GEOMETRICAL FACTORS IN THE SEARCH FOR GRAVITATIONAL WAVES FROM BINARY INSPIRAL

Anthony D. Castiglia Mentor: John T. Whelan

Rochester Institute of Technology
G1000774-v1

August 13, 2010

Overview

Anthony D. Castiglia

Binary Systems

- Two compact, massive objects (black holes, neutron stars) orbit one another.
- System radiates energy as gravitational waves, objects spiral inwards (inspiral).
- Orbital frequency increases as system loses energy.

Orientation of Orbital Plane

Orientation defined by two angles:

(1) Polarization angle ψ
(2) Inclination angle ι

Orientation of Orbital Plane

Orientation defined by two angles:
(1) Polarization angle ψ
(2) Inclination angle ι

Propagating Gravitational Waves

- GW from single, distant source can be treated as a plane wave.
- Propagation direction defined by unit vector \vec{k}, pointing from source to observer.
- Wave has metric perturbation tensor

$$
\boldsymbol{h}=h_{+} \boldsymbol{e}_{+}+h_{\times} \boldsymbol{e}_{\times}
$$

- Matrices \vec{e}_{+}and \vec{e}_{\times}form a polarization basis.

Interferometer Response

Laser interferometer measures strain h, given by

$$
h=\frac{L_{\vec{u}}-L_{\vec{v}}}{L_{0}}=h_{a b} d^{a b}
$$

in terms of metric perturbation h and detector response tensor d.

Interferometer Response

Rewriting in terms of polarization basis,

$$
\begin{aligned}
h= & \left(h_{+} e_{+a b}+h_{\times} e_{\times a b}\right) d^{a b} \\
& =h_{+} F_{+}+h_{\times} F_{\times}
\end{aligned}
$$

With antenna pattern factors

$$
\begin{aligned}
& F_{+} \equiv F_{+}(\psi, \iota, \text { sky position, detector })=e_{+a b} d^{a b} \\
& F_{\times} \equiv F_{\times}(\psi, \iota, \text { sky position, detector })=e_{\times a b} d^{a b}
\end{aligned}
$$

LIGO

The Laser Interferometric Gravtational Wave Observatory

Detectors in two locations:

Livingston, Louisiana

Hanford, Washington

Equatorial Coordinates: Earth-Fixed and Inertial

- Earth-fixed, latitude λ, longitude β, correspond to $\left\{{\overrightarrow{e_{1}}}^{*},{\overrightarrow{e_{2}}}^{*}, \overrightarrow{e_{3}}{ }^{*}\right\}$ (Cartesian, rotates with Earth).
- Intertial declination δ, right ascention α, correspond to $\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$ (Stationary).

Side View

Equatorial Coordinates: Earth-Fixed and Inertial

- Greenwich sidereal time (GST, γ) measures angle between meridian at Greenwich, England (${\overrightarrow{e_{1}}}^{*}$), and vernal equinox (\vec{e}_{1}).
- Local hour angle (LHA) measures angle from source meridian $\left(\vec{e}_{q}\right)$ to observer meridian (Not shown in figure).

- For binary source at distance d, GW signal depends on sky position and orbital plane orientation.
- Source at distance d produces same signal as optimally located/oriented source at effective distance $d_{\text {eff }}$.
-

$$
\frac{d}{d_{\mathrm{eff}}}=\sqrt{F_{+}^{2} \frac{\left(1+\cos ^{2} \iota\right)^{2}}{4}+F_{\times}^{2} \cos ^{2} \iota}
$$

gives threshold at which detector can see optimally located/oriented sources.

Threshold Distance vs. Source Declination

Threshold Distance vs. Source Declination

Cross-section of Surface $d / d_{\text {eff }}$ for LIGO Hanford

Cross-section of Surface $d / d_{\text {eff }}$ for LIGO Hanford

Cross-section of Surface $d / d_{\text {eff }}$ for LIGO Hanford

Cross-section of Surface $d / d_{\text {eff }}$ for LIGO Hanford

Cross-section of Surface $d / d_{\text {eff }}$ for LIGO Hanford

Cross-section of Surface $d / d_{\text {eff }}$ for LIGO Hanford

Cross-section of Surface $d / d_{\text {eff }}$ for LIGO Hanford

Summary and Outlook

Summary

- Binary inspiral a GW source
- GW signal seen at detector depends on location, orientation of binary
- Signal from source at distance d same as optimal source at distance $d_{\text {eff }}$
- Calculate and plot other parameterizations of $d / d_{\text {eff }}$
- 3D plots of surface $d / d_{\text {eff }}$

Summary and Outlook

Summary

- Binary inspiral a GW source
- GW signal seen at detector depends on location, orientation of binary
- Signal from source at distance d same as optimal source at distance $d_{\text {eff }}$
Outlook
- Calculate and plot other parameterizations of $d / d_{\text {eff }}$
- 3D plots of surface $d / d_{\text {eff }}$

Acknowledgments

Mentor: John T. Whelan

Duncan A. Brown

NSF Grant PHY-0855494

Polarization Bases

- $\vec{\ell}$ chosen such that $\vec{\ell} \perp \vec{k}$, and $\vec{m}=\vec{k} \times \vec{\ell}$.
- Polarization basis can be written in terms of $\vec{\ell}, \vec{m}$:

$$
\begin{aligned}
& e_{+a b}=\ell_{a} \ell_{b}-m_{a} m_{b} \\
& e_{\times a b}=\ell_{a} m_{b}-m_{a} \ell_{b}
\end{aligned}
$$

- Reference basis of \vec{i}, \vec{j}, and \vec{k}, convenient for analysis.

Polarization Bases

- In terms of \vec{i} and \vec{j}, reference polarization basis written

$$
\begin{aligned}
& \varepsilon_{+a b}=i_{a} i_{b}-j_{a} j_{b} \\
& \varepsilon_{\times a b}=i_{a} j_{b}-i_{a} j_{b}
\end{aligned}
$$

- Since $\vec{i}, \vec{j} \perp \vec{k}$,
\vec{i}, \vec{j} coplanar with $\vec{\ell}, \vec{m}$.

Polarization Bases

- Related to source basis by polarization angle ψ :
$e_{+a b}=\varepsilon_{+a b} \cos 2 \psi+\varepsilon_{\times a b} \sin 2 \psi$
$e_{\times a b}=-\varepsilon_{+a b} \sin 2 \psi+\varepsilon_{\times a b} \cos 2$

Definition of Response Tensor

$$
h=\frac{L_{\vec{u}}-L_{\vec{v}}}{L_{0}}
$$

Arm lengths given by

$$
\begin{aligned}
L_{\vec{u}} & =L_{0}\left(1+\frac{1}{2} u^{a} h_{a b} u^{b}\right) \\
L_{\vec{v}} & =L_{0}\left(1+\frac{1}{2} v^{a} h_{a b} v^{b}\right)
\end{aligned}
$$

where $h_{a b}$ are components of perturbation tensor.

Definition of Response Tensor

