

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- E1000328

LIGO

July 28th, 2011

aLIGO HAM-ISI, Pre-integration Testing Unit # 4,

Phase I (post-assembly, before storage)

E1000328 - V1

Joe Hanson, Celine Ramet, Michael Vargas, Adrien Le Roux

Distribution of this document: Advanced LIGO Project

This is an internal working note of the LIGO Laboratory

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

LIGO Hanford Observatory P.O. Box 1970 Mail Stop S9-02 Richland WA 99352 Phone 509-372-8106 Fax 509-372-8137 Massachusetts Institute of Technology LIGO Project – NW22-295 185 Albany St Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

LIGO Livingston Observatory P.O. Box 940 Livingston, LA 70754 Phone 225-686-3100 Fax 225-686-7189

Table of contents:

Intr	oduction	4
I.	Pre-Assembly Testing	5
-	Step 1: Position Sensors	5
-	Step 2: GS13	7
-	Step 2.1 – Horizontal GS-13s	7
•	Step 2.2 – Vertical GS-13s	8
-	Step 3: Actuators	10
II.	Tests to be performed during assembly	11
-	Step 1: Inventory (E1000052)	11
-	Step 2: Check torques on all bolts	11
-	Step 3: Check gaps under Support Posts	11
-	Step 4: Pitchfork/Boxwork flatness before Optical Table install	12
-	Step 5: Blade spring profile	12
•	Step 6: Gap checks on actuators-after installation on Stage 1	13
•	Step 7: Check level of Stage 0	13
•	Step 8: Check level of Stage 1 Optical Table	14
•	Step 9: Mass budget	15
•	Step 10: Shim thickness	17
-	Step 11: Lockers adjustment	17
III.	Tests to be performed after assembly	18
•	Step 1 - Electronics Inventory	18
•	Step 2 - Set up sensors gap	18
•	Step 3 - Measure the Sensor gap	19
•	Step 4 - Check Sensor gaps after the platform release	19
•	Step 5 – Performance of the limiter	20
•	Step 5.1 - Test N°1 - Push "in the general coordinates"	20
•	Step 5.2 - Test N°2 – Push "locally"	20
•	Step 6 - Position Sensors unlocked/locked Power Spectrum	21
-	Step 7 - GS13 power spectrum -tabled tilted	23
-	Step 8- GS13 pressure readout	25
•	Step 9 - Coil Driver, cabling and resistance check	26
-	Step 10 - Actuators Sign and range of motion (Local drive)	27
-	Step 11 - Vertical Sensor Calibration	28
-	Step 12 - Vertical Spring Constant	29
-	Step 13 - Static Testing (Tests in the local basis)	29
•	Step 14 - Linearity test	31
•	Step 15 - Cartesian Basis Static Testing	33
•	Step 16- Frequency response	34
•	Step 16.1 - Local to local measurements	34
-	Step 16.2 - Cartesian to Cartesian measurements	37
-	Step 17 - Transfer function comparison with Reference	41
-	Step 17.1 - Local to local - Comparison with Reference	41
С	Step 17.2 - Cartesian to Cartesian - Comparison with Reference	44
-	Step 18 - Lower Zero Moment Plane	48
-	Step 19 - Damping loops	50
-	Step 19.1 - Transfer functions - Simulation	50

•	Step 19.2 - Powerspectra – Ex	xperimental 5	53
Concl	lusion		1

Introduction

This Unit#4 has been built between May and July 2011, and was tested immediately afterward.

The procedure document used to perform this test is:

- E1000309–V9 - aLIGO HAM-ISI, Pre-Integration Testing Procedure, Phase I (post assembly, before storage)

Other useful information can be found in:

- E1000300 - HAM-ISI LLO test stand: software and electronic check

I. Pre-Assembly Testing

• Step 1: Position Sensors

Note: The back panel reads 0.508V/0.001"

S/N sensor	S/N board	ADE Gap Standoff(m m)	Location on the Jig	Gap Standoff on Jig(mm/in)	Voltage before zeroing	Voltage after zeroing. Prebake	Voltage after zeroing. Post bake
12064	NR	NR	NR	NR	NR	NR	NR
12073	NR	NR	NR	NR	NR	NR	NR
12076	12076 NR NR NR		NR	NR	NR	NR	
12082	NR	NR	NR	NR	NR	NR	NR
12024	NR	NR	NR	NR	NR	NR	NR
11996	NR	NR	NR	NR	NR	NR	NR

NR: not recorded

Will be measured for the next units.

Sensors noise spectra measured before baking:

Figure - H2 and V2 sensor noise

Figure - H3 and V3 sensor noise

Acceptance Criteria:

- Power spectrum magnitudes must be lower than:
 - o 9.e-10 m/ $\sqrt{\text{Hz}}$ at 0.1Hz
 - o 6.e-10 m/ $\sqrt{\text{Hz}}$ at 1Hz

<u>Issues/difficulties/comments regarding this test:</u> Values of sensor gaps and zeroing were not recorded. 12064 doesn't meet the requirements by a little at 0.1Hz, but we still decided to go on with this sensor.

Test result:

Passed: ____

Failed: X

• Step 2: GS13

All the data related to GS-13 post podding testing can be found in the SVN at :

SeismicSVN\seismic\Common\Data\aLIGO_GS13_TestData\PostMod_TestResults_PDFs. E1000058 spreadsheet provides the status of each individual GS-13 at LLO site during aLIGO HAM assembly

Data files in SVN at:

/opt/svncommon/seisvn/seismic/Common/Data/aLIGO_GS13_TestData/PostMod_TestResults_Raw ASCII

Scripts files for processing and plotting in SVN at:

/opt/svncommon/seisvn/seismic/Common/MatlabTools

- gs13qatest.m

Figures in SVN at:

/opt/svncommon/seisvn/seismic/Common/Data/aLIGO_GS13_TestData/PostMod_TestResults_PDFs

Step 2.1 – Horizontal GS-13s

Huddle testing

Figure - Huddle testing of Horiz GS-13 804,795, and 792 after aLIGO modifications

• Step 2.2 – Vertical GS-13s

Huddle testing

Figure - Huddle testing of Vert GS-13 717, 681 and 721 after aLIGO modifications

Driven testing

Figure - Driven Transfer Function of Vert GS-13 717, 681 and 721 after aLIGO modifications

Acceptance Criteria:

- GS13 should have been already modified and tested. GS-13 Inspection/Pod Assembly (D047810). Checklist is defined in F090070-v6
- Resonant frequency at 1 Hz (huddle testing)
- No spring resonance on vertical driven tests

Test result:

Passed:	Χ	Failed:
I asseu.	Δ	rancu.

• Step 3: Actuators

Actuator data can be found at: T0900564. Actuator inventory is made at Section II – Step 1.

Actuator Serial #: L066	Actuator Serial #: L079
Operator Name: Gordon, Matt	Operator Name: Gordon, Matt
Date: 11/22/2009 Time: 2:43 PM	Date: 11/22/2009 Time: 12:11 PM
Actuator Coil Resistance: 6.31 Ohms, PASS	Actuator Coil Resistance: 6.35 Ohms, PASS
Ambient Temperature: 71.1 F	Ambient Temperature: 71.5 F
Hi Pot Test Results: 1000 MOhms, PASS	Hi Pot Test Results: 1000 MOhms, PASS
X Travel Limit (inches): 0.523	X Travel Limit (inches): 0.529
Y Travel Limit (inches): 0.205	Y Travel Limit (inches): 0.205
Z Travel Limit (inches): 0.508	Z Travel Limit (inches): 0.506
	Actuator Serial #: L149
Actuator Serial #: L158	Operator Name: Gordon, Matt
Operator Name: Gordon, Matt	Date: 4/13/2010 Time: 1:52 PM
Date: 4/13/2010 Time: 6:04 PM	Actuator Coil Resistance: 6.41 Ohms, PASS
Actuator Coil Resistance: 6.42 Ohms, PASS	Ambient Temperature: 72.9 F
Ambient Temperature: 73.3 F	Hi Pot Test Results: 1000 MOhms, PASS
Hi Pot Test Results: 1000 MOhms, PASS	X Travel Limit (inches): 0.531
X Travel Limit (inches): 0.531	Y Travel Limit (inches): 0.205
Y Travel Limit (inches): 0.205	Z Travel Limit (inches): 0.507
Z Travel Limit (inches): 0.504	
Actuator Serial #: L140	Actuator Serial #: L159
Operator Name: Gordon, Matt	Operator Name: Gordon, Matt
Date: 4/13/2010 Time: 8:20 AM	Date: 4/13/2010 Time: 5:48 PM
Actuator Coil Resistance: 6.38 Ohms, PASS	Actuator Coil Resistance: 6.37 Ohms, PASS
Ambient Temperature: 73.3 F	Ambient Temperature: 73.3 F
Hi Pot Test Results: 1000 MOhms, PASS	Hi Pot Test Results: 1000 MOhms, PASS
X Travel Limit (inches): 0.528	X Travel Limit (inches): 0.533
Y Travel Limit (inches): 0.206	Y Travel Limit (inches): 0.206
Z Travel Limit (inches): 0.505	Z Travel Limit (inches): 0.506

Acceptance Criteria:

- Actuators were previously tested and results are reported in T900564.

The tests report must contain:

1- Test results (Passed: <u>X</u> Failed: ____)

II. Tests to be performed during assembly

DCC/Vendor number	Part name	Configuration	S/N	S/N	S/N
D071001	Stage 0 base		5		
D071051	Stage 1 base		6		
D071050	Optical table		13		
D071002	Spring Post		41	40	35
D071100	Spring		36	31	32
D071102	Flexure		8	5	36
	Position	Horizontal	12064	12076	12024
ADE	sensor	Vertical	12073	12082	11996
D047912	CS 12 pod	Horizontal	92	26	45
D047012	GS-15 pou	Vertical	80	64	15
D047922	L4C pod	Horizontal			
D047023	L4C pou	Vertical			
D0002740	Actuator	Horizontal	L066	L158	L140
00902749	Actual	Vertical	L079	L149	L159

• Step 1: Inventory (E1000052)

Note that L4C pods will be installed on this unit but were not ready at the time of testing.

• Step 2: Check torques on all bolts

Acceptance Criteria:

- All bolts should trip the wrench, and start moving immediately after. If any bolts in a pattern move before torque is reached, recheck after all bolts are brought to spec.

Test result:

Test result:

Passed: X Failed:

• Step 3: Check gaps under Support Posts

Acceptance Criteria:

- A 0.001 inch shim cannot be passed freely through any connection to Stage 0 or between post and gussets. If shim can pass through, loosen all constraining bolts, and then retighten iteratively from the center of the part to the edges. Retest.

Passed: X	Failed:
-----------	---------

• Step 4: Pitchfork/Boxwork flatness before Optical Table install

Acceptance Criteria:

- Shim inserted won't pass between parts.

Test result:

Passed: X Failed:

• Step 5: Blade spring profile

Blade #	Base (")	Tip(")	Flatness (mils)
1	0.510	0.494	+ 16
2	0.509	0.496	+ 13
3	0.498	0.493	+ 5

Table 1 - Blade profile

Issues/difficulties encountered during this test

Multiple iterations of shims were tried, and unless we use shims thinner 120 mils, we are confident that we can not provide better blade spring profile while keeping the optical table level.

Acceptance Criteria:

- Blades must be flat within 0.015" inches.

Test result:

Passed:

Failed: X

Actuator	Front Gap (1/1000")	Back Gap (1/1000")			
H1	0.085	0.080			
H2	0.080	0.090			
H3	0.080	0.090			
V1	0.080	0.085			
V2	0.080	0.085			
V3	0.090	0.090			

• Step 6: Gap checks on actuators-after installation on Stage 1

Acceptance Criteria

- Gaps must be within 0.010" of design (i.e. 0.090" and .070" pass, but 0.095" and 0.065" doesn't).

Test result:	Passed: X	Failed:
--------------	-----------	---------

• Step 7: Check level of Stage 0

Max angle=(1/256)/78.97''= 49.5 urad

Acceptance Criteria

- The maximum angle of the table with the horizontal mustn't exceed ~100µrad

Test result:

Passed: X

Failed: ____

• Step 8: Check level of Stage 1 Optical Table

Optical Level measurement of Stage 1 at large (12 - 15) number of points.

Max angle = (0.005)/85.59= 58 urad

Acceptance Criteria

- The maximum angle of the table with the horizontal mustn't exceed $\sim 100 \mu rad$

Test result: Passed: X Failed:

• Step 9: Mass budget

Figure – Keel Masses and Wall masses location

Figure - Optical table masses distribution

	Mass (kg)
t1	45.00
t2	45.00
t3	45.00
t4	45.00
t5	45.00
t6	45.00
t7	35.00
total	305.00

	00	01	02	03	04	05	06		
	0.6	1.1	2.2	4.5	7.9	15.6	27.2	lbs	kgs
w9	1					1	1	43.4	19.69
w1						1	1	42.8	19.41
w2						1	1	42.8	19.41
w3	1					1	1	43.4	19.69
w4	1					1	1	43.4	19.69
w5				1		1	1	47.3	21.45
w6			1			1	1	45	20.41
w7						1	1	42.8	19.41
w8						1	1	42.8	19.41
Side Masses Total	3	0	1	1	0	9	9	393.7	178.58

Table – Wall masses distribution

	00	01	02	03	04	05	06		
_	0.6	1.1	2.2	4.5	7.9	15.6	27.2	lbs	kgs
k1					1		1	35.1	15.92
k2	1	1	1				1	31.1	14.11
k3					1		1	35.1	15.92
k4	1	1	1				1	31.1	14.11
k5					1		1	35.1	15.92
k6	1	1	1				1	31.1	14.11
	3	3	3	0	3	0	6	198.6	90.08

	Side	Keel	Тор	Total
Weigh (kg)	178.58	90.08	305.00	573.66
Torque x at O				
(N.m)	-4.58	0.00	-8.72	-13.31
Torque y at O				
(N.m)	-24.53	5.26	11.21	-8.06

 Table - Masses distribution (computed using T1100261)

Acceptance Criteria

The Mass budget must be

- 579.1 Kg (cf E1100427)+/-25Kg (5%)

Test result:

Passed: X Failed:

• Step 10: Shim thickness

Lockers	Shim thickness (mils)
Α	122
В	122
С	122
D	120

Table – Shims Thickness

Acceptance Criteria

- Inventory is complete

Test result:

Passed: X Fai

Failed: ____

• Step 11: Lockers adjustment

D.I at Lockers	Dial indicators V	Dial indicators H
Α	1.5	1
В	2	0.5
С	-1	0
D	-1	-1

 Table – Dial indicators read-out (in thousands of an inch)

Issues/difficulties encountered during this test :

We believe that we could have brought the level a touch better (mostly for lockers A & B in the vertical directions) but that would have required to have weights smaller than D071250-type 0 or to place them somewhere where they could not be bolted. At this stage of the testing, we judged that it was not necessary.

Acceptance Criteria

- Vertical and horizontal displacement near the lockers must be lower than 2 mils (0.002")

Test result:

Passed:	X	Failed:
rasseu:	Λ	raneu:

III. Tests to be performed after assembly

• Step 1 - Electronics Inventory

Hardware	LIGO reference	S/N
	D0002744	S1000317
Coll driver	D0902744	S1000316
Anti Image filter	D070081	S1000251
Anti aliaging filtar	D1000260	S1000244
Anti anasing inter	D1000269	S1000245
		S1000311
Interface chassis	D1000067	S1000312
		S1000314

 Table - Inventory electronics

Acceptance Criteria

- Inventory is complete

Test result:

Passed: X

Failed: ____

Step 2 - Set up sensors gap

	10 Kg masses at	t each corners	No n	nass	No mass		
Table locked	ADE boxes on		ADE bo	exes on	ADE boxes off		
Sensors	Offset (Mean) Std deviation		Offset (Mean) Std deviation		Offset (Mean)	Std deviation	
H1	-188.55	0.92636	-87.125	1.243	-150.29	1.32	
H2	108.83	1.6874	77.64	1.463	26.07	1.39	
H3	14.526	0.70896	137.45	1.2642	52.696	0.32	
V1	-26.081	0.69054	268.82	1.9254	209.42	1.66	
V2	-118.62	1.6893	290.01	2.2444	240.25	1.88	
V3	36.343	2.5092	54.525	1.5449	55.115	0.25	

Capacitive position sensor readout after gap set-up

Issues/difficulties/comments regarding this test: HAM-ISI – LLO unit# 4 uses synchronized satellite boxes

Acceptance criteria:

- All mean values must be lower than 400 cts (a bit less than .0005").
- All standard deviations below 5 counts.
- No cross talk

Test result:

Passed: X I

Failed: ____

Step 3 - Measure the Sensor gap

Sensors	Gap measured on	Gap measured on
	the Jig	the table
H1	NR	0.080"
H2	NR	0.080"
H3	NR	0.080"
V1	NR	0.080"
V2	NR	0.082"
V3	NR	0.080"

Acceptance criteria:

Sensors gap measured on the jig and on the optic table must be:

0.080" +/-0.002"

Test result:

Passed: X Failed:

- Step 4 Check Sensor gaps after the platform release

	Table	locked	Table ur	nlocked
Sensors	Offset (Mean)	Std deviation	Offset (Mean)	Difference
H1	-87.125	1.243	86.78	173.902
H2	77.64	1.463	689.43	611.79
H3	137.45	1.2642	-376.73	514.18
V1	268.82	1.9254	233.45	35.37
V2	290.01	2.2444	154.79	135.22
`V3	54.525	1.5449	-1661.00	1715.525

Table - Sensor gaps after platform release

Acceptance criteria:

- Absolute values of the difference between the unlocked and the locked table must be below:
 - o 1600 cts for horizontal sensors (~0.002")
 - o 1600 cts for vertical sensors (~0.002")
- Considering the acceptance criteria of step 4, all mean values must be lower than _
 - o 2000 cts for horizontal sensors (~0.0025")
 - o 2000 cts for vertical sensors (~0.0025")

Comments:

The difference between Table locked and unlocked for V3 is really high compared to the others, but still meet the second acceptance criteria. Note that is consistent with having locker B indicating the table going high when the table is released.

Test result:

Passed: X Failed:

-23.6

• Step 5 – Performance of the limiter

	CPS	Calculated a	Calculated after calibration		
Sensors	UP (Counts)	Down (Counts)	UP (mil)	Down (mil)	
V1	20250	-19254	24.1	-22.9	
V2	17805	-19764	21.2	-23.5	
V3	17568	-19388	20.9	-23.1	
	CPS	s read out	Calculated a	after calibration	
Sensors	CW(-RZ)	CCW (+RZ)	CW (mil)	CCW (mil)	
H1	20466	-24195	24.3	-28.8	
H2	21367	-18019	25.4	-21 /	

• Step 5.1 - Test N^o1 - Push "in the general coordinates"

Table - Optic table range of motion

-19875

Step 5.2 - Test N°2 – Push "locally"

21746

	Push in positive direction	Push in negative direction	Railing	Actuator Gap Check
H1	23339	-21943		Х
H2	23413	-20089		Х
H3	24904	-23328		Х
V1	21262	-18718		Х
V2	32767	-32768	Х	Х
V3	23716	-24914		Х

 Table - Optic table range of motion

Acceptance criteria:

H3

- The vertical sensor readout must be positive when the optic table is pushed in the +Z direction
- The horizontal sensor readout must be negative when the optic table is pushed in the +RZ direction
- Step 5.1
 - Absolutes value of all estimated motions must be higher than 16000counts (~0.020")
- Step 5.2
 - o No contact point on sensors
 - Absolute value of sensor read out must be higher than 16000counts (~0.020")
 - o No contact point on actuators

Test result:

Passed: X Failed: .

25.9

Step 6 - Position Sensors unlocked/locked Power Spectrum

Data files in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/ Powerspectra/Undamped - LLO_HAM_ISI_Unit_4_Calibrated_PSD_CPS_GS13_Unlocked_Locked_2011_07_26.mat - LLO_HAM_ISI_Unit_4_Calibrated_PSD_GS13_Table_Tilted_2011_07_25.mat

Scripts files for processing and plotting in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_collection/

- Powerspectra_Measurements_Locked_Unlocked_HAM_ISI.m
- - Powerspectra_Measurements_Tilted_HAM_ISI.m

Figures in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Figures/Powerspectra/Undamped

- LLO_HAM_ISI_Unit_4_Calibrated_PSD_CPS_Unlocked_Locked_2011_07_26.mat
- LLO_HAM_ISI_Unit_4_Calibrated_PSD_GS13_Unlocked_Locked_2011_07_26.mat

CPS calibration:

The CPS power spectrums are calibrated by using a sensitivity of 30.2 nm/count.

Figure - Calibrated CPS power spectrum

Figure – Power spectrum Calibrated GS13

Acceptance criteria:

- No cross talk (peaks at low frequencies + harmonics on measurements)
- Magnitudes of power spectra must be between requirement curves such as in the following figures (dashed lines)-Note that those are given as indication of what we've achieved in the past with precedent units, not absolute criteria.

Sensors	ISI state	Frequency	$2x10^{-2}$	1×10^{-1}	1	10	20	100	1000
		(Hz)							
	Table	Max	3x10 ⁻¹	$3x10^{-4}$	$3x10^{-7}$	10-7		10-11	10-14
CS 12	locked	Min	$3x10^{-4}$	$3x10^{-7}$	$3x10^{-10}$	10 ⁻¹²		10-14	10 ⁻¹⁷
05-15	Table	Max	1	$3x10^{-3}$	10-5	10-9		10-11	10-14
	unlocked	Min	10 ⁻⁴	$3x10^{-7}$	10-9	10 ⁻¹³		10 ⁻¹⁵	10 ⁻¹⁸
	Table	Max	$2*10^{-7}$	$2x10^{-8}$	10-8	5x10 ⁻⁸	$2x10^{-7}$	5x10 ⁻⁹	10-9
CPS	locked	Min	5x10 ⁻⁹	$2x10^{-9}$	8×10^{-10}	5×10^{-10}		10 ⁻¹⁰	5×10^{-11}
	Table	Max	$2x10^{-6}$	8x10 ⁻⁷	8x10 ⁻⁷	5×10^{-8}	$2x10^{-7}$	$2x10^{-8}$	10-9
	unlocked	Min	10-7	5×10^{-8}	8x10 ⁻⁹	5×10^{-10}		$2x10^{-10}$	10 ⁻¹⁰

Table - Step 6 -Normal conditions-Sensors power spectra requirements

Issues/difficulties encountered during this test

Those measurements were taken during the day while normal assembly activities were going on in the area. The minor overshoot over the requirements don't seem consequent enough to fail this test.

Test result:

Passed:	X	Failed:

• Step 7 - GS13 power spectrum -tabled tilted

The figure below presents the GS13 power spectrum when the table is unlocked and loaded with a 20Kg mass at one of its corner.

Figure – Power spectrum Calibrated GS13 with mass at corner

Data files in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/ Powerspectra/Undamped - LLO_HAM_ISI_Unit_4_Calibrated_PSD_CPS_Unlocked_Locked_2011_07_26.mat - LLO_HAM_ISI_Unit_4_Calibrated_PSD_GS13_Unlocked_Locked_2011_07_26.mat

Scripts files for taking and processing the data, and plotting it in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_collection/

Powerspectra_Measurements_Tilted_HAM_ISI.m

Figures in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Figures/ Powerspectra/Undamped - LLO_HAM_ISI_Unit_4_Calibrated_PSD_GS13_Table_Tilted_2011_07_25

Acceptance criteria:

- With table unlocked and tilted, magnitudes of power spectra must be fully included within:

Sensor	ISI State	Frequency	$5 \times 10^{-1} \text{ Hz}$	1	10	100	1000
GS-13	Table	Max	2x10 ⁵	2x10 ⁶	8x10 ⁻⁸	$4x10^{-11}$	$3x10^{-14}$
	Tilted	Min	10 ⁻⁸	10 ⁻⁹	$2x10^{-11}$	10 ⁻¹⁴	10^{-17}

Table - Table Tilted- Sensors power spectra requirements

Test result:

Passed: X Failed:

• Step 8- GS13 pressure readout

Scripts files for taking and processing the data, and plotting it in SVN at:

seismicSVN/Common/MatlabTools

gs13Presstest.m

Figures in SVN at:

- seismicSVN/Common/Data/Pressure_Plots/Pressure_072011_to_072711_H1H2H3V1V2V3.p df

Figure – Pressure Plots

Issues/difficulties/comments regarding this test

We know that the drop to 0 at the end of the plot is due to issues with getdata.

We can notice issues with V1(value about 1/2 of what's expected) and V3 (saturating). However we were able to assess using dataviewer that the pressure sensors in the GS-13 pods V1 and V3 are ok, the read-out of those is damaged.

Acceptance criteria:

- The pressure on all channels must be 25000 counts +/- 3000 counts
- All channels must follow comparable trend

Test result:

Passed: X Fai

Failed: ____

Actuator	V1		H1		V2	
Coil driver	S1000317 - Coarse 1		S1000317 - Fine 1		S1000317 - Fine 2	
Anti image pin #						
Cable #	28		25		30	
Resistance	P1 - P2	P2 - P3	P1 - P2	P2 - P3	P1 - P2	P2 - P3
(Ohm)	6.3	O.L (infinity)	6.5	O.L (infinity)	6.4	O.L (infinity)
MEDM offset	Measurement P2 (-) ; P1&P3 (+)		Measurement P2 (-) ; P1&P3 (+)		Measurement P2 (-) ; P1&P3 (+)	
(1000 counts)		0.3	0	.301	0.3	

• Step 9 - Coil Driver, cabling and resistance check

Actuator	H2			V3		H3	
Coil driver	S1000317 - Coarse 2		S1000316 - Coarse 1		S1000316 - Fine 1		
Anti image pin #							
Cable #	29		26		27		
Resistance	P1 - P2	P2 - P3	P1 - P2	P2 - P3	P1 - P2	P2 - P3	
(Ohm)	6.4	O.L (infinity)	6.4	O.L (infinity)	6.3	O.L (infinity)	
MEDM offset	Measurement P2 (-) ; P1&P3 (+)		Measurement P2 (-) ; P1&P3 (+)		Measurement P2 (-) ; P1&P3 (+)		
(1000 counts)	().304	0	.296	0.299		

 Table - Actuators resistance check

Acceptance criteria:

- The measured resistance between the middle pin and one side pin must be 6.5 ± -1 ohms
- Actuator neutral pins must be connected on pin #1 (left side pin of the plug)
- Actuator drive pins must be connected on pin #2 (middle pin of the plug)
- Actuator ground shield pins must be connected on pin #3 (right pin of the plug)
- All LEDs on the coil driver front panel must be green

The tests report must contain:

- 1- The table "Actuators resistance check"
- 2- Issues/difficulties/comments regarding this test
- **3-** Test result (Passed: <u>X</u> Failed: ____)

	Negative drive	Positive drive
H1 readout (count)	-24456	24319
H2 readout (count)	-24056	24028
H3 readout (count)	-25048	25158
V1 readout (count)	-19090	20454
V2 readout (count)	-24938	27149
V3 readout (count)	-22392	21583
	-	

• Step 10 - Actuators Sign and range of motion (Local drive)

 Table - Range of motion - Local drive

Data files in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Static_Tests - LLO_HAM-ISI_Unit_4_Range_Of_Motion_0721201120110721.mat

Scripts files for taking and processing the data, and plotting it in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_collection

- Range_Motion_HAM_ISI.m

Acceptance criteria:

- Main couplings sensors readout must be at least 16000 counts (~0.02")
- A positive offset drive on one actuator must give positive sensor readout on the collocated sensor. Signs will also be tested when measuring local to local transfer functions.

Test result:

Passed: X F

Failed:

Lockers	D.I readout for a negative drive	D.I readout without any drive	D.I readout for positive drive	
Α	18.75	0	-19	
В	18.5	0	-19	
C	19.5	0	-19	
D	19.5	0	-19.5	
Average	19.0625	0	-19.125	38.2
Sensors	Counts	Counts	Counts	Difference (Counts)
V1	-15515	183.12	16717	32232
V2	-15913	172.73	16217	32130
V3	-17390	-1902.5	13893	31283
			Average	31881.66667

Step 11 - Vertical Sensor Calibration

Table - Calibration of capacitive position sensors

Vertical sensitivity:	31881.66667/38.2 = 834.9 count/mil
-----------------------	------------------------------------

$01 \qquad 034.9 \text{ Count/Init} \cdot 1/1036 \text{ v/Count} = 0.310 \text{ v/Init}$
--

or 25400nm/mil * 1/845.3 mil/count = 30.42 nm/count

Nominal Calibration

CPS Sensitivity: 20V/0.039'' = 20V/39mils = 0.513V/mil

Calibration in counts: $2^{15}/20 * 20/39 = 840$ count/mil

or 25400 nm/mil * 1/840 mil/count = 30.2nm/count

Difference with Nominal sensitivity = (840-834.9)/840=-0.61%

Acceptance criteria:

- Deviation from nominal value < 2%. Nominal value is 840 count/mil.

Test result:

Passed: X Failed:

• Step 12 - Vertical Spring Constant

Results presented below are obtained after the initial sensors calibration.

	Mean diff			Error with
Sensors	counts	Mean diff m	K (N/m)	average
V1	7911	2.39E-04	8.21E+04	-9.25E-01
V2	7868	2.38E-04	8.26E+04	-3.81E-01
V3	V3 7737		8.40E+04	1.31E+00
		Average (N/m)	8.34E+04	
		Total Stiffness		
		(N/m)	2.49E+05	

Table - Vertical spring constant

Acceptance criteria:

- +/-2 % of 2.4704e5 N/m (i.e. between 2.421e5 and 2.520e5 N/m)
- +/-5% of variation between each spring and the average

The measured error on the vertical stiffness is 0.66%

Test result:

Passed: <u>X</u> Failed:

- H1 H2 H3 V1 V2 V3 Actuators (1000 counts) H1 2041 1300.4 1266 -42.04 35.29 -49.01 H2 2049.1 1253.4 1263.9 -52.74 32.19 -40.61 H3 1258.8 1292.7 2066.6 -50.94 37.29 -36.51 V1 1417.9 179.8 193.34 -373.72 -16.91 -659.51 V2 -325.2 194.6 207.96 -564.24 1396.6 10.79 V3 156.73 -370.07 185.84 -584.31 1423.6 -78.54
- Step 13 Static Testing (Tests in the local basis)

Data files in SVN at:

Table - Main and cross coupling

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Static_Tests

- LLO_HAM_ISI_Unit_4_Sensor_Readout_Local_20110721.mat

Scripts files for taking data in SVN at:

 $/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_Collection$

- Sensor_Readout_Local_Drive_MEDM_HAM_ISI.m

Acceptance criteria:

- Vertical

For a +1000 count offset drive on vertical actuators

o Collocated sensors must be 1400 counts +/- 10%

- Horizontal

For a +1000 count offset drive on horizontal actuators

- Collocated sensors must be 2000 counts +/- 10%
- o Non-collocated horizontal sensors must be 1250 counts +/-10%

Test result:

Passed: X Failed:

	Slope	Offset	Average slope	Variation from average (%)
H1	2.103	-199.1607		0.38
H2	2.071	537.8538	2.0952	-1.14
H3	2.111	-634.8164		0.76
V1	1.489	442.7404		1.06
V2	1.472	104.35	1.4734	-0.07
V3	1.459	-1746.1		-0.98
	11 (11 1 00 /		TTANK TOT O	

• Step 14 - Linearity test

 Table - Slopes and offset of the triplet Actuators - HAM-ISI - Sensors

Scripts files for taking data in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_Collection

- Linearity_Test_Awgstream_HAM_ISI.m

Figure - Horizontal and vertical actuators x HAM-ISI x sensors

Data files in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Linearity_test

- LLO_HAM_ISI_Unit_4_Linearity_test_20110722.mat

Figures in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Figures/Linearity_test

- LLO_HAM_ISI_Unit_4_Linearity_test_20110722.fig
- LLO_HAM_ISI_Unit_4_Linearity_test_20110722.pdf

Acceptance criteria:

- Horizontal and vertical slopes of the triplet actuators x HAM-ISI x sensors: Average slope +/- 1%

Issues/difficulties/comments regarding this test:

We barely failed that test, so we tried to repeat the tests but the result were very comparable. We believe that failing that test in those proportions is not a big issue.

Test result:

Passed:

Failed: X

	1000 counts drive	X Drive	Y Drive	Z Drive	Rx Drive	Ry Drive	Rz Drive
t	H1	253.65	-470.19	-4.74	-454.37	-286.1	-2028.1
lou	H2	227.21	412.57	-2.703	429.35	-291.2	-2051.8
eac ht)	H3	-533.67	-1.68	-7.58	2.62	547.4	-2026.7
s r	V1	-1.338	-8.682	283.45	-502.49	-1703.7	-7.515
sor (c	V2	5.659	4.266	285.55	1703.8	461.28	16.183
en	V3	-9	4.3	255.3	-1207.2	1251.5	-1.7
S	Direction read out	510.06	509.94	276.82	2594.82	2631.6	2568.2
				1 11 / 1	•		

Step 15 - Cartesian Basis Static Testing

 Table - Tests in the general coordinate basis

Issues/difficulties/comments regarding this test:

Acceptance criteria:

		X Drive	Y Drive	Z Drive	Rx Drive	Ry Drive	Rz Drive
÷	H1	+	-				-
lou	H2	+	+				-
eac it)	H3	-	0				-
a s n	V1			+	-	-	
CC SO	V2			+	+	+	
ens	V3			+	-	+	
S	Direction read out	+	+	+	+	+	+

ø

Table – Reference table

For a positive drive in the Cartesian basis:

- Local sensor readout must have the same sign that the reference table (**CONT2ACT check**)
- Cartesian sensors read out must be positive (**DISP2CEN check**) in the drive direction

Test result:

Passed: X Failed:

• Step 16- Frequency response

Compensation filters of the new GS13 interface chassis are located in the geophone pre-filters bank. Powerspectra were measured with masses on the optic table not bolted.

• Step 16.1 - Local to local measurements

Local to local transfer functions have been measured with 90 repetitions.

Data files in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Transfer_Functions/Measurements/ Undamped/

- LLO_HAM_ISI_Unit_4_Data_TF_L2L_50mHz_500mHz_20110725-232107.mat
- LLO_HAM_ISI_Unit_4_Data_TF_L2L_500mHz_5Hz_20110725-201546.mat
- LLO_HAM_ISI_Unit_4_Data_TF_L2L_200Hz_800Hz_20110725-170904.mat
- LLO_HAM_ISI_Unit_4_Data_TF_L2L_5Hz_200Hz_20110725-184225.mat

Data collection script files:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_Collection

- Run_TF_L2L_50mHz_500mHz.m
- Run_TF_L2L_500mHz_5Hz.m
- Run_TF_L2L_5mHz_200Hz.m
- Run_TF_L2L_200Hz_800Hz.m

Scripts files for processing and plotting in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Transfer_Functions/Measurements/ Undamped/

- Plot_LLO_HAM_ISI_Unit_4_TF_L2L_2011_07_26.m

Figures in SVN at:

opt/svncommon/seisvn/seismic/HAMISI/X2/Data/Unit_4/Figures/Transfer_Functions/Measurements/Undamped/

- LLO_HAM_ISI_Unit_4_TF_L2L_H_CPS_50mHz_800Hz_2011_07_26.fig
- LLO_HAM_ISI_Unit_4_TF_L2L_V_CPS_50mHz_800Hz_2011_07_26.fig
- LLO_HAM_ISI_Unit_4_TF_L2L_H_GS13_50mHz_800Hz_2011_07_26.fig
- LLO_HAM_ISI_Unit_4_TF_L2L_V_GS13_50mHz_800Hz_2011_07_26.fig

Storage of measured transfer functions in the SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Transfer_functions/ Measurements/ Undamped/

- LLO_HAM_ISI_Unit_4_Data_TF_L2L_2011_07_26.mat

The local to local transfer functions are presented below.

Figure - Local to Local Measurements – Horizontal capacitive sensors

Figure - Local to Local Measurements – Horizontal inertial sensors

Figure - Local to Local Measurements - Vertical capacitive sensors

Figure - Local to Local Measurements - Vertical inertial sensors

Issues/difficulties/comments regarding this test:

Around 1 Hz, the horizontal inertial sensors have comparable behavior but slightly different amplitude.

• Step 16.2 - Cartesian to Cartesian measurements

Cartesian to Cartesian transfer functions have been measured with 90 repetitions.

Data files in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Transfer_Functions/Measurements/Undamped/

- LLO_HAM_ISI_Unit_4_Data_TF_C2C_50mHz_500mHz_20110723-090418.mat
- LLO_HAM_ISI_Unit_4_Data_TF_C2C_500mHz_5Hz_20110723-055855.mat
- LLO_HAM_ISI_Unit_4_Data_TF_C2C_5Hz_200Hz_20110723-042532.mat
- LLO_HAM_ISI_Unit_4_Data_TF_C2C_200Hz_800Hz_20110723-025209.mat

Scripts files for processing and plotting in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Transfer_Functions/Measurements/Undamped/

- Plot_LLO_HAM_ISI_Unit_4_TF_C2C_2011_07_26

Figures in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Figures/Transfer_Functions/ Measurements/Undamped/

- LLO_HAM_ISI_Unit_4_TF_C2C_Z_RX_RY_CPS_50mHz_800Hz_2011_07_26.fig
- LLO_HAM_ISI_Unit_4_TF_C2C_X_Y_RZ_GS13_50mHz_800Hz_2011_07_26.fig
- LLO_HAM_ISI_Unit_4_TF_C2C_Z_RX_RY_CPS_50mHz_800Hz_2011_07_26.fig
- LLO_HAM_ISI_Unit_4_TF_C2C_Z_RX_RY_GS13_50mHz_800Hz_2011_07_26.fig

Storage of measured transfer functions in the SVN at:

 $/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Transfer_functions/Measurements/Undamped$

- LLO_HAM_ISI_Unit_4_Data_TF_C2C_2011_07_26

Figure - Cartesian to Cartesian CPS measurements - X, Y, RZ directions

Figure - Cartesian to Cartesian GS-13 measurements - X, Y, RZ directions

Figure - Cartesian to Cartesian measurements - Z, RX, RY directions

Issues/difficulties/comments regarding this test:

Acceptance criteria:

- Local to local measurements
 - \circ On CPS, the phase must be 0° at DC
 - On Geophones, the phase must be -90° at DC
 - Identical shape in each corner
- Cartesian to Cartesian measurements
 - On CPS, the phase must be 0° at DC
 - On Geophones, the phase must be -90° at DC
 - \circ Identical shape X/Y and RX/RY

Test result:

Passed: X

Failed: ____

Step 17 - Transfer function comparison with Reference

Step 17.1 - Local to local - Comparison with Reference

This is the 2nd unit which is compared to LHO Unit #2 instead of LLO HAM 6 (v4 was comparing to LLO HAM 6 and both data can be found on the SVN).

Scripts files for processing and plotting in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Transfer_Functions/Measurements/Undamped/

- Plot_LLO_HAM_ISI_Unit_4_TF_L2L_2011_07_26

Local to local figures in SVN at:

/svncommon/seisvn/seismic/HAM-

ISI/X2/Data/Unit_4/Figures/Transfer_Functions/Measurements/Undamped

- LLO_HAM_ISI_Unit_4_TF_L2L_H_CPS_50mHz_800Hz_wRef_2011_07_26.fig
- LLO_HAM_ISI_Unit_4_TF_L2L_V_CPS_50mHz_800Hz_wRef_2011_07_26.fig
- LLO_HAM_ISI_Unit_4_TF_L2L_H_GS13_50mHz_800Hz_wRef_2011_07_26.fig
- LLO_HAM_ISI_Unit_4_TF_L2L_V_GS13_50mHz_800Hz_wRef_2011_07_26.fig

GS13, Local to local measurement

Figure - Local to local measurements comparison with LHO UNIT 2 – Horizontal GS-13

Figure - Local to local measurements comparison with LHO UNIT 2 - Vertical GS13

CPS, Local to local measurement, Undamped

Figure - Local to local measurements comparison - Horizontal Position sensors

Figure - Local to local measurements comparison – Vertical Position sensors

Issues/difficulties/comments regarding this test

In order to get matching results with LHO Unit #2, we had to have the L2L transfer functions taken this way:

- CPS sensors TF: with the "comp" filters engaged in the pre-filters bank of the GS-13
- GS-13 sensors TF: with the "comp" filters engaged right next to the damping loops in the damping path, which seems a problem because here we're filter the excitation.

• Step 17.2 - Cartesian to Cartesian - Comparison with Reference

Scripts files for processing and plotting in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Transfer_Functions/Measurements/Undamped/

- Plot_LLO_HAM_ISI_Unit_4_TF_C2C_2011_07_26.m

Cartesian to Cartesian figures in SVN at :

/svncommon/seisvn/seismic/HAM-

ISI/X2/Data/Unit_4/Figures/Transfer_functions/Measurements/Undamped

- LLO_HAM_ISI_Unit_4_TF_C2C_X_Y_RZ_CPS_50mHz_800Hz_wRef_2011_07_26.fig
- LLO_HAM_ISI_Unit_4_TF_C2C_X_Y_RZ_GS13_50mHz_800Hz_wRef_2011_07_26.fig
- LLO_HAM_ISI_Unit_4_TF_C2C_Z_RX_RY_CPS_50mHz_800Hz_wRef_2011_07_26.fig
- LLO_HAM_ISI_Unit_4_TF_C2C_Z_RX_RY_GS13_50mHz_800Hz_wRef_2011_07_26.fig

GS13, Cartesian to Cartesian measurement, Undamped

Figure - Cartesian to Cartesian measurements comparison with LHO Unit2 - Horiz GS13

Figure - Cartesian to Cartesian measurements comparison with LHO Unit2 – Vertical GS13

CPS, Cartesian to Cartesian measurement, Undamped

Figure - Cartesian to Cartesian measurements comparison with LHO Unit2 - Horizontal Position sensors

Figure - Cartesian to Cartesian measurements comparison with LHO Unit2 - Vertical Position sensor

Acceptance criteria:

- No difference with the reference transfer functions (SVN)
 - Phase less than 10° In Phase Out of Phase
 - Damping (fit by eye with Reference transfer functions)
 - DC gain
 - Eigen frequencies shift less than 10%

Test result:

Passed: X

Failed:

Step 18 - Lower Zero Moment Plane

Data collection script files:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_Collection

- Run_Cart2Cart_10mHz_100mHz.m

Data files in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Transfer_Functions/Measurements/ Undamped/

- LZMP_LLO_HAM-ISI-Unit_4_2011_07_27.mat

Scripts files for processing and plotting in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Transfer_Functions/Measurements/Undamped/

- LZMP_2011_07_27.m

Figures in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Figures/Transfer_Functions/ Measurements/Undamped/

- LZMP.fig

X & Y offsets:

X offset (mm)	0.5852
Y offset (mm)	0.3433

Table – Offset of the Lower Zero Moment Plane

The results from two measurements are presented on the figure below:

Figure - Lower Zero moment plane - Main and cross couplings at low frequency

Issues/difficulties/comments regarding this test

Because it was found on unit #2 that the results were not easily repeatable, we took 2 sets of data. It appears than the results can move by as much as 0.08 mm between different tests.

Acceptance criteria:

- X offset must be less than 2 mm
- Y offset must be less than 2 mm

Test result:

Passed: X Fai

Failed: ____

Step 19 - Damping loops

In this step, HAM6 damping loops are implemented. First, damping performances are evaluated in simulation. Second, Damping loops are implemented and performance is experimentally measured.

Step 19.1 - Transfer functions - Simulation

Scripts files for processing and plotting in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Transfer_Functions/Simulation/Damping

- HAM_ISI_LLO_Unit_4_Damping_TF_2011_07_26.m

Figures in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Figures/Transfer_Functions/Simulations/ Damping/

- LLO_HAM_ISI_Unit_4_Damping_TF Horizontals_2011_07_26.fig
- LLO_HAM_ISI_Unit_4_Damping_TF Verticals_2011_07_26.fig

Results are saved in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Transfer_Functions/Simulations/ Damping/

The following figures present the plant, controller, open loop, closed loop and sensitivity of vertical and horizontal damping loops. H1 (respectively V1) are plotted in solid line, H2 (respectively V2) are plotted in dash line, H3 (respectively V3) are plotted in dash-dot line.

Acceptance criteria:

- HAM6 damping loops must implemented and stable with
 - Phase margin must be at least 45°
 - Gain margin must be at least 20dB

Test result:

Passed: X

Failed:

Step 19.2 - Powerspectra – Experimental

Data files in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Powerspectra/Damping/

Scripts files for taking data and plotting in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_Collection/

- Powerspectra_Measurements_Undamped_Damped_HAM_ISI.m

Figures in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_4/Figures/Powerspectra/Damping/

- LLO_HAM_ISI_Unit_4_Calibrated_PSD_CPS_Undamped_Damped_2011_07_25.fig
- LLO_HAM_Unit_4_Suppression_Exp_vs_Sim_2011_07_27.fig

Sensitivity:

The figure below compare the sensitivity ('Undamped/Damped') of LLO HAM (Aug 2008) and LHO Unit 2. Performances are very similar, which confirms that we can use the damping loop as they are (modulo electronics change compensation). The plot also shows that the measured performance matches with the prediction.

LLO HAM-JŞI-Unit 4 - Experimental vs simulated suppression, r12011 07 27

Acceptance criteria:

- HAM6 damping loop must stable when all damping loops are engaged
- Similar damping effect than in simulated plots

Test result:

Passed: X Failed:

Conclusion

A few minor issues were found during the testing of this unit 4. The known issues are summed up here:

- Sensor gaps not recorded on the jig
- CPS 12064 has an Amplitude Spectral Density too high at 0.1Hz. This was previously noted by Rich M. as not so good but acceptable.
- Blade Spring Profile: the difference of height between the root and the tip of the blade is slightly bigger than 15 mils for Blade 1. This is thought as the best compromise that can be found with the shims available, while keeping the optical table leveled.
- GS-13 powerspectra on the locked table shows slightly more signals than expected around 100 mHz, but since the criteria was arbitrarily defined to compare with what we obtained on previous units, we passed that test.
- Linearity Test: the variation of the slope compared to the average slope, is slightly bigger than 1% for H2 & V1. The difference was low enough that it is dimmed not to be an issue.

Overall the system appeared really consistent, and behaved as expected.