
 

  

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY 
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T990081-04 E- July. 2004

Time Domain Modal Model
in End-to-End simulation package

Biplab Bhawal, Matt Evans, 

Malik Rakhmanov and Hiro Yamamoto

Distribution of this draft:

xyz

California Institute of Technology
LIGO Project - MS 51-33

Pasadena CA 91125
Phone (626) 395-2129

Fax (626) 304-9834
E-mail: info@ligo.caltech.edu

LI
GO-D

RAFT
Massachusetts Institute of Technology

LIGO Project - MS 20B-145
Cambridge, MA 01239
Phone (617) 253-4824

Fax (617) 253-7014
E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working note
of the LIGO Project..

 

Table of Contents

Index

 

file DocDisk:hiro:Documents:e2e:e2eDocs:T990081_e2eModalModel.fm5 - printed July 22, 2005



 

LIGO-T990081-04

page 4 of 31

 

LI
GO-D

RAFT

 

1 ABSTRACT

 

In the End to End simulation program for LIGO uses the time domain modal model to simulate
the spatial and time evolution of the field in cavities. This note summaries the formulas used in the
e2e package. Also included are explicit calculations of fields in a simple cavity to understand how
the fields with limited number of spatial modes behave, and to demonstrate model validation
methods which are used to validate the e2e code.

 

2 KEYWORDS

 

time domain modal model e2e End-to-End simulation

 

3 TIME DOMAIN MODAL MODEL

 

3.1. General Formula

 

In the time domain modal model, a freely propagating field, E(x,y,z,t), in a vacuum is expressed
using a set of Hermite-Gaussian functions in the following way.
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Various field properties are defined in Appendix 1. The base of a Hermite-Gaussian function can
be characterized by the waist size, w

 

0

 

, and the waist position. In the expression about, the origin
of the z coordinate is chosen at the waist position, and the direction of the field propagation is
chose to be the positive direction.
Because the Hermite-Gaussian functions, Eq. (5), provides a complete set in the (x,y) space and
the field expression, Eq. (1), is a solution of the paraxial approximation of the Maxwell’s
equation, one can choose any Hermite-Gaussian base, and once chosen, the field is fully described
by the coefficients a

 

mn

 

 and z. 

 

3.2. Propagation

 

An initial condition can be specified by a set of amplitudes, a

 

mn

 

, of a chosen set of Hermite-
Gaussian functions at a given time t at a given location z. Then the field propagation can be
calculated by Eq. (3), i.e., when an initial condition is given and the amplitudes of all Hermite-
Gaussian modes are calculated, the propagation of fields, or field amplitudes at location z, can be

w0

z

(w0,z)

(w0,-z)
Figure 1: Time domain Modal Model field definition
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calculated by multiplying the phase due to the normal wave oscillation, k (z-z), and the Gouy
phase change, (m+n+1)($00(z)-$00(z)). 
The simulation of e2e traces the change of coefficients amn. When a field moves, Eq. (3) is applied
to update the coefficients and, when there is any interaction, the coefficient is updated using the
matrix operation explained in the next subsection.

3.3. Operation
A operation on a field, like changing the propagation direction or displacing the waist position,
can be represented by a mode decomposition matrix, , which converts one set of
coefficients amn to another.

(7)

(8)

In these equations, means that the value of z is evaluated at z after the operation is
applied. An example is an operation to rotate the field direction discussed in the following section. 
One important point to note is that the mode decomposition matrix is calculated at a given
location. The matrix relates a set of amplitudes calculated at a position to another set of
amplitudes at the same position. Then the propagator defined in Eq. (3) is used to calculate the
field at different locations.
One explicit example will be in order. When the waist position of a field is shifted by ,z, the new
field can be expressed by using the original field by shifting the z coordinate. A more general
discussion is given below, but the following is an explicit calculation up to the first order effect.

(9)
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(10)

(11)

Given these two coefficients, the field at other location z can be calculated using Eq. (3).

4 BASIC OPERATIONS

4.1. Rotation Operator

4.1.1. Rotate around (0,0,L) by /

(12)

The size of / of interest is ~ 1 µ rad, and the matrix is calculated by expanding in //0/cos($),
where 0 is the divergence angle which is ~ 10 µ rad in LIGO core optics cavities. 

u0 x z ,z+,( ) i,$[ ]exp a0 u0 x z,( ) a2 u2 x z,( )"+"[ ]"=
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/
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4.1.2. Mode decomposition matrix

(13)

(14)

(15)

When ,

(16)

When keeping only up to the second order in /, this expression becomes in the following simpler
form. (Ref[3])
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(17)

4.1.3. Lower order elements

4.1.4. Sanity check

(18)

4.1.5. Intuitive meaning of Reflection operator matrix
Simple case reflection coupling from TEM00 mode to TEM01 and TEM10 mode.
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(19)

The meaning of the reflection matrix -i 2 / is as follows. In the following calculation, the waist
position is assumed to be at the reflection point, and z << z0.

(20)
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Figure 2: Reflection by ////y or yaw from front and back
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Figure 3: Reflection by ////x or pitch from front and back
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Here, the Gouy phased is approximated by z/z0, and only the linear term on / is kept. The power
along the z direction is calculated as follows where only the lowest order of / is kept.

(21)

So, the reflected field has the power maximum along the line x=2/z, as is naively expected.

4.2. Shift Operator

4.2.1. Shift perpendicular to z axis

(22)
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4.2.2. Mode decomposition matrix

(23)

(24)

When keeping only up to the second order in ,, this expression becomes in the following simpler
form. (Ref[3])

(25)
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4.2.3. Lower order elements

4.2.4. Sanity check

(26)

4.3. Base Change

4.3.1. Change of base of Hermite Gaussian function
This is an operation to express fields based on one base by by another base. One example usage is
as follows. When there is a field which does not mode match with a cavity it is going into. Then
this base change operation can be used to express the field using the eigen state of the cavity.
Second example is a reflection of a field by a mirror whose curvature does not match with that of
the field. This is handled in the next section, but it is a special case of this matrix.
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(27)

4.3.2. Mode decomposition matrix

(28)

w and w’ are waist sizes of each base in the plane of transformation, : and :’ are functions of
these values, and the ; is a parameter characterizing the curvature mismatch of two bases. The
definitions of these variables are given in Eq. (29). When two bases become the same, ;, : and
:’all become 1, or <, +: and +:’ becomes 0. If a matrix element is expressed by a sum of terms
proportional to , then the order of magnitue (the smallest value of the sum of
powers, i.e., n1+n2+n3) of the matrix element is |m-m’|/2.
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(29)

The lowest order mode coupling can be expressed in the following simple form.

(30)

The explict energy conservation in the lowest order is shown in the following expression.

(31)

4.3.3. Lowest order elements
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The explicit expressions of low order terms are shown in Table 3. The matrix elements are
expressed using ;, : and :’, all of which go to 1 when the two bases are the same. If matrix
elements are shown using <, +: and +:’,  expressions become longer.

4.3.4. Sanity check

(32)

Table 3: 

m\m
’ 0 1 2 3 4
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4.4. Reflection by a mirror with non-matching curvature

4.4.1. Basic

This is a special case of the Hermite-Gaussian base change. The reflection by a mirror is given by
Eq. (33) and Eq. (34). 

(33)

(34)

L is the location of the mirror (distance from the waist of the field), and Rm and R(L) are the
curvatures of the mirror and the incoming field on the mirror. If the mirror curvature matches with
that of the beam, z’=-L and z0’ = z0, i.e., the beam is just reflected back. 
The curvature of the reflected field, Rref, is given by Eq. (35). When the mirror curvature matches
with that of the incoming field, Rref=-R(L), i.e., expanding (shrinking) field changes to shrinking
(expanding) field.

(35)

The beam size on the mirror remains the same on reflection.
In the following calculation, the propagation direction of the reflected field is reversed

(36)

There are two possibilities of reflection. One is that the convergence status changes (Figure 4-a)
and another is that the status does not change (Figure 4-b). E.g., when a field is reflected by a

Rm
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L
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---------------–& '
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1 4 L
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------- R L( )

Rm
------------ 1–& '
( )+

------------------------------------------------=
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z0

1 4 L
Rm
------- R L( )

Rm
------------ 1–& '
( )+

------------------------------------------------=

1
R L( )
------------ 1
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-----------– 2
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-------=

1
Rin
-------- 1
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-----------– 1

f
---=& '
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mirror with a curvature matching to the field wave front, a converging field becomes diverging,
and a diverging field becomes converging. On the other hand, when a field is reflected by an
almost flat mirror, a converging field is still converging and a diverging field diverging.

For two special cases, the reflected field can be expressed using the incoming field. One is when
the mirror curvature matches with the wave front of the incoming field, i.e., Rm = R(L). With this
condition, z’=-L and z0’ = z0. The other case is when the mirror curvature is infinity, i.e., 1/Rm =
0. With this condition, z’=L and z0’ = z0. 
When the mirror surface curvature is different from either of these cases, one needs to use
perturbative expansion. 

(37)

(38)

Eq. (37) becomes small if Rm is close to R(L), while Eq. (38) becomes small when Rm becomes
large. I.e., when the mirror curvature is close to the wave front curvature, the new waist position is
located at around -L, while for the reflection by an almost flat mirror, the waist is located at
around L.
When the new z’ has the opposite sign of L, the convergence condition changes. So the choice of
the base can be done by calculating the sign of L*z’ using Eq. (33). If z’*L 1 0, then Eq. (38)
should be used, otherwise, Eq. (37) should be used, with an appropriate Rayleigh range.
In the following section, R(L) means the curvature of the incoming field at L, and Rout(L) is the
curvature of the reflected field of the mode base. In short, Rout(L) = -R(L) for case a) and Rout(L)
= R(L) for case b).

Figure 4: Reflection (a) with convergence condition change and (b) without.

(a) (b)

Blue lines are surfaces of reflection, red lines are incoming fields with the waist at black
lines and wave fronts shown by green, and red dashed lines are reflected fields with
respective waist and wave front shown by dashed lines.

z=L to z’=-L z=L to z’=L
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( ) 1 2L
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-------–& '

( )
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--------------------------------------------------------=

z' L–
z0'

------------

2– L
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( ) R L( )+& '

( )
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--------------------------------------------------------------------=
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4.4.2. Reflection by a tilted mirror
The derivation here is based on the ABCD matrix for a reflection by a mirror. The ABCD matrix
of the reflection of a field with an arbitrary incident angle is given by

(39)

so the following formula can be used for an arbitrary incident field by using Eq. (40) in place of
Rm.

(40)

4.4.3. Effect of a lens
When a field goes through a lens, the base, waist position and size, is affected. The ABCD matrix
for a lens with a focal length f (f  > 0 for converging lens) is

(41)

which is the same as that for the reflection by a mirror, Eq. (39), when Rm is replaced by 2 f.
From this relation, the matrix for the lens is given by the following formula by replacing Rm by
2*f.  The argument for the choice of outgoing beam divergence applies in the same way.

4.4.4. Mode decomposition matrix of the reflection by curvature mis-
matched mirror

(42)

For the case a), i.e., reflection by a almost curvature matched mirror, < is given by the following
expression by eliminating Rref using Eq. (35) and Rout = -R(L),

(43)

1 0
2 Rm /inc( )cos"( )– 1

Rm /inc( )cos"

1 0
1 f– 1

Mmm-
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1

%2m m'+ m!m'!
--------------------------------------- =Hm =( )Hm' =( )Exp =
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<
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4
------------------ 1
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( )= =
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while for the case b), i.e., reflection by an almost flat mirror, < is given as follows using Eq. (35)
and Rout = Rm:

(44)

Eq. (42) is the Vinet’s formula, except the sign of “i” due to the different convention of exp(-ikz).
As is derived in Appendix 3, the curvature mismatch matrix can be written in the following way.
The matrix is symmetric in m and m’, i.e., Mmm’=Mm’m, and the following expression is the one
for m 1 m’.

(45)

and the explicit form of the function cm(m,m’,n) is given by the following formula.

(46)

where smax, u and v are functions of m,m’,r and s given as follows.

(47)

The Zmm’(<) by Vinet is related to our formulation as follows:

< L
z0
-----– R L( )

Rm
------------=

Mmm-
Mis  1 1–( )

m m'++
2

---------------------------------- i<( )
nmin

1 i<+( )

m m' 1+ +
2

-------------------------
------------------------------------------  × cm m m' n, ,( ) <

2n
"

n 0=

nmax

#=

nmin
m m'–

2
---------------= nmax,

m
2
---- m'

2
----- nmin–+

2
---------------------------------------------= m m'1[ ]

cm m m' n, ,( )  1–( )
n m!m'!

2m m'+----------------- 1
nmin 2n+( )!

-------------------------------  ×=

1–( )
r

r rmin=

rmax

# m m' 2r–+( )!r!
m m'+

2
---------------- r–& '
( ) ! r rmin–( )!
----------------------------------------------------------- 1

m 2u–( )! m' 2v–( )!u!v!
----------------------------------------------------------

s 0=

smax

#

rmin
m m'–

2
--------------- 2n   rmax,+ m

2
---- m'

2
-----+= = m m'1[ ]

r1
m'
2
----- r2,

m
2
----= = m m'1[ ]

0 r r1      > > smax? r            u, s              v, r s–= = =

r1 r r2    smax?>< r1           u, r s r1 v,–+ r1 s–= = =

r2 r rmax> smax?< rmax r u,– r s r1 v,–+ r1 s–= = =
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(48)

4.4.5. Lower order elements

This is special case of Table 3. With the following substitution, they match each other : ; = 1 _ i <,
: = 1, :’= 1. This this case, the beam spot size does not change on reflection, so w=w’, and : = 1
and :’= 1.

Table 4: 

m\m’ 0 1 2 3 4 5

0 1 0 0 0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

Zmm' <–( ) 2m m'+ m!m'! i<( )
nmin cm m m' n, ,( ) <

2n
"

n 0=

nmax

#=

Mmm-
Mis  excluding 1 i<+( )

m m' 1+ +
2

-------------------------–

i <
2

-------– 3
8
---<2–

1 i 3
2
---– < 15

8
------<2–

i <
2

-------– 1 <2

2
------– i 3< 1 <2

4
------–& '

( )–

i 3
2
---– < 1 3

2
---<2– i 5< 1 3

4
---<2–& '

( )–

3
8
---<2– i 3< 1 <2

4
------–& '

( )– 1 3<2– 3
8
---<4+

15
8
------<2– i 5< 1 3

4
---<2–& '

( )– 1 5<2– 15
8
------<4+
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4.5. Another sanity check

(1) Rotate at (0,0) by /, with waist at (0,0)
(2) Shift by -L/ toward -x direction, with waist at (-L/,0)
(3) Rotate at (0,L) by -/, with waist at (0,-L/2/2)
(4) Move the waist position by L/2/2 toward +z direction to move waist to (0,0)

(49)

5 NULL TEST
Because the same phenomena can be calculated using different set of Hermite-Gaussians, there
are several cases which can be used to validate calculating by comparing results using different set
of Hermite-Gaussians. In this section, two cases are studied. One is a field in a flat-curved FP
cavity with the end mirror tilted, and the other is a field whose waist position is slightly shifted
from that of an resonant mode of a FP cavity. 

z

x

(1)
L

/ L/(2)

(3)
(4)

MBase
,z L/2

2
---------=& '

( )MRot L /–,( )MShift L/–( )MRot 0 /,( ) I=
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5.1. Tilt

5.2. Waist shift

How many modes are necessary?

(50)

(51)

With n+m <= 2, c1 ~ real, O(<2), c2 = real, O(<4)

With n+m <= 4, c1 ~ real, O(<2), c2 = real, O(<5)

(52)

(53)

For a high finess cavity, like locked state LIGO arm, F~10k, 
4th order mode is necessary.

Ein Ecav P12

MR2

P21

MR1

Ecav t1
1 MR1 P21 MR2 P12" " "–
-------------------------------------------------------------------Ein=

E00
cav t1 E00

in
"

1 r1 r2 i @"( )exp" "–( ) 1 c1+( ) c2+"
----------------------------------------------------------------------------------------------=

<
k w z( )

2
"

2 R z( )"
--------------------- 1 R z( )

Rm
-----------–& '

( ) ,z
z0
------ 2$( )cos==

E00
cav t1 E00

in
"

1 r1 r2"–( )
---------------------------- 1

1 c1+( ) c2
1 r1 r2"–
------------------------+

--------------------------------------------------"=
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6 PHYSICS QUANTITIES
Table 5: Physics parameters of interest

name value comment

LIGO ITM curvature 14.18 km

LIGO ETM curvature 7.4 km

LIGO Recycling curv 14.9 km

LIGO ITM  Trans / Loss 3% / 50 ppm

LIGO ETM Trans / Loss < 20ppm / 50 ppm

LIGO Recycling T/L 3% / 50 ppm
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APPENDIX 1 SUMMARY OF FIELD PROPERTIES
Table 6: field parameters

name expression in COC (4k/2k) in PSL/IOO

waist size w0 3.51 / 3.13 cm

Rayleigh 
length

3.63 / 2.89 km

Distance to 
waist

1000, 3000 m /
614, 1386 m

spot size 3.64,4.55cm /
3.20,3.47cm
size @ITM,ETM

curvature of 
phase front

divergence 
angle

9.7 / 10.8 µr

Gouy phase -15.4,39.6 deg
-12.0,25.6 deg
$ @ITM/ETM

wave number 5.91e6~YAG
0.513 ~24.5MHz
0.618 ~29.5MHz

z0
% w0

2"

A
--------------

k w0
2"

2
-------------

w0
0
------= = =

L R1 L–( ) R2 L–( ) R1 R2 L–+( )

R1 R2 2L–+( )2------------------------------------------------------------------------------=

z1
L R2 L–( )

R1 R2 2L–+
-------------------------------= z2

L R1 L–( )

R1 R2 2L–+
-------------------------------=,

w w0 1 z
z0
----& '
( ) 2

+=

R z( )
z2 z0

2+
z

----------------=

0 A
% w0"
--------------

w0
z0
------= =

$ z( )
z
z0
----& '
( )atan angle

z0 iz+
z0 iz+
------------------& '
( )= =

k 2%
A

------ 2
0 w0"
---------------

2z0

w0
2--------= = =

RINROUT= RIN / n

n
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APPENDIX 2 HERMITE GAUSSIAN FUNCTIONS
Hm(x) is the Hermite polynomial of order m. The following relations are used repeatedly in the
calculations which follow:

 (54)

 (55)

 (56)

 (57)

Eq. (54) is the orthonormality condition; eqns. Eq. (55) and Eq. (56) are recursion relations to be
used to derive Hermite polynomials of any order, beginning with H0(x) = 1. 
In two dimensions the Hermite-Gaussian modes are given by

 (58)

The explicit forma of a few low order Hermite polynomials are: 

H0(x) = 1;  H1(x) = 2x;  H2(x) = -2 + 4x2;  H3(x) = -12x + 8x3; (59)

A few examples of the distribution of the Hermite Gaussians are shown below.

The following formula is used in the modeling of the photo detector with simple shapes.

(60)

U†
m x z,( ) Un x z,( ) xd

B–

B

* +mn=

2xHm x( ) Hm 1+ x( ) 2mHm 1– x( )+=

xd
d Hm x( ) 2mHm 1– x( )=

U†
m x 0,( )

B–

B

*
Hi 2x w0( )

Hk 2x w0( )
---------------------------------Uk x 0,( ) xd 2ii!

2kk!
----------+mi=

Umn Um x z,( )Un y z,( )e ikz–=

Hn x( )Hm x( ) x2–( )exp
0

B

*

1–( )
r s+ n!m!2n m 1–+

2r( )!! 2s( )!! n 2r–( )! m 2s–( )!
--------------------------------------------------------------------------   " "

s 0=

m
2
----

#
r 0=

n
2
---

#=

n m 1–+
2

---------------------- r– s–& '
( ) ! 2 r– s–

" for odd n+m

n m 2r– 2s– 1–+( )!!

2
n m+------------------------------------------------------- % for even n+m

&
2
2
2
2
2
(
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(61)

Table 7: 

m \ n 0 1 2 3 4 5

0 0 0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

HH m n,[ ]
1

%2m n+ m!n!
--------------------------------- Hm x( )Hn x( ) x2–( )exp

0

B

*=

1
2
--- 1

2%
---------- 1

2 3%
--------------– 1

4
--- 3

5%
------

1
2%

---------- 1
2
--- 1

2 %
---------- 1

4 3%
--------------–

1
2 %
---------- 1

2
--- 1

2
--- 3

2%
------ 1

4
---– 5

6%
------

1
2 3%
--------------– 1

2
--- 3

2%
------

1
2
--- 3

4 2%
--------------

1
4 3%
--------------– 3

4 2%
-------------- 1

2
--- 3

8
--- 5

2%
------

1
4
--- 3

5%
------ 1

4
---– 5

6%
------ 3

8
--- 5

2%
------

1
2
---

Hn x( )Hm x( ) x2–( )exp
B–

B

* %2nn!
0&

2
( for n=m

for n mC
=



LIGO-T990081-04

page 28 of 31

LI
GO-D

RAFT

(62)

APPENDIX 3 CURVATURE MISMATCH MATRIX

to be filled

APPENDIX 4 STEADY STATE MULTIMODE 
FIELDS IN A FABRY-PEROIT CAVITY

Steady state fields in a Fabry-Peroit cavity can be calculated by solving the following consistency
equation Eq. (63).

Hn x( ) 1–( )
r 2r 1–( )!! Cn 2r2n r– xn 2r–

r 0=

n
2
---

#=

1–( )
m 1–( )

r 2m( )!
m r–( )! 2r( )!

-------------------------------- 2x( )
2r

r 0=

m

#= n 2m=( )

2x 1–( )
m 1–( )

r 2m 1+( )!
m r–( )! 2r 1+( )!

------------------------------------------ 2x( )
2r

r 0=

m

#= n 2m 1+=( )

Hn x y+( ) Hn r– x( )2r Cn ryr

r 0=

n

#=

Ain

Acav PR12

PR21

MR2MR1

mirror 1 mirror 2

L
Figure 5: FP cavity schematics
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(63)

In this equation, Ain and Acav are arrays of coefficients, amn in Eq. (2), of incoming and intra
cavity fields. 

(64)

tj and rj are amplitude transmittance and reflectance of mirror j. PRij is a propagator from mirror i
to mirror j, corresponding to Eq. (4), and MRj is a mode decomposition matrix discussed in
Section 4.
The propagator can be explicitly written as follows:

(65)

where L is the distance between the two mirrors and ,$ is the difference of the Gouy phases, 

(66)

When the field is propagating back from mirror 2 to mirror 1, the z axis direction is reversed, and
the numerical value of ,$21 is the same as ,$12. Hereafter, ,$ is used to denote the change of
gouy phase from mirror 1 to mirror 2, ,$12.
The solution of this consistency equation is

(67)

When the Hermite-Gaussian base is the eigenstate of the FP cavity, there is no coupling among
modes on reflection, i.e., MRi is diagonal. When the FP cavity is slightly off from this idealistic
case, mode mixing occurs when the field is reflected by mirrors, i.e., MRi is not diagonal.
A mode in the cavity, Acav,mn, induced by a specific mode of the incoming field, Ain,0, can be
rewritten in the following form. (The mode of the incoming field can be any. Here suffix 0 is used
to clarify that Ain,0 refers to an amplitude of a certain mode.) 

(68)

Acav t1 Ain" r1 r2 MR1 PR21 MR2 PR12 Acav" " " " " "+=

Ax

am1n1

am2n2

…

=

PRij Exp ikL– i,$ij+[ ]

Exp i m1 n1+( ),$ij[ ] 0 0

0 Exp i m2 n2+( ),$ij[ ] 0

0 0 …

=

,$ij $ z j( ) $ zi( )–=

Acav
t1 Ain"

I r1 r2 MR1 PR21 MR2 PR12" " " " "–
--------------------------------------------------------------------------------------------=

Acav mn,

t1 Ain 0,"

1 R12 1 +–( )–
-----------------------------------=
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(69)

R
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