite polynomials are:

$$
\begin{equation*}
\mathrm{H}_{0}(\mathrm{x})=1 ; \mathrm{H}_{1}(\mathrm{x})=2 \mathrm{x} ; \mathrm{H}_{2}(\mathrm{x})=-2+4 \mathrm{x}^{2} ; \mathrm{H}_{3}(\mathrm{x})=-12 \mathrm{x}+8 \mathrm{x}^{3} ; \tag{59}
\end{equation*}
$$

A few examples of the distribution of the Hermite Gaussians are shown below.

The following formula is used in the modeling of the photo detector with simple shapes.

$$
\begin{gather*}
\int_{0}^{\infty} H_{n}(x) H_{m}(x) \exp \left(-x^{2}\right) \\
=\sum_{r=0}^{\left[\frac{n}{2}\right]\left[\frac{m}{2}\right]} \sum_{s=0}(-1)^{r+s} \cdot \frac{n!m!2^{n+m-1}}{(2 r)!!(2 s)!!(n-2 r)!(m-2 s)!} \tag{60}\\
\left(\frac{n+m-1}{2}-r-s\right)!\cdot 2^{-r-s} \text { for odd } \mathrm{n}+\mathrm{m} \\
\frac{(n+m-2 r-2 s-1)!!}{\sqrt{2}^{n+m}} \sqrt{\pi} \text { for even } \mathrm{n}+\mathrm{m}
\end{gather*}
$$

Table 7: $H H[m, n]=\frac{1}{\sqrt{\pi 2^{m+n} m!n!_{0}}} \int_{m}^{\infty} H_{m}(x) H_{n}(x) \exp \left(-x^{2}\right)$

$\mathrm{m} \backslash \mathrm{n}$	0	1	2	3	4	5
0	$\frac{1}{2}$	$\frac{1}{\sqrt{2 \pi}}$	0	$-\frac{1}{2 \sqrt{3 \pi}}$	0	$\frac{1}{4} \sqrt{\frac{3}{5 \pi}}$
1	$\frac{1}{\sqrt{2 \pi}}$	$\frac{1}{2}$	$\frac{1}{2 \sqrt{\pi}}$	0	$-\frac{1}{4 \sqrt{3 \pi}}$	0
2	0	$\frac{1}{2 \sqrt{\pi}}$	$\frac{1}{2}$	$\frac{1}{2} \sqrt{\frac{3}{2 \pi}}$	0	$-\frac{1}{4} \sqrt{\frac{5}{6 \pi}}$
3	$-\frac{1}{2 \sqrt{3 \pi}}$	0	$\frac{1}{2} \sqrt{\frac{3}{2 \pi}}$	$\frac{1}{2}$	$\frac{3}{4 \sqrt{2 \pi}}$	0
4	0	$-\frac{1}{4 \sqrt{3 \pi}}$	0	$\frac{3}{4 \sqrt{2 \pi}}$	$\frac{1}{2}$	$\frac{3}{8} \sqrt{\frac{5}{2 \pi}}$
5	$\frac{1}{4} \sqrt{\frac{3}{5 \pi}}$	0	$-\frac{1}{4} \sqrt{\frac{5}{6 \pi}}$	0	$\frac{3}{8} \sqrt{\frac{5}{2 \pi}}$	$\frac{1}{2}$

$$
\int_{-\infty}^{\infty} H_{n}(x) H_{m}(x) \exp \left(-x^{2}\right)=\left(\begin{array}{cc}
\sqrt{\pi} 2^{n} n! & \text { for } \mathrm{n}=\mathrm{m} \tag{61}\\
0 & \text { for } \mathrm{n} \neq m
\end{array}\right.
$$

$$
\begin{align*}
& H_{n}(x)=\sum_{r=0}^{\left[\frac{n}{2}\right]}(-1)^{r}(2 r-1)!!{ }_{n} C_{2 r^{\prime}} 2^{n-r} x_{x}^{n-2 r} \\
&=(-1)^{m} \sum_{r=0}^{m}(-1)^{r} \frac{(2 m)!}{(m-r)!(2 r)!}(2 x)^{2 r} \quad(n=2 m) \\
&=2 x(-1)^{m} \sum_{r=0}^{m}(-1)^{r} \frac{(2 m+1)!}{(m-r)!(2 r+1)!}(2 x)^{2 r} \quad(n=2 m+1) \\
& H_{n}(x+y)=\sum_{r=0}^{n} H_{n-r}(x) 2^{r}{ }_{n} C_{r} y^{r}
\end{align*}
$$

APPENDIX 3 CURVATURE MISMATCH MATRIX to be filled

APPENDIX 4 STEADY STATE MULTIMODE FIELDS IN A FABRY-PEROIT CAVITY

Figure 5: FP cavity schematics
Steady state fields in a Fabry-Peroit cavity can be calculated by solving the following consistency equation Eq. (63).

$$
\begin{equation*}
A_{c a v}=t_{1} \cdot A_{i n}+r_{1} \cdot r_{2} \cdot M R_{1} \cdot P R_{21} \cdot M R_{2} \cdot P R_{12} \cdot A_{c a v} \tag{63}
\end{equation*}
$$

In this equation, A_{in} and $\mathrm{A}_{\text {cav }}$ are arrays of coefficients, a_{mn} in Eq. (2), of incoming and intra cavity fields.

$$
A_{x}=\left[\begin{array}{c}
a_{m_{1} n_{1}} \tag{64}\\
a_{m_{2} n_{2}} \\
\cdots
\end{array}\right]
$$

t_{j} and r_{j} are amplitude transmittance and reflectance of mirror $\mathrm{j} . \mathrm{PR}_{\mathrm{ij}}$ is a propagator from mirror i to mirror \mathfrak{j}, corresponding to Eq. (4), and MR_{j} is a mode decomposition matrix discussed in Section 4.
The propagator can be explicitly written as follows:

$$
P R_{i j}=\operatorname{Exp}\left[-i k L+i \Delta \eta_{i j}\right]\left[\begin{array}{ccc}
\operatorname{Exp}\left[i\left(m_{1}+n_{1}\right) \Delta \eta_{i j}\right] & 0 & 0 \tag{65}\\
0 & \operatorname{Exp}\left[i\left(m_{2}+n_{2}\right) \Delta \eta_{i j}\right] & 0 \\
0 & 0 & \ldots
\end{array}\right]
$$

where L is the distance between the two mirrors and $\Delta \eta$ is the difference of the Gouy phases,

$$
\begin{equation*}
\Delta \eta_{i j}=\eta\left(z_{j}\right)-\eta\left(z_{i}\right) \tag{66}
\end{equation*}
$$

When the field is propagating back from mirror 2 to mirror 1 , the z axis direction is reversed, and the numerical value of $\Delta \eta_{21}$ is the same as $\Delta \eta_{12}$. Hereafter, $\Delta \eta$ is used to denote the change of gouy phase from mirror 1 to mirror $2, \Delta \eta_{12}$.
The solution of this consistency equation is

$$
\begin{equation*}
A_{c a v}=\frac{t_{1} \cdot A_{i n}}{I-r_{1} \cdot r_{2} \cdot M R_{1} \cdot P R_{21} \cdot M R_{2} \cdot P R_{12}} \tag{67}
\end{equation*}
$$

When the Hermite-Gaussian base is the eigenstate of the FP cavity, there is no coupling among modes on reflection, i.e., MR_{i} is diagonal. When the FP cavity is slightly off from this idealistic case, mode mixing occurs when the field is reflected by mirrors, i.e., MR_{i} is not diagonal.
A mode in the cavity, $\mathrm{A}_{\text {cav, } \mathrm{mn}}$, induced by a specific mode of the incoming field, $\mathrm{A}_{\mathrm{in}, 0}$, can be rewritten in the following form. (The mode of the incoming field can be any. Here suffix 0 is used to clarify that $\mathrm{A}_{\mathrm{in}, 0}$ refers to an amplitude of a certain mode.)

$$
\begin{equation*}
A_{c a v, m n}=\frac{t_{1} \cdot A_{i n, 0}}{1-R_{12}(1-\delta)} \tag{68}
\end{equation*}
$$

R

REFERENCE

1. Hefetz, Y., Mavalvala, N. and Sigg, N. "Principles of calculating alignment signals in complex resonant optical interferometers," J. Opt. Soc. Am. B 14, 1597-1605 (1997)
2. Bhawal, B., JOSA A, 105, 120-143 (1998)
3. Kawabe, K., "Development of a 3-meter Fabry-Perot-Michelson Interferometer for Gravitational Wave Detection", Ph.D Thesis, University of Tokyo (1998)
