Material Qualification Queue

as of 11 Apr 2011 in priority order

IN-TEST:

1. Conner wire, kapton/polyimide wire (28 awg), part number CW6951rev1. (has a yellow color, rather than the more usual amber color)

LIGO-C0900156: <u>RFQ No. SM-150</u>, entitled "LIGO 28AWG In-Vacuum Wire" submitted to Cooner Wire Inc.

LIGO-T0900298-v1: Specification for 28AWG Kapton Insulated Wire

2. RG-316 (Allied)

Rich Abbott ordered a spool. Chub asked to give to Bob 10/1.

1. **Manufacturer** - Allied Wire and Cable

http://www.awcwire.com/Part.aspx?code=213F27F27J34

2. Materials:

Part Number RG316

Conductor Stranding 7/.0067

Nom. Dia. of Cond. 0.021

Dielectric (in) 0.06

Nom. O.D. (in) 0.102

Nom. Imp. 50 ohms

Approx LBS/MFT 11 (I think this should be kFt)

Nom. Cap. (pF/ft) 29.4

Shield Material: Silver-Coated Copper

Conductor Material: Silver-Coated Copper Clad Steel Dielectric Material: Polytetrafluoroethylene (PTFE) Jacket Material: Fluorinated Ethylene Propylene (FEP)

Shield: Overall Braid Shield

Min. Temp -55°C Max. Temp 80°C

3. **Application**: In vacuum LSC and ASC detectors

4. Quantities:

The anticipated length for each coaxial bundle in vacuum is ~15ft.

Each LSC detector uses a bundle of 5 individual RG316, there are 2 LSC invacuum detectors per IFO

Each ASC detector uses two bundles of 5 individual RG316, there are 4 ASC invacuum detectors per IFO

Total lengths of cable(#detectors*connectors per detector*length*# of coaxial

cables)
2*1*15*5 = 150 feet for LSC per IFO
4*2*15*5 = 600 feet for ASC per IFO

Grand total of 150 + 600 = 750 feet of coaxial cable per IFO

5. This is an identified need, must have.

3. Quirk Wire

RGA scans of: Manufacturer: Quirk Wire

Part Number: P/N1419-DoubleKap

Description: 14 awg kapton insulated wire

Amount: approximately 190 ft.

Amount used in each aLIGO IFO: approximately 5450 ft. total.

Note that this wire has the typical amber color of other Kapton insulated wire (i.e.

is not yellow like some Conner wire).

QUEUE

4. Ferrite Material

No currently defined need – would be nice to have qualified just in case Rich Abbott needs to provide a significant number of samples (10 - 20 units) from a known source with a known material grade.

Ferrite materials are based on "Nickel-Zinc" and "Manganese-Zinc". Zinc has a high vapor pressure.

One possibility is BN-43-7051 is a Balun (binocular or multi-aperture) core sold by many companies, such as Amidon Corp.:

https://www.amidoncorp.com/specs/2-34.pdf

where "43" refers to the material.

Material 43 is a NiZn ferrite material:

http://www.cwsbytemark.com/CatalogSheets/Ferrite_datasheet_oct06/FR_MATL_pdf

http://www.fair-rite.com/newfair/materials43.htm

5. Copper & polyimide clad fiber optic, IVG Fiber CU1300.

Not yet a baseline element for aLIGO.

Brian Lantz wants to test this material for use with an optics table, optical lever system. Not yet a baseline element for aLIGO. Could be used for ALS etc. Likely "inherently" vacuum compatible, but worth checking since it has a polymer.

6. Tungsten carbide/carbon (WC/C) sample (for potential BSC-ISI tooling use (class b) but perhaps useful in vacuum as well) (had small sample -- likely inadequate in size probably inherently vacuum compatible)

No currently defined need – would be nice to have qualified just in case

- 7. Cesic sample (composite ceramic of SiC, Si and C) possibly inherently vacuum compatible application is not clear (high stiffness to weight structure) (sample size adequate?)
 - No currently defined need would be nice to have qualified just in case