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Goal of the talk
To show that gravitational-wave observations of 
compact binaries offer the best possible tests of 
general relativity, indeed any metric theory of 
gravity, beyond the solar system tests and binary 
pulsar tests.
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A metric theory of gravity
Tests of the equivalence principle have confirmed that the only 
possible theories of gravity are the so-called metric theories
A metric theory of gravity is one in which

there exists a symmetric metric tensor
test bodies follow geodesics of this metric
in local Lorentz frames, non-gravitational laws of physics are those of 
special relativity
All non-gravitational fields couple in the same manner to a single 
gravitational field - that is “universal coupling”

Metric is a property of the spacetime

The only gravitational field that enters the equations of 
motion is the metric

Other fields (scalar, vector, etc.) may generate the spacetime curvature 
associated with the metric but they cannot directly influence the 
equations of motion

Will, LRR

Wednesday, 1 September 2010



Gravity's Standard Sirens 

Parametrized post-Newtonian formalism

In slow-motion, weak-field limit all metric theories 
of gravity have the same structure

Can be written as an expansion about the Minkowski metric 
in terms of dimensionless gravitational potentials of varying 
degrees of smallness

Potentials are constructed from the matter variables
The only way that one metric theory differs from 
another is in the numerical values of the coefficients 
that appear in front of the metric potentials

Current PPN formalism has 10 parameters

Will, LRR
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Why a compact binary?
Black holes and neutron stars are the most compact objects

Surface potential energy of a test particle is equal to its rest mass 
energy

Binaries comprising of neutron stars and/or black holes are 
termed compact binaries

Being the most compact objects, they are also the most 
luminous sources of gravitational radiation

The luminosity of a binary could increase a million times in the course 
of its evolution through a detector’s sensitivity band

The luminosity of a binary black hole (no matter how small or large) 
outshines the luminosity in all visible matter in the Universe
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BBH Signals as Testbeds for GR
Gravity gets ultra-strong during a BBH merger compared 
to any observations in the solar system or in binary pulsars

In the solar system: φ/c2 ~ 10-6 

In a binary pulsar it is still very small: φ/c2 ~ 10-4 

Near a black hole φ/c2 ~ 1
Merging binary black holes are the best systems for 
strong-field tests of GR

Dissipative predictions of gravity are not even tested at the 
1PN level

In binary black holes even (v/c)7 PN terms might not be 
adequate for high-SNR (~100) events

6
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Compact binaries: theoretically the best 
studied sources

In general relativity the two-body problem has no known exact 
analytic solution

It is an “ill-posed” problem (B. Carter)

Approximate methods have been used to understand the 
dynamics: post-Newtonian (PN) approximation 

The binary evolves by emitting gravitational-waves whose amplitude 
and frequency both grow with time - a chirp

Coalescence results in a single deformed black hole which emits 
“ringdown” signals with characteristic frequency and damping time 

Progress in analytical and numerical relativity over the last 
decade has led to a good understanding of the merger 
dynamics

7
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Black hole binary waveforms
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Late-time dynamics of 
compact binaries is highly 
relativistic, dictated by non-
linear general relativistic 
effects

Post-Newtonian theory, which 
is used to model the 
evolution, is now known to 
O(v7)

The shape and strength of the 
emitted radiation depend on 
many parameters of the 
binary: masses, spins, distance, 
orientation, sky location, ...

Increasing Spin
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Radiation is emitted not just at twice the orbital frequency but 
at all other harmonics too

This is the “full” waveform (FWF). The waveform corresponding 
to n=0 is called the restricted PN waveform (RFW)

These amplitude corrections have a lot of additional structure 

Increased mass reach of detectors

Greatly improved parameter estimation accuracies

Structure of the full post-Newtonian 
(PN) waveform

Blanchet, Damour, Iyer, Jaranowski, Schaefer, Will, Wiseman
Andrade, Arun, Buonanno, Gopakumar, Joguet, Esposito-Farase,Faye, Kidder, Nissanke, Ohashi, Owen, Ponsot, Qusaillah, Tagoshi …
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Testing GR with 
binary radio pulsars

Wednesday, 1 September 2010



Gravity's Standard Sirens 

Hulse-Taylor Binary: A persistent 
source of Gravitational Waves

In 1974 Hulse and Taylor observed 
the first binary pulsar 

Two neutron stars - each 1.4 M


 Period ~ 7.5 Hrs, eccentricity 
0.62

Einstein’s gravity predicts the binary 
should emit gravitational radiation 

The stars spiral in toward each 
other, causes a decrease in the 
orbital period

Observed decrease in period - 
about 10 micro seconds per year - 
is in agreement with Einstein’s 
theory to fraction of a percent
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How does a binary pulsar help test GR?
Non-orbital parameters

position of the pulsar on the sky; period of the pulsar and its rate 
of change

Five Keplerian parameters, e.g.
Eccentricity e

Orbital period Pb

Semi-major axis projected along the line of sight ap sin i

Five post-Keplerian parameters
Average rate of periastron advance <dω/dt>

Amplitude of delays in arrival of pulses γ

Rate of change of orbital period dPb/dt

“range” and “shape” of the Shapiro time delay
14
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Average rate of periastron advance

Amplitude of delays in arrival times

Rate of change of the orbital period

Measured effects depend only on the two 
masses of the binary
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Test of GR in PSR 1913+16
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Binary pulsar J0737-3039
J0737-3039 is the fastest binary 
known to date

Strongly relativistic, Pb=2.5 Hrs

Mildly eccentric, e=0.088

Highly inclined (i > 87 deg)

The most relativistic 
Greatest periastron advance: dω/
dt: 16.8 degrees per year (almost 
entirely general relativistic effect), 
compared to relativistic part of  
Mercury’s  perihelion advance of 
42 seconds of arc per century

Orbit is shrinking by a few 
millimeters each year due to 
gravitational radiation reaction

Burgay et al Nature 2003
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Future tests of GR 
with GW observations
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Qualitative Tests
Polarization states

Are there polarizations other than those predicted by GR
No concrete proposals yet but some work within the LIGO-Virgo collaboration

Quasi-normal modes
Is the inspiral phase followed by a quasi-normal mode?

No concrete evaluations yet

Are the different quasi-normal modes consistent with each other? 
Berti, Cardosa, Will: In the context of LISA, Kamaretsos et al (this talk)

Is the geometry of the merged object that of a Kerr black 
hole? (Ryan)

Many evaluations in the context of LISA
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Quantitative Tests
Is the phasing of the waveform consistent with General 
Relativity

Can we measure the different post-Newtonian terms and to 
what accuracy?

Detailed study in the case of non-spinning BBH on a quasi-circular orbit 
(Mishra et al)

Effect of spin is important: Neglecting them could lead to erroneous conclusion 
that GR is wrong while it is not

Is the signal from the merger phase consistent with the 
predictions of numerical relativity simulations?

Are the parameters of the system from the inspiral, merger 
and ringdown phases consistent with one another?
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Do gravitational waves travel at the 
speed of light?

Coincident observation of a supermassive black hole binary 
and the associated gravitational radiation can be used to 
constrain the speed of gravitational waves:

If Δt is the time difference in the arrival times of GW and EM 
radiation and D is the distance to the source then the 
fractional difference in the speeds is

It is important to study what the EM signatures of massive 
BBH mergers are

Can be used to set limits on the mass of the graviton slightly 
better than the current limits.

Will (1994, 98)21
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Massive graviton causes 
dispersion

A massive graviton induces dispersion in the 
waves

Arrival times are altered due to a massive 
graviton - frequency-dependent effect

One can test for the presence of this term by 
including an extra term in our templates

Bounding the mass of the graviton 5

2. Parameter estimation using full waveform templates

As our waveform model we begin with amplitude-corrected, general relativistic

waveforms which are 3PN accurate in amplitude and 3.5PN accurate in phasing. We

ignore the spins of the bodies in the binary system. Previous calculations used waveforms
which are of Newtonian order in amplitude and 2PN order in phase. As opposed to the

Newtonian waveforms, the 3PN amplitude-corrected waveforms contain all harmonics

from Ψ up to 8 Ψ, where Ψ is the orbital phase (the leading quadrupole component is

at 2Ψ).

The effect of a massive graviton is included in the expression for the orbital phase

following Ref. [6]. The wavelength-dependent propagation speed changes the arrival
time ta of a wave of a given emitted frequency fe relative to that for a signal that

propagates at the speed of light; that time is given, modulo constants,by

ta = (1 + Z)

[

te +
D

2λ2
gf

2
e

]

, (1)

where fe and te are the wave frequency and time of emission as measured at the emitter,

respectively, Z is the cosmological redshift, and

D ≡
(1 + Z)

a0

∫ ta

te

a(t)dt , (2)

where a0 = a(ta) is the present value of the scale factor (note that D is not exactly the

luminosity distance ‡). This affects the phase of the wave accordingly. In the frequency

domain, this adds a term to the phase ψ(f) of the Fourier transform of the waveform

given by ∆ψ(f) = −πD/feλ2
g. Then, for each harmonic of the waveform with index k,

one adds the term

∆ψk(f) =
k

2
∆ψ(2f/k) = −

k2

4
πD/feλ

2
g . (3)

Here k = 2 denotes the dominant quadrupole term, with phase 2Ψ, k = 1 denotes the

term with phase Ψ, k = 3 denotes the term with phase 3Ψ, and so on.

This is an adhoc procedure because a massive graviton theory will undoubtedly

deviate from GR not just in the propagation effect, but also in the way gravitational wave

damping affects the phase, as well as in in the amplitudes of the gravitational waveform.

If, for example, such a theory introduces a leading correction to the quadrupole phasing
ψquad ∼ (πMfe)−5/3 of order (λ/λg)2×(πMfe)−5/3, where M is the chirp mass, then the

propagation induced phasing term (3) will be larger than this correction term by a factor

of order k2(D/M)(πMfe)8/3 ∼ (D/M)v8. Since v ∼ 0.1 for the important part of the

binary inspiral, and D ∼ hundreds to thousands of Mpc, it is clear that the propagation

term will dominate. In any case, given the fact that there is no generic theory of a

massive graviton, we have no choice but to omit these unknown contributions.

‡ For Z % 1, D is roughly equal to luminosity distance DL. Hence we have assumed D & DL in the
case of ground based detectors for which we consider sources at 100 Mpc. For LISA, we have carefully
accounted for this difference.
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Bound on λg as a function of total mass
Limits based on GW 
observations will be 
five orders-of-
magnitude better 
than solar system 
limits

Still not as good as 
(model-dependent) 
limits based on 
dynamics of galaxy 
clusters
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Bounding the mass of the graviton 4
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Figure 1. Bounds on the graviton Compton wavelength that can be deduced from
AdvLIGO, Einstein Telescope and LISA. The mass ratio is 2. The distance to the
source is assumed to be 100 Mpc for AdvLIGO and ET, and 3 Gpc for LISA.

ET and LISA are plotted as a function of the total mass of the binary for a fixed mass

ratio of m2/m1 = 2. For AdvLIGO and ET, the source is assumed to be at a luminosity

distance of 100 Mpc and for LISA the SMBH binary is assumed to be 3 Gpc away.

The bounds from the Newtonian RWF and 3PN FWF are compared. Inclusion of

amplitude corrections and the higher harmonics improve the bounds for both ground-

based configurations and at the high-mass end for LISA. The improvement is more
than an order of magnitude for heavier binaries, because higher harmonics play a more

prominent role for such systems. Typical bounds, with the use of higher harmonics,

for AdvLIGO, ET and LISA are 1012 km, 1013 km and 1016 km, respectively. The best

bound, not surprisingly, will be provided by LISA, thanks to its low frequency sensitivity,

to the high signal-to-noise ratios with which it will be observing the supermassive binary

black hole coalescences, and to the very large distances involved. Though our results
are for a specific location and orientation of the binary, we have verified that the bounds

are not significantly altered by different source positions and orientations.

The remainder of the paper provides details underlying these results. In Sec. 2, we

describe the full-waveform model used, the noise curves for the various detectors, and

the technique of matched filtering. Section 3 details the bounds obtainable from the

various detectors.

Arun and Will (2009)

Wednesday, 1 September 2010



Gravity's Standard Sirens 

Improving bounds with IMR Signals
By including the merger 
and ringdown part of 
the coalescence it is 
possible to improve the 
bound on graviton 
wavelength
Equal mass compact 
binaries assumed to be 
at 1 Gpc
ET can achieve 2 to 3 
orders of magnitude 
better bound than the 
best possible model-
independent bounds

2

FIG. 1. Left. Optimal SNR (bottom panels) and the lower bound on the Compton wavelength !g of graviton (top panels) from equal-mass

binaries located at 1 Gpc detected in the Adv. LIGO (black traces) and ET (grey traces) detectors using their smallest low-frequency cutoffs

(10 Hz and 1 Hz, respectively). Horizontal axes report the total mass of the binary. Solid and dashed lines correspond to IMR and restricted

3.5PN waveforms, respectively. Right. Same plots for the case of binaries located at 3 Gpc detected in the LISA detector.

graviton can be placed from the GW observations by applying

appropriate matched filters.

Will’s original work was performed using restricted PN

waveforms describing the inspiral stage of non-spinning coa-

lescing compact binaries, the phase of which was expanded to

1.5PN order. Recent work has elaborated on this by incorpo-

rating more accurate detector models, and by including more

physical effects such as effects rising from the spin angular

momentum of the compact objects, from the eccentricity of

the orbit, and from the inclusion of higher harmonics rising

from the contribution of the higher multipoles [14–20].

Since the PN formalism has enabled us to compute accurate

waveforms from the inspiral stage of the coalescence, these

analyses have focused on the information gained from the ob-

servation of the inspiral stage. The last few years have wit-

nessed a revolution in the numerical simulations of compact

binaries. In particular, numerical relativity was able to obtain

exact solutions for the “binary-black-hole problem” [21–23].

Concomitant with this great leap has been significant progress

in analytical relativity in the computation of high order PN

terms and the inclusion of various effects arising from spins,

higher harmonics etc. Combining the analytical and numer-

ical results, different ways of constructing inspiral-merger-

ring-down (IMR) waveforms have been proposed [24–26]. It

has been widely recognized that these IMR waveforms will

significantly improve the sensitivity and distance reach of the

searches for BBHs (see, e.g., [24, 27, 28]) as well as the accu-

racy of the parameter estimation (see, e.g., [29–31]).

In this paper, we estimate the bounds that can be placed on

the mass of graviton from the GW observations of BBHs us-

ing IMR templates. This is motivated by the previous observa-

tions (see e.g. [29]) that the IMR waveforms will significantly

improve the accuracy of the parameter estimation by breaking

the degeneracies between the different parameters describing

the signal, including the parameter describing the mass of the

graviton.

Due to the intrinsic randomness of the noise in the GW

data, the estimated parameters of the binary (including the

one parameter describing the mass of the graviton) will fluc-

tuate around their mean values. In the limit of high signal-

to-noise ratios (SNRs), the spread of the distribution of the

observed parameters— the accuracy of the parameter estima-

tion — is quantified by the inverse of the Fisher information

matrix [32, 33]. We employ the Fisher matrix formalism to es-

timate the expected bounds on the mass of the graviton using

the non-spinning limit of the IMR waveform model proposed

by Ref. [34]. This is a frequency-domain waveform family

describing the leading harmonic of the IMR waveforms from

BBHs. In this work, we focus on the statistical errors, and

neglect the possible systematic errors rising from not incor-

porating the effects from spins and higher harmonics in our

signal model.

The main findings of the paper are summarized below (Sec-

tion I A). The following sections present the details of the

analysis. Section II briefly reviews the effect of massive gravi-

ton on the dispersion of GWs, and summarizes the existing

bounds on the graviton mass. In Section III, we compute the

expected upper bounds that can be placed on the mass of the

graviton using the observations of IMR signals. In that sec-

tion, we review the signal and detector models used, provide

the details of the computation and present a discussion of the

results and the limitations of this work.

A. Summary of results

An executive summary of results is presented in Fig. 1

for the case of ground-based detectors Adv. LIGO and ET

as well as the space-borne detector LISA. For ground-based

detectors, the binary is assumed to be located optimally ori-

ented at 1 Gpc, and for LISA, the binary is located at 3

Gpc. For the case of Adv. LIGO (with low-frequency cutoff,

RWF

IMR

Keppel and Ajith (2010)
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Testing the tail effect
Gravitational wave tails Testing the presence of tails

Blanchet and Schaefer (1994) Blanchet and Sathyaprakash (1995)
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Testing general relativity with post-
Newtonian theory

Post-Newtonian expansion of orbital phase of a binary 
contains terms which all depend on the two masses of 
the binary
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Post-Newtonian expansion of orbital phase of 
a binary contains terms which all depend on 
the two masses of the binary

Different terms arise because of different 
physical effects
Measuring any two of these will fix the masses
Other parameters will have to consistent with 
the first two

Testing general relativity with 
post-Newtonian theory

Arun, Iyer, Qusailah, Sathyaprakash (2006a, b)
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Testing post-Newtonian theory
Arun, Iyer, Qusailah, Sathyaprakash (2006a, b)
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Confirming the presence of tail- and log-
terms with Advanced LIGO
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PN parameter accuracies with ET
1 Hz lower cutoff
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FIG. 4: Plots showing the variation of relative errors ∆ψT /ψT in the test parameters ψT=ψ3, ψ4, ψ5l, ψ6, ψ6l, ψ7 as a function of total mass M
for stellar mass black hole binaries (with component masses having mass ratio 0.1) at a luminosity distance of DL = 300 Mpc observed by

ET, using both RWF (left panels) and FWF (right panels) as waveform models. The choice of the source orientations is the same as quoted

in Fig. 3. The noise curve corresponds to the recent ET-B sensitivity curve. Top panels correspond to the lower frequency cutoff of 1 Hz.

By using FWF as the waveform model all ψk’s except ψ4 can be tested with fractional accuracy better than 2% in the mass range 11-44M!.

Bottom panels correspond to the lower frequency cutoff of 10 Hz. Using FWF, all ψk’s except ψ4 can be tested with fractional accuracy better
than 7% in the mass range 11-44M!.

termediate mass BBHs using ET. In addition to this we will

discuss some other key issues influencing the results such as

effects of PN systematics on the test, choice of parametriza-

tion and dependence of the test on angular parameters.

1. Stellar mass black-hole binaries

Fig. 4 plots the relative errors ∆ψT /ψT as a function of total
mass M of the binary at a distance of DL = 300 Mpc. We have

considered stellar mass BBHs of unequal masses and mass ra-

tio 0.1, with the total mass in the range 11-44M!. Fig. 4 also
shows two types of comparisons: (a) Full waveform (FWF) vs

Restricted waveform (RWF), (b) a lower frequency cutoff of

10 Hz vs 1 Hz. The top and bottom panels correspond to the

lower frequency cutoff of 1 Hz and 10 Hz, respectively, while

the left and right panels correspond to the RWF and FWF, re-

spectively. The source orientations are chosen arbitrarily to be

θ = φ = π/6, ψ = π/4, ι = π/3. It should be evident from the
plots that the best estimates of various test parameters are for

the combination using the FWF with a lower cutoff frequency

of 1 Hz. In this case, all ψ′
i
s except ψ4 can be measured with

Arun, Mishra, Iyer, Sathyaprakash (2010)
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FIG. 4: Plots showing the variation of relative errors ∆ψT /ψT in the test parameters ψT=ψ3, ψ4, ψ5l, ψ6, ψ6l, ψ7 as a function of total mass M
for stellar mass black hole binaries (with component masses having mass ratio 0.1) at a luminosity distance of DL = 300 Mpc observed by

ET, using both RWF (left panels) and FWF (right panels) as waveform models. The choice of the source orientations is the same as quoted

in Fig. 3. The noise curve corresponds to the recent ET-B sensitivity curve. Top panels correspond to the lower frequency cutoff of 1 Hz.

By using FWF as the waveform model all ψk’s except ψ4 can be tested with fractional accuracy better than 2% in the mass range 11-44M!.

Bottom panels correspond to the lower frequency cutoff of 10 Hz. Using FWF, all ψk’s except ψ4 can be tested with fractional accuracy better
than 7% in the mass range 11-44M!.

termediate mass BBHs using ET. In addition to this we will

discuss some other key issues influencing the results such as

effects of PN systematics on the test, choice of parametriza-

tion and dependence of the test on angular parameters.

1. Stellar mass black-hole binaries

Fig. 4 plots the relative errors ∆ψT /ψT as a function of total
mass M of the binary at a distance of DL = 300 Mpc. We have

considered stellar mass BBHs of unequal masses and mass ra-

tio 0.1, with the total mass in the range 11-44M!. Fig. 4 also
shows two types of comparisons: (a) Full waveform (FWF) vs

Restricted waveform (RWF), (b) a lower frequency cutoff of

10 Hz vs 1 Hz. The top and bottom panels correspond to the

lower frequency cutoff of 1 Hz and 10 Hz, respectively, while

the left and right panels correspond to the RWF and FWF, re-

spectively. The source orientations are chosen arbitrarily to be

θ = φ = π/6, ψ = π/4, ι = π/3. It should be evident from the
plots that the best estimates of various test parameters are for

the combination using the FWF with a lower cutoff frequency

of 1 Hz. In this case, all ψ′
i
s except ψ4 can be measured with

PN parameter accuracies with ET
10 Hz lower cutoff

Arun, Mishra, Iyer, Sathyaprakash (2010)
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Test as seen in the plane of component masses10
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FIG. 5: Plots showing the regions in the m1-m2 plane that corresponds to 1-σ uncertainties in ψ0, ψ2 and various test parameters, which happen
to be one of the six test parameters ψT = ψ3,ψ4,ψ5l,ψ6,ψ6l,ψ7 at one time, for a (2, 20) M! BBH at a luminosity distance of DL = 300 Mpc

observed by ET. In all the six plots shown above ψ0 and ψ2 are chosen as the fundamental parameters (from which we can measure the masses
of the two black holes). Each parameter corresponds to a given region in the m1-m2-plane and if GR is the correct theory of gravity then all

three parameters, ψ0, ψ2 and ψT should have a non-empty intersection in the m1-m2 plane. A smaller region leads to a stronger test. Notice that
all panels have the same scaling except the top middle panel in which Y axis has been scaled by a factor 10.

fractional accuracies better that 2% for the total mass in the

range 11-44M!. On the other hand when the lower cutoff is
10 Hz, with the FWF all ψ′

i
s except ψ4 can be measured with

fractional accuracies better than 7%. It is also evident from the

plots that as compared to other test parameters, ψ3 is the most
accurately measured parameter in all cases and best estimated

when the lower frequency cutoff is 1 Hz. On the other hand,

ψ4 is the worst measured parameter of all the test parameters.
However, we see the best improvement in its measurement

when going from the RWF to the FWF.

Fig. 5 shows the regions in the m1-m2 plane that corre-

sponds to 1-σ uncertainties in ψ0, ψ2 and various test pa-
rameters which in turn will be one of the six test parameters

ψT = ψ3,ψ4,ψ5l,ψ6,ψ6l,ψ7, one at a time, for a (2, 20) M!
BBH, at a luminosity distance of DL = 300 Mpc observed by

ET. It is evident from the plots corresponding to various tests

that each test parameter is consistent with corresponding fun-

damental pair (ψ0, ψ2).

2. Intermediate mass black hole binaries

Fig. 6 plots the relative errors ∆ψT/ψT as a function of the
total massM of the binary at a distance ofDL=3Gpc. We have

considered BBH of unequal masses with mass ratio 0.1. As in

Fig. 4, Fig. 6 also shows two types of comparisons: (a) Ef-

fect of the use of FWF on parameter estimation against RWF,

(b) Effect of lowering the cutoff frequency from 10 Hz to 1

Hz. As before, top and bottom panels correspond to the cut-

off frequency of 1 Hz and 10 Hz, respectively, and left and

right panels to RWF and FWF, respectively. The source ori-

entations are chosen arbitrarily to be θ = φ = π/6, ψ = π/4,
ι = π/3.

It is evident from the plots that the least relative errors in

various test parameters are for the combination that uses the

FWF and a lower cutoff of 1 Hz. Unlike the case of stel-

lar mass BBHs, in the case of intermediate mass BBHs only

two of the test parameters, ψ3 and ψ5l, can be measured with
fractional accuracies better that 10% for the total mass in the
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Power of a PN Test
Suppose the GR kth PN coefficient is qk(m1,m2) while 
the true kth PN coefficient is pk(m1,m2) 

The “measured value of the kth PN coefficient is, say, p0

The curve qk(m1,m2)= p0 in the (m1,m2) plane will not 
pass through the masses determined from the other 
parameters

34
Arun, Mishra, Iyer, Sathyaprakash (2010)
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Power of the PPN test
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Efficacy of the PPN Test
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Black Hole Quasi-Normal 
Modes And Tests of GR

Wednesday, 1 September 2010



Black hole quasi-normal modes
Damped sinusoids with characteristic frequencies and decay 
times

In general relativity frequencies flmn and decay times tlmn all 
depend only on the mass M and spin q of the black hole

Measuring two or modes unambiguously, would severely 
constrain general relativity

If modes depend on other parameters (e.g., the structure 
of the central object), then test of the consistency 
between different mode frequencies and damping times 
would fail

38
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Frequency of quasi normal modes

Berti, Cardoso and Will 39
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Quality Factor of QNMs

Berti, Cardoso and Will 40
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Tests with QNM
Studying QNM from NR simulations at various mass ratios: 1:1, 
1:2, 1:4, 1:8, final spins from -0.8 to +0.8

It is not too difficult to generate the QNM only part of the merger signal

Can carry out a wide exploration of the parameter space 

What is the relative energy in the various ringdown modes?

Are there at least two modes containing enough energy so that their 
damping times and frequencies can be measured with good (i.e. at least 
10% accuracy)?

33 seems to contain contain enough energy compared to 22 modes; 
should be possible to extract the total mass and spin magnitude

Measuring the relative amplitudes of the different modes can shed light 
on the binary progenitor, namely the total mass and its mass ratio

Polarization of ringdown modes can measure the spin axis of merged BH

Kamaretsos, Hannam, Husa, Sathyaprakash, 2010
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Emitted energy and relative amplitudes 
of different quasi-normal modes

42

An important astrophysical question is whether 

astronomical black hole candidates are really black 

holes. It has long been proposed that quasi-normal 

modes can provide the answer. Here is a practical 

implementation of how one might confirm if our source is 

really a black hole. 

From each mode frequency and damping time one can 

infer the black hole mass and spin angular momentum. 

The inferred values of mass and spin from various 

modes should agree with each other if the object is truly 

a black hole. Figure below shows the accuracy with 

which the mass and spin can be extracted from different 

modes. Note that the mode frequencies themselves do 

not provide a smoking gun evidence for black holes. The 

damping times, on the other hand, can discriminate 

between black holes and other exotic objects. 

As can be seen from Table 1, the relative amplitudes of 

the modes depend on the mass ratio. The following is a 

good fit to the relative amplitudes which includes only 

the (3,3) modes taken from Ref. [2]: 

As is well known, larger the mass ratio greater is the 

amplitude of the higher order modes. Therefore, it 

should be possible to measure the mass ratio of the 

progenitor binary by measuring the relative amplitudes 

of the modes. Using the above model for the waveform, 

we find the relative error in the various parameters as a 

function of the mass ratio of the system as below. In this 

case the progenitor black hole binary was at z=0.45 and 

had a total mass of 5 x 106 M
!
. Note that the mass ratio 

can be determined to 1% even for large mass ratios. 

More with Quasi-Normal Modes 
Extracting binary source parameters and testing GR 

Ioannis Kamaretsos, Mark Hannam, Sascha Husa, Bangalore Sathyaprakash 

Relative amplitudes of quasi-modes 

from numerical relativity 
Quasi-normal modes we study come from the end state 

of binary black hole evolution. Numerical simulations of 

the coalescence of binary black holes were performed 

using the BAM code, which implements the moving-

puncture method. We ran five simulations of non-

spinning binary black holes with five different mass 

ratios.  

Table 1 shows the relative amplitudes of the different 

modes. Also listed are the final spin (j) of the hole and 

the amount of energy radiated. Our results are in broad 

agreement with that of Ref. [2].  

The ringdown signal consists of a superposition of 

quasi-normal modes (QNM), each a damped sinusoid 

with a characteristic frequency flmn(M,j) and damping 

time !lmn(M,j). The following plots show the signal-to-

noise ratio (SNR) of different QNMs in LISA for a source 

of total mass 107 M
!
 at a red-shift of z = 0.45.  

Plots below show relative errors in frequencies 

and damping times of the various modes for the 

same source as above. Mode frequencies and 

damping times depend on the mass M and spin j 

of the hole, which can both be inferred accurately. 

Table 1: For different mass ratios (q=1, 2, 3, 4, 11), we show the 

final spin of the black hole, percent of energy in the radiation, 

amplitude of (2,1), (3,3), (4,4) modes relative to (2,2) mode. 

Measuring black hole mass and spin 

Are they really black holes?  

LISA SNRs and measurement accuracy 

of amplitudes of different modes 
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q j 
% total 

energy 
A21/A22 A33/A22 A44/A22 

1 0.69 4.9 0.04 0.10 0.05 

2 0.62 3.8 0.05 0.13 0.06 

3 0.54 2.8 0.07 0.21 0.08 

4 0.47 2.2 0.08 0.25 0.09 

11 0.25 0.7 0.14 0.31 0.14 

Measuring mass ratio of progenitor 

binary from quasi-normal modes 

[1] Bruegmann et al, Phys. Rev. D 77:024027 (2008). 

[2] Berti, Cardoso, Cardoso, Cavaglia, Phys. Rev. D 76:104044 (2007). 
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An important astrophysical question is whether 

astronomical black hole candidates are really black 

holes. It has long been proposed that quasi-normal 

modes can provide the answer. Here is a practical 

implementation of how one might confirm if our source is 

really a black hole. 

From each mode frequency and damping time one can 

infer the black hole mass and spin angular momentum. 

The inferred values of mass and spin from various 

modes should agree with each other if the object is truly 

a black hole. Figure below shows the accuracy with 

which the mass and spin can be extracted from different 

modes. Note that the mode frequencies themselves do 

not provide a smoking gun evidence for black holes. The 

damping times, on the other hand, can discriminate 

between black holes and other exotic objects. 

As can be seen from Table 1, the relative amplitudes of 

the modes depend on the mass ratio. The following is a 

good fit to the relative amplitudes which includes only 

the (3,3) modes taken from Ref. [2]: 

As is well known, larger the mass ratio greater is the 

amplitude of the higher order modes. Therefore, it 

should be possible to measure the mass ratio of the 

progenitor binary by measuring the relative amplitudes 

of the modes. Using the above model for the waveform, 

we find the relative error in the various parameters as a 

function of the mass ratio of the system as below. In this 

case the progenitor black hole binary was at z=0.45 and 

had a total mass of 5 x 106 M
!
. Note that the mass ratio 

can be determined to 1% even for large mass ratios. 

More with Quasi-Normal Modes 
Extracting binary source parameters and testing GR 

Ioannis Kamaretsos, Mark Hannam, Sascha Husa, Bangalore Sathyaprakash 

Relative amplitudes of quasi-modes 

from numerical relativity 
Quasi-normal modes we study come from the end state 

of binary black hole evolution. Numerical simulations of 

the coalescence of binary black holes were performed 

using the BAM code, which implements the moving-

puncture method. We ran five simulations of non-

spinning binary black holes with five different mass 

ratios.  

Table 1 shows the relative amplitudes of the different 

modes. Also listed are the final spin (j) of the hole and 

the amount of energy radiated. Our results are in broad 

agreement with that of Ref. [2].  

The ringdown signal consists of a superposition of 

quasi-normal modes (QNM), each a damped sinusoid 

with a characteristic frequency flmn(M,j) and damping 

time !lmn(M,j). The following plots show the signal-to-

noise ratio (SNR) of different QNMs in LISA for a source 

of total mass 107 M
!
 at a red-shift of z = 0.45.  

Plots below show relative errors in frequencies 

and damping times of the various modes for the 

same source as above. Mode frequencies and 

damping times depend on the mass M and spin j 

of the hole, which can both be inferred accurately. 

Table 1: For different mass ratios (q=1, 2, 3, 4, 11), we show the 

final spin of the black hole, percent of energy in the radiation, 

amplitude of (2,1), (3,3), (4,4) modes relative to (2,2) mode. 

Measuring black hole mass and spin 

Are they really black holes?  

LISA SNRs and measurement accuracy 

of amplitudes of different modes 
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[1] Bruegmann et al, Phys. Rev. D 77:024027 (2008). 

[2] Berti, Cardoso, Cardoso, Cavaglia, Phys. Rev. D 76:104044 (2007). 
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LISA SNRs for different QNMs

43
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LISA measurement accuracies of mode 
frequencies

45
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LISA measurement accuracies 
damping times

46
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Black hole no hair theorems don’t apply to 
deformed black holes

From the ringdown signals it should in principle be 
possible to infer the nature of the perturber

In the case of binary mergers it should be possible 
to measure the masses and spins of the 
component stars that resulted in the final black 
hole
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Conclusions
Gravitational-wave observations offer new tests of general 
relativity in the dissipative strongly non-linear regime

Advanced LIGO can already test tails of gravitational waves and the 
presence of the log-term in the PN expansion

Einstein Telescope will measure all known PN coefficients (except 
one at 2PN order) to a good accuracy

Black hole quasi-normal modes will be very useful in testing 
GR

Consistency between different mode frequencies and damping 
times can be used to constrain GR

Ringdown modes can be used to measure component masses of 
progenitor binary and test predictions of numerical relativity

51

Wednesday, 1 September 2010


