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1 Introduction

We found that one of the ETMs of the 40m interferometer could be delivered with a curvature
error of 5% from the nominal radius. In this document, the effect of this curvature error
to the contrast of a FPMI is described. This document does not mention how the
power/signal recycling changes the contrast defect.

For the parameter similar to the 40m interferometer with nominal end mirror curvature of
57 m, the contrast defect of the FPMI is given by:

dC = 3.61× 10−4dR2 +O3(dR) , (1)

and this is dominated by the higher-order modes. The result was confirmed with simulations
on FINESSE [1].

2 Generation of the higher-order mode due to mode

mismatch

First, we discuss the higher-order mode generation due to the mode-mismatched cavity.

The cavities of the 40m interferometer employ flat ITMs. This means that different ETM
curvatures yield the same waist positions (i.e. on the ITMs) and the different waist sizes.
Here we define the nominal waist radius as ω0 while the deviated waist radius as ω1.

Because of this mismatching, the reflected beam contains higher-order modes. The amplitude
of the higher-order mode is calculated using modal decomposition of the laser modes. Here
we use the higher-order modes up to 2nd order.

2.1 Higher-order modes in the arm reflection

Suppose that the input beam has the amplitude of E0. The waist radii of the input beam
and the mismatched cavity eigenmode are ω0 and ω1, respectively. The cavity feels that the
incoming beam consists of TEM00 (for the arm) and other higher-order modes. Using the
notation described in Appendix A, the input beam is decomposed as given by:

Ein/E0 = U00(ω0)

= c00←00U00(ω1) + c02←00U02(ω1) + c20←00U20(ω1)

= c00U00(ω1)− c02U02(ω1)− c02U20(ω1) . (2)

Here the first term is resonant in the cavity, and the second and third terms are not. Therefore
the reflected beam has the field written as:

Eref/E0 = rresoc00U00(ω1)− rantic02U02(ω1)− rantic02U20(ω1) . (3)
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Now we convert this reflected beam into the original bases 1 2.

Eref/E0 = (rresoc
2
00 + 2rantic

2
02)U00(ω0) + (rresoc00c02 − rantic02c22)[U02(ω0) + U20(ω0)] (4)

≡ α00U00(ω0) + α02[U02(ω0) + U20(ω0)] (5)

Intuitive explanations of Eq.(4) are as follows:

1. Most of the original TEM00 is resonant to the cavity.

(a) Most of this light returns to the original TEM00. (rresoc
2
00 term of U00)

(b) Small fraction of this light falls into the higher order of the original mode. (rresoc00c02
of U02, U20)

2. Small fraction of the original TEM00 is not resonant in the cavity.

(a) Most of this light stays at the higher order of the original mode. (−rantic02c22 of
U02, U20)

(b) Small fraction of this light comes back to the original TEM00. (2rantic
2
02 term of

U00)

2.2 Electric field at the dark port

Now we consider the beam recombination at the beamsplitter. At the beamsplitter most of
the TEM00 beams cancels each other. However, small fraction which does not match does
leak out to the dark port. In addition, the higher-order modes leaks out without cancellation.
Here we derive the amount of this contrast defect.

The Michelson phase is adjusted such that the electric field at the dark port is cancelled.
This condition is given when the two encountering beams have opposite phases. Therefore
the electric field at the dark port can be written as the following form. Here the beam
from the laser source is assumed to have the amplitude of EL and the mode matched to the
primary arm.

Edark/EL =
1

2
U00(ω0)−

α00

2
U00(ω0)−

α02

2
[U02(ω0) + U20(ω0)] (6)

The first term is the reflection from the primary (matched) arm. The second term is the
TEM00 mode from the secondary (unmatched) arm. The third term is the higher order
modes form the secondary arm. By substituting Eq.(4) we obtain the beam power at the
dark condition.

Pdark = |Edark|2 =
(1− α00)

2

4
+
α2
02

2
(7)

1 U00(ω1) = c00U00(ω0) + c02U02(ω0) + c02U20(ω0), U02(ω1) = −c02U00(ω0) + c22U02(ω0), etc.
2 Sanity check: if rreso = ranti = 1 are substituted to Eq.(4), the original mode is reproduced. i.e.

rresoc
2
00 + 2rantic

2
02 ∼ 1, rresoc00c02 − rantic02c22 ∼ 1
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Similarly, the beam power at the bright fringe is also obtained.

Pbright = |Ebright|2 =
(1 + α00)

2

4
+
α2
02

2
. (8)

The contrast defect is obtained as follows:

dC = 1− C (9)

= 1− Pbright − Pdark

Pbright + Pdark

(10)

= 1− 2α00

1 + α2
00 + 2α2

02

(11)

If we substitute α00 = 1− dα, C can be expanded as

dC =
dα2

2
+ α2

02 +O3(dα, α02) (12)

2.3 Optical parameters

We can confirm the amount of the contrast defect by putting numerical values into the
formulae. Here we use the simplified parameters for the 40m arm cavities.

• Laser wavelength: λ = 1064 nm

• Cavity length: L = 38.4 m

• ITMs: T = 0.013846, Curvature RITM =∞ (flat)

• ETMs: T = 0, Curvature RETM = 57 m (nominal), RETM = 57 m+dR (with mismatch)

• The mirrors have no loss. i.e. rreso = 1 and ranti = −1.

• Michelson length: 0 m (i.e. no Schnupp asymmetry)

• Waist size for the primary arm: ω0 = 0.00300855 m

• Waist size for the secondary arm: ω1 = ω0(1 + dR/18.6)1/4

Under this condition the lowest order of the contrast defect is

dC = 3.61× 10−4dR2 +O3(dR) (13)

The mode decomposition coefficients are given by

α00 = 1− 3.61× 10−4dR2 +O3(dR) (14)

α02 = 1.90× 10−3dR +O2(dR) . (15)
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The contrast defect by the each TEM components are

TEM00 : dα2/2 = 6.53× 10−8dR4 +O5(dR) (16)

TEM02/20 : α2
02 = 3.61× 10−4dR2 +O3(dR) . (17)

This indicates that the contrast defect is totally dominated by the higher-order
modes.

3 Confirmation by simulation

The above calculation was confirmed by the simulation on FINESSE. dR was scanned from
−7 m to +7 m. The figure below shows that Eq.(13) agreed well with the simulation up to
|dR| ∼ 1m and still matched to the trend in the further range of dR.
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Figure 1: Relationship between the curvature error and the contrast defect. Red dots show
the simulated results. The blue line is the curve derived from Eq.(13)
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Appendices

A Expansion coefficients between the two TEM modes

with different waist sizes

An electric field of the astigmatic (n, m)-th Hermite-gaussian beam propagating to the z
direction is expressed as the following form [2]:

Unm(x, y, z) = un(x, z)um(y, z)

=

(
2

π

)1/4(
1

2nn!ω0x

)1/2(
q̃0x
q̃x(z)

)1/2 [
q̃0x
q̃∗0x

q̃∗(z)

q̃(z)

]n/2
Hn

( √
2x

ωx(z)

)
exp

[
− ik

q̃x(z)

x2

2

]

×
(

2

π

)1/4(
1

2mm!ω0y

)1/2(
q̃0y
q̃y(z)

)1/2 [
q̃0y
q̃∗0y

q̃∗(z)

q̃(z)

]m/2

Hm

( √
2y

ωy(z)

)
exp

[
− ik

q̃y(z)

y2

2

]
.

(18)

Here, q̃x(z) is the q-parameter in the horizntal direction, being defined by q̃x(z) ≡ z−z0x+q̃0x,
where q̃0x = izRx. zRx is the Rayleigh range, being defined by zRx = πω2

0x/λ, where ω0x is the
waist size in the horizontal direction. Same definitions for the vertical direction by replacing
x to y. k is the wave number and defined by k ≡ 2π/λ, where λ is the wavelength of the
laser beam. The symbols tilde (˜) express complex numbers.

In our context in this document, the beams are assumed to be non-astigmatic, andthe waists
are always at the ITMs. Therefore it is simple to expand the modes at the waist where we
can eliminate the curvature of the wave front (i.e. the real part of the q-parameter).

Unm(ω0) ≡ Unm(x, y, 0) = un(x, 0)um(y, 0)

=

√
2

π

(
1

2n+mn!m!ω2
0

)1/2

Hn

(√
2x

ω0

)
Hm

(√
2y

ω0

)
exp

(
−x

2 + y2

ω2
0

)
. (19)

The Ukl mode with the waist size of ω0 can be expressed by the sum of the modes with the
waist size of ω1 as shown below.

Ukl(ω1) =
∑
n,m

ckl→nmUnm(ω0) (20)

The expansion coefficients are obtained by taking the integral because of the orthogonality
of the Unm modes.

ckl→nm =

∫ ∞
−∞

∫ ∞
−∞

Ukl(ω1)Unm(ω0)dxdy (21)
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Here are some results of the coefficients.

c00→00 =
2ω0ω1

ω2
0 + ω2

1

(≡ c00) (22)

c00→02 = −
√

2ω0ω1(ω
2
0 − ω2

1)

(ω2
0 + ω2

1)2
(≡ c02) (23)

c00→20 = c02 (24)

c02→00 = −c02 (25)

c20→00 = −c02 (26)

c02→02 = −ω0ω1(ω
4
0 − 10ω2

0ω
2
1 + ω4

1)

(ω2
0 + ω2

1)3
(≡ c22) (27)

c20→20 = c22 (28)

Note that the symmetry gives it clear that c00→01, c00→10, c00→11, ... are zero.

Similarly, the inverse matrix is also useful

ckl←nm =

∫ ∞
−∞

∫ ∞
−∞

Ukl(ω1)Unm(ω0)dxdy (29)

c00←00 = c00 (30)

c02←00 = −c02 (31)

c20←00 = −c02 (32)

c02←02 = c22 (33)

c20←20 = c22 (34)

B Simulation code for FINESSE

############################################################

## 40m FP model

## Mirror curvature test

## 10 Sep, 2010 by K. Arai

############################################################

maxtem 6

trace 6

# modulation frequency

const fmod 15.0M

###############

# IOO section
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###############

# name Pow f_ofs node

l L1 1.000 0 nL # Laser

tem L1 0 0 1 0

# name freq m_depth order mod node

mod EOM1 $fmod 0.01 1 pm nL n1 # EOM

s s1 0 n1 nPRC6

###############

# Michelson section

###############

# Main BS

# bs name T loss phi alpha node1 node2 node3 node4

bs1 BS 0.5 0 0 45 nPRC6 nMIY nMIX nSRC6

# X Arm

s sMIX 0 nMIX nPOX

# name T loss phi node

m1 ITMX 0.013846 0 90 nPOX nARMX1

s sARMX 38.4 nARMX1 nARMX2

m1 ETMX 0 0 90 nARMX2 nTRX

attr ETMX Rc 57

# define working modes

cav cavX ITMX nARMX1 ETMX nARMX2

# Y Arm

s sMIY 0 nMIY nPOY

m1 ITMY 0.013846 0 0 nPOY nARMY1

s sARMY 38.4 nARMY1 nARMY2

m1 ETMY 0 0 0 nARMY2 nTRY

attr ETMY Rc 60

########### ^^ change this number for the test ###########

#####################################

### This is the end of the model ###

#####################################

## name f node

xaxis BS phi lin -63.6396 63.6396 2

# This yields the scan of the BS phase
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# from Bright through Dark and then to the bright again.

# This strange number -63.6396 is 90/Sqrt(2).

# This is caused by the incident angle of the beam to the BS is 45deg.

pd pddark nSRC6

# for servo locking

pd1 pd1dark $fmod 0 nPOY

# servo to lock the secondary arm

set err pd1dark re

lock z $err 10 1n

put* ETMY phi $z

yaxis lin abs

gnuterm pdf model_FPMI_RoC_test1.pdf

#gnuterm windows

#gnuterm x11

pause

GNUPLOT

set grid

END
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