

Calibrating and Improving the Sensitivity of the LIGO Detectors

Jeffrey S. Kissel Ph. D. Thesis Defense, Louisiana State University September 8th 2010

Calibrating and Improving the Sensitivity of the LIGO Detectors

- Introduction
- The Laser Interferometer Gravitational Wave Observatory
- Calibration of the LIGO Detectors
- Advanced LIGO
- Prototype Seismic Isolation System
- Conclusions

Introduction Gravitational Waves and Astrophysical Sources

- General relativity predicts the existence of gravitational waves
- Produce quadrupolar strain h on space-time
- Astrophysical sources typically divided into 4 categories:

Introduction **Basic Observation of Gravitational Waves**

- Can detect strain using Michelson interferometer
- Differential changes in arm length measure strain

$$\Delta L = L_X - L_Y = h L$$

- Suspended Mirrors act as inertial particles or "test masses"
- But even if Michelson arms are 1 km long,

$$\Delta L = h_{CBC}^{1.4-1.4} L_{km} = 10^{-18} m$$

Calibrating and Improving the Sensitivity of the LIGO Detectors

- Introduction
- The Laser Interferometer Gravitational Wave Observatory
- Calibration of the LIGO Detectors
- Advanced LIGO
- Prototype HAM-ISI Seismic Isolation System
- Conclusions

• Two year science run, from Nov 2005 to Oct 2007, at or near designed sensitivity with 50% triple-coincidence duty cycle

- No detection, but detection rate was expected to be low: $\dot{N}_{re}^{1.4-1.4} \approx 0.02 \ {\rm yr}^{-1}$
- Measured Displacement noise is ~10⁻¹⁹ m/Hz^{1/2} (~10⁻²³ in strain/Hz^{1/2}) between 100-300 Hz
- How do we know it's 10⁻¹⁹ m/rtHz, and with what certainty?

Calibrating and Improving the Sensitivity of the LIGO Detectors

- Introduction
- The Laser Interferometer Gravitational Wave Observatory
- Calibration of the LIGO Detectors
- Advanced LIGO
- Prototype HAM-ISI Seismic Isolation System
- Conclusions

September 8th, 2010

Jeffrey S. Kissel, Ph. D. Thesis Defense

Calibration of the LIGO Interferometers The Response Function

 Frequency-Domain Model of Control Loop: Response Function

$$R_L(f,t) = \frac{1 + \gamma(t)G_L(f)}{\gamma(t)C_L(f)}$$

• with the Open Loop Transfer Function

$$G_L(f) = C_L(f) D(f) A(f)$$

- and Sensing Function $C_L(f)$ • non-linear and immeasurable without closed loop
 - An exact model would need lots of toughto-measure parameters
 - Frequency dependence can be approximated

 $\Delta L_{ext} = R_L(f,t) e_D(f)$

⇒ Therefore we* must measure

 $A(f), \gamma(t), G_{I}(f)$

* we = The Calibration Group: Gaby Gonzalez,Brian O'Reilly, Mike Landry, Rick Savage,Myungkee Sung, Evan Goetz and me!

Calibration of the LIGO Interferometers The Sensing Function Model

10⁰

 E_{in}

 E_{refl}

тмх

LSU

 $\Delta L_{ext}(f)$

ЕТМХ

Fabry Perot cavity's response to changes in length

$$H_{FP}(f) \propto \frac{\sin(2\pi f L/c)}{2\pi f L/c} \frac{e^{-2\pi i f L/c}}{1 - r_i r_e e^{-4\pi i f L/c}}$$

• BUT when GW wavelengths are much longer than the cavity, we can use single pole approximation:

September 8th, 2010

Calibration of the LIGO Interferometers Time Dependence

• Absolute scale of sensing function varies slowly ($f << 40\,$ Hz) with time because of alignment, thermal fluctuations

• This time dependence $\alpha(t)$ is measured and compensated digitally with coefficient $\beta(t)$ but not perfect

• Measurement is performed by injecting three sine waves with known amplitude and frequency to coil actuators of one test mass while at full sensitivity

• Residual time dependence is included in response function, as a coefficient close to unity: $\gamma(t) = \alpha(t)\beta(t)$

- measured with simple configurations of the interferometer
- laser wavelength is fundamental metric
- measured* many times over the science run

* with compilation and detailed analysis by me

Calibration of the LIGO Interferometers Open Loop Transfer Function

 $G_L(f) = C_L(f) \quad D(f) \quad A(f)$

- Digitally excite closed loop, much larger than ΔL_{ext}
- Measured* ~20 / interferometer during the science run
- Remaining absolute scale must be from sensing function (define $\gamma(t) = 1$ during measurement)
- Also confirms model of frequency dependence

 $C_L(f)$: frequency dependence modeled

D(f) : frequency dependence, absolute scale known

A(f) : frequency dependence modeled, absolute scale measured

10³

Frequency (Hz)

 $R_L(f,t) = \frac{1 + \gamma(t)G_L(f)}{\gamma(t)C_r(f)}$

• Uncertainty of < 15% and 5 degrees over the entire 2 year science run!

⇒ Cannot excite test masses above residual ground motion

Paper: "Calibration of the LIGO gravitational wave detectors in the fifth science run" accepted for publication in Nuclear Instruments and Methods A

Total

A(f)

 $G_L(f)$

10¹

10⁰

 10^{-1}

 10^{2}

Phase (deg)

Calibrating and Improving the Sensitivity of the LIGO Detectors

- Introduction
- The Laser Interferometer Gravitational Wave Observatory
- Calibration of the LIGO Detectors
- Advanced LIGO
- Prototype HAM-ISI Seismic Isolation System
- Conclusions

 Major upgrade to all detectors, all internal components replaced

• Three 4km detectors in the same two-site vacuum system

- Designed to be Quantum Noise limited down to 10 Hz
- Predicted Binary Neutron Star Range: ~180 Mpc
- Detection Rate:

The Advanced LIGO Detectors

Predicted Sensitivity and Timeline

Better

Seismic

Isolation

 10^{-16}

10⁻¹⁸

September 8th, 2010

iLIGO Shot Noise

- iLIGO (S5) H1

iLIGO Thermal Noise iLIGO Seismic Noise

aLIGO Quantum Noise aLIGO Thermal Noise

aLIGO Seismic Noise aLIGO Mode 1b

The Advanced LIGO Detectors Seismic isolation and Suspensions

Possible Intermediate Configuration:

- No Signal Recycling
- 25 W Input Power

Demonstration of aLIGO suspensions and seismic isolation:

• 7 orders of magnitude less displacement at 10 Hz

⇒ Predicted Binary Neutron Star Range: ~145 Mpc

⇒ Event Rate:

 $\dot{N}_{r_{o}}^{1.4-1.4} \approx 10 \text{ yr}^{-1}$

Calibrating and Improving the Sensitivity of the LIGO Detectors

- Introduction
- The Laser Interferometer Gravitational Wave Observatory
- Calibration of the LIGO Detectors
- Advanced LIGO
- Prototype HAM-ISI Seismic Isolation System
- Conclusions

• Non-invasive upgrade to the S5-era 4 km LIGO detectors, from late 2007 to early 2009

S6 data run from mid 2009 to mid 2010, typical inspiral range increased by 5 Mpc

- Upgrades include prototypes of Advanced LIGO Technology
 - Increased laser power from 7 W to 20 W
 - Homodyne detection
 - Prototype Active Seismic Isolation

Prototype HAM-ISI Isolation System

- aLIGO prototype for eLIGO upgrade to 4km interferometers, under homodyne readout
- We[@] built and installed both in Winter/Spring of 2008

[@] we = Joe Hanson and myself at LLO; Hugh Radkins, Corey Gray and myself at LHO; with lots of help from Brian O'Reilly, Mike Landry, Ken Mason, Andy Stein, Stephany Foley, and Justin Garofoli

- We^t commissioned the active control system from late 2009 – early 2010
 - ^t we = Brian Lantz, Rich Mittleman, Corey Gray, lead by me

Prototype HAM-ISI Isolation System **Active Isolation Components**

Displacement **Sensors**

Inertial Sensors

Ground Sensor

Sense and control of all six degrees of freedom

RY

Electromagnetic **Actuators**

> **On-board** sensors colocated with actuators

Jeffrey S. Kissel, Ph. D. Thesis Defense

September 8th, 2010

Prototype HAM-ISI Isolation System Active Control Loop Commissioning

Prototype HAM-ISI Isolation System The Future - Tilt Horizontal Coupling

 x_{sr}

 $\boldsymbol{\omega}_0$

0

θ

pm

 x_{pm}

 $g\cos(\Theta_0 + \theta)$

• Fundamental property of a horizontal inertial sensor

$$x_{pm}^{(h)} \propto \left(x_{sp}^{(h)} - \frac{g}{\omega^2} \theta \right)$$

- Effect dominant at low frequency (< 0.5 Hz)
- HAM-ISI uses differential signals dominated by sensor noise

Possible Mitigations:

- Blend Filter tuning
- Tilt Sensor
- Interferometry

Prototype HAM-ISI Isolation System The Future – Support Structure Resonances

Mitigation: Stiffer support structure, add external pre-isolation!

Gullwings Crossbeams

- Support structure has been redesigned for aLIGO
- Hydraulic External Pre-Isolation will be installed under redesigned crossbeams

Benefit of Crossbeams and HEPI for HAM6 Y direction motion

HEPI & Gullwings

> 10¹ freg (Hz)

Jeffrey S. Kissel, Ph. D. Thesis Defense

HEPI & X-beam

September 8th, 2010

• SRCL chambers need performance *a factor of* 10-100 more between 5 and 20 Hz

Mitigation: More Feed-forward!

 6 additional inertial sensors that feed-forward from support stage to suspended stage (Three Horizontal, Three Vertical)

• Prototyping fall/winter of 2010

Conclusions

- In S5, the LIGO interferometers measured displacement of 10⁻¹⁹ m/rtHz for two years, no discovery, but lots of results
- Results depend on calibration, which is accurate to **within 15% and 5 degrees** in most sensitive region for S5 (*Paper written by me accepted for publication*)
- Accuracy limited by residual seismic noise in measurements of model components
- Advanced LIGO will improve sensitivity by factor of ten or more, using impressive seismic isolation systems
- Prototypes for Advanced LIGO HAM-ISI meet or beat target performance at most frequencies (Active control system commissioning lead by me)
- Limitations to performance are **understood**, mitigation techniques planned for production units
- Many more hurdles to jump, but payoff is astronomical!

$$\dot{N}_{re} \approx 40 \text{ yr}^{-1}$$

Thanks!

Gaby

• Seismic Team:

Brian Lantz, Brian O'Reilly, Rich Mittleman, Fabrice Matichard, Andy Stein, Joe Hanson, Corey Gray, Hugh Radkins, Justin Garofoli

• Calibration Group:

Gaby Gonzalez, Brian O'Reilly, Keita Kawabe, Mike Landry, Rick Savage, Myungkee Sung, Evan Goetz, Justin Garofoli

