GEOMETRICAL FACTORS IN THE SEARCH FOR GRAVITATIONAL WAVES FROM BINARY INSPIRAL

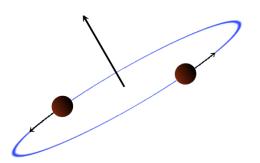
Anthony D. Castiglia Mentor: John T. Whelan

Rochester Institute of Technology G1000774-v1

August 13, 2010

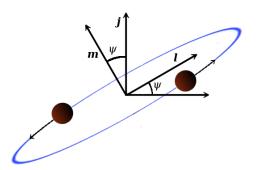
Overview

Binary Systems



- Two compact, massive objects (black holes, neutron stars) orbit one another.
- System radiates energy as gravitational waves, objects spiral inwards (inspiral).
- Orbital frequency increases as system loses energy.

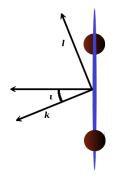
Orientation of Orbital Plane



Orientation defined by two angles:

- lacktriangle Polarization angle ψ
- **2** Inclination angle ι

Orientation of Orbital Plane



Orientation defined by two angles:

- lacktriangle Polarization angle ψ
- ② Inclination angle ι

Observer

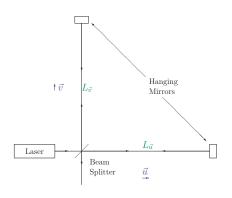
Propagating Gravitational Waves

- GW from single, distant source can be treated as a plane wave.
- Propagation direction defined by unit vector \vec{k} , pointing from source to observer.
- Wave has metric perturbation tensor

$$\boldsymbol{h} = h_{+}\boldsymbol{e}_{+} + h_{\times}\boldsymbol{e}_{\times}$$

• Matrices \vec{e}_+ and \vec{e}_\times form a polarization basis.

Interferometer Response



Laser interferometer measures strain h, given by

$$h = \frac{L_{\vec{u}} - L_{\vec{v}}}{L_0} = h_{ab} d^{ab},$$

in terms of metric perturbation h and detector response tensor d.

Interferometer Response

Rewriting in terms of polarization basis,

$$h = (h_+ e_{+ab} + h_\times e_{\times ab}) d^{ab}$$
$$= h_+ F_+ + h_\times F_\times$$

With antenna pattern factors

$$F_{+} \equiv F_{+}(\psi, \iota, \text{sky position, detector}) = e_{+ab}d^{ab}$$

 $F_{\times} \equiv F_{\times}(\psi, \iota, \text{sky position, detector}) = e_{\times ab}d^{ab}$

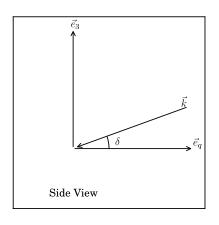
Detectors in two locations:

Livingston, Louisiana

Hanford, Washington

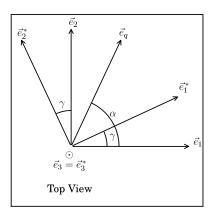
Equatorial Coordinates: Earth-Fixed and Inertial

- Earth-fixed, latitude λ , longitude β , correspond to $\{\vec{e_1}^*, \vec{e_2}^*, \vec{e_3}^*\}$ (Cartesian, rotates with Earth).
- Intertial declination δ , right ascention α , correspond to $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ (Stationary).



Equatorial Coordinates: Earth-Fixed and Inertial

- Greenwich sidereal time (GST, γ) measures angle between meridian at Greenwich, England $(\vec{e_1}^*)$, and vernal equinox $(\vec{e_1})$.
- Local hour angle (LHA) measures angle from source meridian $(\vec{e_q})$ to observer meridian (Not shown in figure).



Threshold Distance

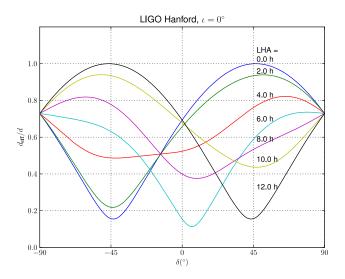
- For binary source at distance d, GW signal depends on sky position and orbital plane orientation.
- Source at distance d produces same signal as optimally located/oriented source at *effective distance* d_{eff} .

•

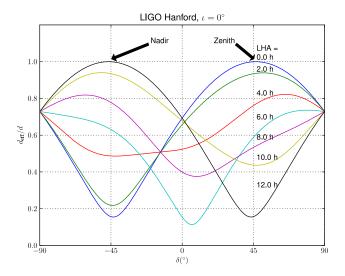
$$\frac{d}{d_{\text{eff}}} = \sqrt{F_{+}^{2} \frac{(1 + \cos^{2} \iota)^{2}}{4} + F_{\times}^{2} \cos^{2} \iota}$$

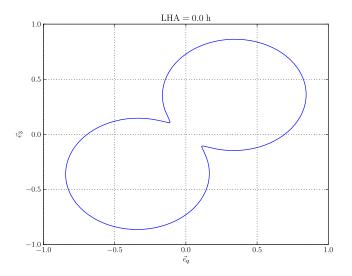
gives threshold at which detector can see optimally located/oriented sources.

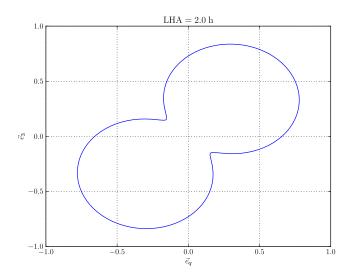
Threshold Distance vs. Source Declination

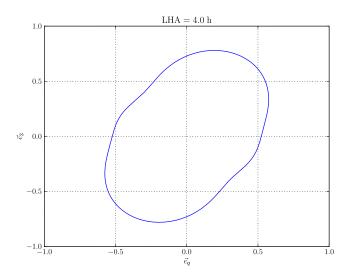


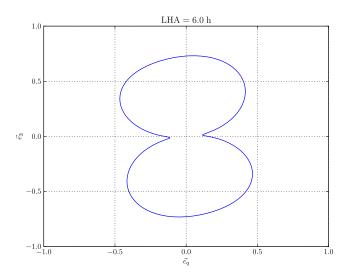
Threshold Distance vs. Source Declination

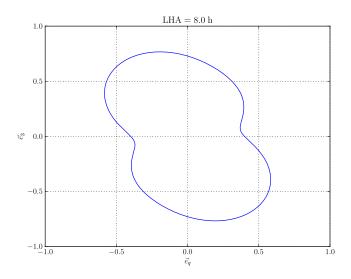


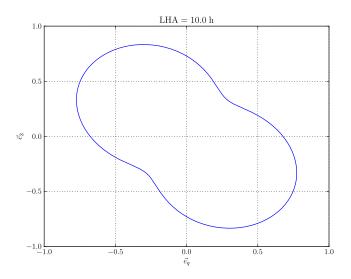


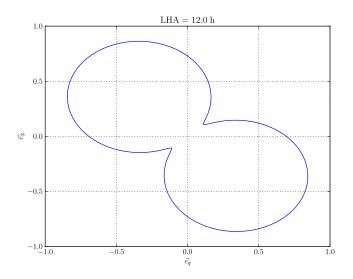












Summary and Outlook

Summary

- Binary inspiral a GW source
- GW signal seen at detector depends on location, orientation of binary
- \bullet Signal from source at distance d same as optimal source at distance $d_{\rm eff}$

Outlook

- ullet Calculate and plot other parameterizations of $d/d_{
 m eff}$
- ullet 3D plots of surface $d/d_{
 m eff}$

Summary and Outlook

Summary

- Binary inspiral a GW source
- GW signal seen at detector depends on location, orientation of binary
- \bullet Signal from source at distance d same as optimal source at distance $d_{\rm eff}$

Outlook

- ullet Calculate and plot other parameterizations of $d/d_{
 m eff}$
- ullet 3D plots of surface $d/d_{
 m eff}$

Acknowledgments

Mentor: John T. Whelan

Duncan A. Brown

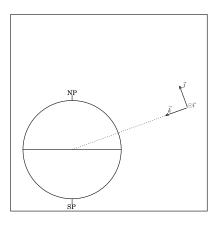
NSF Grant PHY-0855494

Polarization Bases

- ullet chosen such that $ec{\ell} \perp ec{k}$, and $ec{m} = ec{k} imes ec{\ell}$.
- Polarization basis can be written in terms of $\vec{\ell}$, \vec{m} :

$$e_{+ab} = \ell_a \ell_b - m_a m_b$$
$$e_{\times ab} = \ell_a m_b - m_a \ell_b$$

• Reference basis of \vec{i} , \vec{j} , and \vec{k} , convenient for analysis.



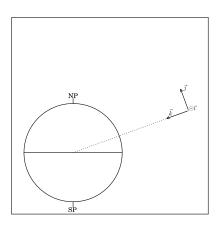
Polarization Bases

• In terms of \vec{i} and \vec{j} , reference polarization basis written

$$\varepsilon_{+ab} = i_a i_b - j_a j_b$$

$$\varepsilon_{\times ab} = i_a j_b - i_a j_b$$

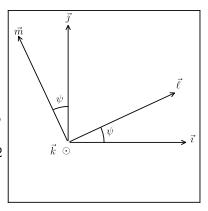
• Since $\vec{i}, \vec{j} \perp \vec{k}$, \vec{i}, \vec{j} coplanar with $\vec{\ell}, \vec{m}$.



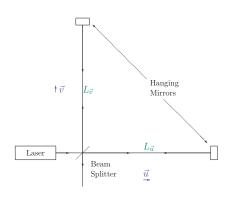
Polarization Bases

• Related to source basis by polarization angle ψ :

$$e_{+ab} = \varepsilon_{+ab} \cos 2\psi + \varepsilon_{\times ab} \sin 2\psi$$
$$e_{\times ab} = -\varepsilon_{+ab} \sin 2\psi + \varepsilon_{\times ab} \cos 2$$



Definition of Response Tensor



$$h = \frac{L_{\vec{u}} - L_{\vec{v}}}{L_0}$$

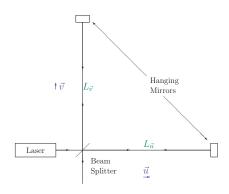
Arm lengths given by

$$L_{\vec{u}} = L_0(1 + \frac{1}{2}u^a h_{ab}u^b),$$

$$L_{\vec{v}} = L_0 (1 + \frac{1}{2} v^a h_{ab} v^b),$$

where h_{ab} are components of perturbation tensor.

Definition of Response Tensor



Detector response tensor