

LIGO Laboratory / LIGO Scientific Collaboration

aLIGO HAM-ISI,								
LLO Assembly Unit# 3 (HAM3 Chamber) Testing Report,								
Phase I: Assembly validation								
E1000327 – V7								
	M-ISI, 3 Chamb oly valida – V7							

Joe Hanson, Celine Ramet, Michael Vargas, Adrien Le Roux

Distribution of this document: Advanced LIGO Project

This is an internal working note of the LIGO Laboratory

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

LIGO Hanford Observatory P.O. Box 1970 Mail Stop S9-02 Richland WA 99352 Phone 509-372-8106 Fax 509-372-8137 Massachusetts Institute of Technology LIGO Project – NW22-295 185 Albany St Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

LIGO Livingston Observatory P.O. Box 940 Livingston, LA 70754 Phone 225-686-3100 Fax 225-686-7189

Table of contents:

I. Pre-Assembly Testing 5 Step 1: Position Sensors 5 Step 2: GS13 7 Step 2.1 - Horizontal GS-13s. 7 Step 2.2 - Vertical GS-13s. 9 Step 3: Actuators 9 Step 1: Inventory (E1000052) 12 Step 1: Inventory (E1000052) 12 Step 2: Check torques on all bolts 13 Step 4: Pitchfork/Bowwork flatness before Optical Table install 13 Step 4: Pitchfork/Bowwork flatness before Optical Table install 13 Step 5: Blade spring profile 13 Step 6: Gap checks on actuators-after installation on Stage 1 14 Step 7: Check level of Stage 0 14 Step 8: Check level of Stage 1 Optical Table 15 Step 9: Mass budget 16 Step 11: Lockers adjustment 18 BII. Tests to be performed after assembly 19 Step 2: Set up sensors gap 19 Step 1 - Electronics Inventory 19 Step 2: - Test N°2 - Push "locally" 21 Step 4: Check Sensor gaps after the platform release 20 Step 5: - Performance of the limitter 21 Step 5: 2	Intro	oduction	4
 Step 1: Position Sensors. Step 2: GS 13 7 Step 2.1 - Horizontal GS-13s. 7 Step 2.2 - Vertical GS-13s. 9 Step 3: Actuators. 11 Tests to be performed during assembly 12 Step 1: Inventory (E100052). 12 Step 2: Check torques on all bolts. 13 Step 3: Check gaps under Support Posts. 13 Step 4: Pitchfork/Boxwork flatness before Optical Table install 13 Step 5: Blade spring profile 14 Step 7: Check level of Stage 0. 14 Step 6: Gap checks on actuators-after installation on Stage 1 14 Step 7: Check level of Stage 1 Optical Table 15 Step 9: Mass budget. 16 Step 11: Lockers adjustment. 18 Step 11: Lockers adjustment. 19 Step 2: Set up sensors gap. 19 Step 3: Measure the Sensor gap. 20 Step 5: Performance of the limiter 21 Step 5: 1. Test N°1 - Push "in the general coordinates". 21 Step 6: Gal power spectrum -tabled tilted. 24 Step 7: Osci N°2 - Push "iocally". 21 Step 6: Osli 3 pressure readout. 22 Step 7: Osci N°2 - Push "iocally". 23 Step 5: 1. Test N°1 - Push "in the general coordinates". 24 Step 6: Osli 3 pressure readout. 25 Step 9: Oil Driver, cabling and resistance check. 27 Step 10: - Actuators Sign and range of motion (Local drive). 28 Step 11: - Vertical Sensor Calibration. 29 Step 12: - Vertical Sensor Calibration. 30 Step 13: - Static Testing (Tests in the local basis). 30 Step 14: - Liocal to local measurements. 35 Step 16: - Locat to local measurements. 35 Step 16: - Locat to local measurements. 35<!--</td--><td>I.</td><td>Pre-Assembly Testing</td><td> 5</td>	I.	Pre-Assembly Testing	5
 Step 2: GS13 Step 2: 1 - Horizontal GS-13s T Step 2: 1 - Vertical GS-13s T Step 3: Actuators T Tests to be performed during assembly I1 Tests to be performed during assembly I2 Step 1: Inventory (E1000052) I2 Step 2: Check torques on all bolts I3 Step 4: Pitchfork/Boxwork flatness before Optical Table install I3 Step 5: Blade spring profile I3 Step 4: Pitchfork/Boxwork flatness before Optical Table install I3 Step 5: Check evel of Stage 0 I4 Step 7: Check level of Stage 0 I4 Step 7: Check level of Stage 0 I4 Step 8: Check level of Stage 1 Optical Table I5 Step 9: Mass budget I6 Step 10: Shim thickness. I8 Step 1: Lockers adjustment. I8 Step 2: Set up sensors gap. Step 4: Check Sensor gap. Step 5: Alessor gap after the platform release. Step 5: Alessor gap after the platform release. Step 5: Crest N°1 - Push 'in the general coordinates''. Step 7: GS1 3 power spectrum -tabled tilted. Step 7: GS1 3 power spectrum -tabled tilted. Step 1: Vertical Sensor Calibration. Step 1: Cartesian Basis Static Testing. Step 1: Cartesian	-	Step 1: Position Sensors	5
 Step 2.1 - Horizontal GS-13s	-	Step 2: GS13	7
 Step 2.2 - Vertical GS-13s. Step 3: Actuators. I1 Tests to be performed during assembly. I2 Step 1: Inventory (E1000052). I2 Step 2: Check torques on all bolts. I3 Step 3: Check gaps under Support Posts. I3 Step 4: Pitchfork/Boxwork flatness before Optical Table install. I3 Step 5: Blade spring profile I3 Step 6: Gap checks on actuators-after installation on Stage 1 I4 Step 6: Gap checks on actuators-after installation on Stage 1 I4 Step 6: Gap checks on actuators-after installation on Stage 1 I4 Step 7: Check level of Stage 0 I4 Step 8: Check and utators-after installation on Stage 1 I4 Step 9: Mass budget. I6 Step 10: Shim thickness I8 Step 1: Electronics Inventory. I9 Step 2 - Set up sensors gap. I9 Step 3 - Measure the Sensor gap. 20 Step 5 - Performance of the limiter. 21 Step 5.2 - Test N°1 - Push "in the general coordinates". 21 Step 5.2 - Test N°2 - Push "locally". 21 Step 6 - Position Sensors unlocked/locked Power Spectrum. 22 Step 7 - GS13 power spectrum -tabled tilted. 24 Step 8 - GS13 pressure readout. 26 Step 9 - Coil Driver, cabling and registance check. 27 Step 10 - Actuators Sign and range of motion (Local drive). 28 Step 11 - Vertical Sensor Calibration 29 Step 12 - Vertical Sensor Calibration 29 Step 14 - Linearity test. 30 Step 14 - Linearity test. 31 Step 6: Cartesian Basis Static Testing. 34 Step 14 - Linearity test. 35 Step 16 - Cartesian to Cartesian measurements. 35 Step 16 - Cartesian to Cartesian measur	-	Step 2.1 – Horizontal GS-13s	7
 Step 3: Actuators. II. Tests to be performed during assembly I2 Step 1: Inventory (E1000052). I2 Step 2: Check torques on all bolts. I3 Step 3: Check gaps under Support Posts. I3 Step 4: Pitchfork/Boxwork flatness before Optical Table install I3 Step 5: Blade spring profile I3 Step 6: Gap checks on actuators-after installation on Stage 1 I4 Step 7: Check level of Stage 0 I4 Step 7: Check level of Stage 1 Optical Table I5 Step 8: Check level of Stage 1 Optical Table Step 9: Mass budget. I6 Step 10: Shim thickness I8 Step 11: Lockers adjustment. I8 Step 11: Lockers adjustment. I8 III. Tests to be performed after assembly. I9 Step 2 - Set up sensors gap. I9 Step 3 - Measure the Sensor gap. I9 Step 5.1 - Test N°1 - Push "in the general coordinates". I1 Step 5.2 - Test N°2 - Push "locally". Step 5.3 power spectrum. I2 Step 5.4 - Gesling normal and resistance check Step 10 - Actuators Sign and resistance check Step 11 - Vertical Sensor Calibration Step 12 - Vertical Sensor Calibration Step 13 pressure readout. Step 14 - Lincarity test Step 15 - Cartesian Basis Static Testing. Step 14 - Lincarity test. Step 15 - Cartesian to Cartesian measurements. Step 14 - Lincarity test. Step 14 - Lincarity test. Step 15 - Cartesian to Cartesian measurements. Step 16 - Frequency response. Step 17 - Transfer function comparison with Reference. Step 17 - Transfer function comparison with Reference. Step 19 - Damping loops. Step 19 - Damping loops. 	-	Step 2.2 – Vertical GS-13s	9
II. Tests to be performed during assembly. 12 Step 1: Inventory (E1000052) 12 Step 2: Check torques on all bolts. 13 Step 3: Check gaps under Support Posts. 13 Step 4: Pitchfork/Boxwork flatness before Optical Table install 13 Step 5: Blade spring profile 13 Step 5: Blade spring profile 13 Step 6: Gap checks on actuators-after installation on Stage 1 14 Step 7: Check level of Stage 0 14 Step 9: Mass budget 15 Step 9: Mass budget 16 Step 10: Shim thickness 18 BIII. Tests to be performed after assembly 19 Step 1 : Electronics Inventory. 19 Step 2 - Set up sensors gap. 19 Step 4 - Check Sensor gaps after the platform release. 20 Step 5 - Performance of the limiter 21 Step 5 - Test N°2 - Push "locally". 21 Step 8 - GS13 pressure readout. 26 Step 9 - Coil Driver, cabling and resistance check 27 Step 10 - Actuators Sign and range of motion (Local drive) 28 Step 11 - Vertical Sensor Calibration 29 Step 13 - Static T	-	Step 3: Actuators	11
 Step 1: Inventory (E1000052)	II.	Tests to be performed during assembly	12
 Step 2: Check torques on all bolts	-	Step 1: Inventory (E1000052)	12
• Step 3: Check gaps under Support Posts. 13 Step 4: Pitchfork/Boxwork flatness before Optical Table install 13 Step 5: Blade spring profile 13 Step 6: Gap checks on actuators-after installation on Stage 1 14 Step 7: Check level of Stage 0 14 Step 8: Check level of Stage 1 Optical Table 15 Step 9: Mass budget 16 Step 10: Shim thickness 18 Step 1 - Electronics Inventory 19 Step 2 - Set up sensors gap 19 Step 5 - Performance of the limiter 20 Step 5 - Performance of the limiter 21 Step 6 - Cosition Sensors unlocked/locked Power Spectrum 22 Step 7 - GS13 power spectrum -tabled tilted 24 Step 10 - Actuators Sign and range of motion (Local drive) 28 Step 11 - Vertical Sensor Calibration 29 Step 5 - Cartesian Basis Static Testing 32 Step 5 - Cartesian Basis Static Testing 30 Step 11 - Vertical Sensor Calibration 30 Step 12 - Vertical Spring Constant 30 Step 13 - Static Testing (Tests in the local basis) 30 Step 14 - Linearity test 32	-	Step 2: Check torques on all bolts	13
 Step 4: Pitchfork/Boxwork flatness before Optical Table install Step 5: Blade spring profile Step 6: Gap checks on actuators-after installation on Stage 1 Step 6: Gap checks on actuators-after installation on Stage 1 Step 7: Check level of Stage 0 4 Step 7: Check level of Stage 1 Optical Table Step 10: Shim thickness 8 Step 11: Lockers adjustment 18 Step 11: Lockers adjustment 19 Step 2: Set up sensors gap 19 Step 2: Set up sensors gap 20 Step 4: Check Sensor gaps after the platform release 20 Step 5: Performance of the limiter 21 Step 5: 1: Test N°1 - Push "in the general coordinates" 21 Step 5: 2: Test N°2 - Push "locally" 21 Step 4: GS13 power spectrum -tabled tilted 24 Step 9: GS13 power spectrum -tabled tilted 24 Step 9: Coil Driver, cabling and resistance check 27 Step 11: Vertical Sensor Calibration 29 Step 13: Static Testing (Tests in the local basis) 30 Step 14: Linearity test. 32 Step 15: Cartesian Basis Static Testing 34 Step 16: Cartesian to Cartesian measurements 35 Step 16: Cartesian to Cartesian e-Comparison with Reference 41 Step 17: Cartesian to Cartesian - Comparison with Reference 41 Step 17: Cartesian to Cartesian - Comparison with Reference 41 Step 16: Local to local - Comparison with Reference 43 Step 17: Cartesian to Cartesian - Comparison with Reference 44 Step 18: Lower Zero Moment Plane 47 Step 19: Damping loops. 49 	-	Step 3: Check gaps under Support Posts	13
Step 5: Blade spring profile 13 Step 6: Gap checks on actuators-after installation on Stage 1 14 Step 7: Check level of Stage 0 14 Step 8: Check level of Stage 1 Optical Table 15 Step 9: Mass budget 16 Step 10: Shim thickness 18 Step 11: Lockers adjustment 18 III. Tests to be performed after assembly 19 Step 2 - Set up sensors gap 19 Step 5 - Performance of the limiter 20 Step 5 - Performance of the limiter 21 Step 5 - 1 - Test N°1 - Push "in the general coordinates" 21 Step 6 - Position Sensors unlocked/locked Power Spectrum 22 Step 7 - GS 13 power spectrum -tabled tilted 24 Step 8 - GS13 pressure readout. 26 Step 10 - Actuators Sign and range of motion (Local drive) 28 Step 11 - Vertical Sensor Calibration 29 Step 12 - Vertical Spring Constant 30 Step 13 - Tasker function comparison with Reference 31 Step 14 - Linearity test 32 Step 13 - Static Testing (Tests in the local basis) 30 Step 14 - Linearity test 32 Step 15 - Ca	-	Step 4: Pitchfork/Boxwork flatness before Optical Table install	13
 Step 6: Gap checks on actuators-after installation on Stage 1	-	Step 5: Blade spring profile	13
Step 7: Check level of Stage 0 14 Step 8: Check level of Stage 1 Optical Table 15 Step 9: Mass budget 16 Step 10: Shim thickness 18 Step 11: Lockers adjustment 18 III. Tests to be performed after assembly 19 Step 2 - Set up sensors gap 19 Step 3 - Measure the Sensor gap 20 Step 4 - Check Sensor gaps after the platform release 20 Step 5 - Performance of the limiter 21 Step 5.1 - Test N°1 - Push "in the general coordinates" 21 Step 6 - Position Sensors unlocked/locked Power Spectrum 22 Step 7 - GS13 power spectrum -tabled tilted 24 Step 9 - Coil Driver, cabling and resistance check 27 Step 10 - Actuators Sign and range of motion (Local drive) 28 Step 11 - Vertical Sensor Calibration 29 Step 12 - Vertical Spring Constant 30 Step 16 - Frequency response 35 Step 16 - Frequency response 35 Step 16 - Cartesian Basis Static Testing 34 Step 17 - Cartesian to Cartesian measurements 35 Step 16 - Frequency response 35 Step 17 - Transfe	-	Step 6: Gap checks on actuators-after installation on Stage 1	14
 Step 8: Check level of Stage 1 Optical Table Step 9: Mass budget 16 Step 10: Shim thickness 18 Step 11: Lockers adjustment 18 III. Tests to be performed after assembly 19 Step 1 - Electronics Inventory 19 Step 2 - Set up sensors gap 20 Step 3 - Measure the Sensor gaps. 20 Step 4 - Check Sensor gaps after the platform release. 20 Step 5 - Performance of the limiter 21 Step 5.1 - Test N°1 - Push "in the general coordinates" 21 Step 5.2 - Test N°2 - Push "locally" 22 Step 7 - GS13 power spectrum -tabled tilted 24 Step 8 - GS13 pressure readout. 26 Step 10 - Actuators Sign and range of motion (Local drive) 28 Step 11 - Vertical Sensor Calibration 29 Step 13 - Static Testing (Tests in the local basis) 30 Step 13 - Static Testing (Tests in the local basis) 30 Step 16.1 - Local to local measurements 35 Step 16.1 - Local to local a Comparison with Reference 41 Step 17.1 - Local to local - Comparison with Reference 41 Step 18 - Lower Zero Moment Plane 47 Step 19 - Damping loops. 49 	-	Step 7: Check level of Stage 0	14
Step 9: Mass budget 16 Step 10: Shim thickness 18 Step 11: Lockers adjustment 18 III. Tests to be performed after assembly 19 Step 1 - Electronics Inventory. 19 Step 2 - Set up sensors gap 19 Step 3 - Measure the Sensor gap. 20 Step 5 - Performance of the limiter 21 Step 5.1 - Test N°1 - Push "in the general coordinates" 21 Step 5.2 - Test N°2 - Push "locally" 21 Step 6 - Position Sensors unlocked/locked Power Spectrum 22 Step 7 - GS13 power spectrum -tabled tilted 24 Step 9 - Coil Driver, cabling and resistance check 27 Step 10 - Actuators Sign and range of motion (Local drive) 28 Step 11 - Vertical Sensor Calibration 29 Step 12 - Vertical Spring Constant 30 Step 16 - Frequency response 35 Step 16.1 - Local to local measurements 38 Step 17 - Transfer function comparison with Reference 41 0 Step 17 - Transfer function comparison with Reference 41 0 Step 17 - Transfer function comparison with Reference 41 0 Step 18 - Lower Zero	-	Step 8: Check level of Stage 1 Optical Table	15
Step 10: Shim thickness 18 Step 11: Lockers adjustment 18 III. Tests to be performed after assembly 19 Step 1 - Electronics Inventory. 19 Step 2 - Set up sensors gap 19 Step 3 - Measure the Sensor gap. 20 Step 4 - Check Sensor gaps after the platform release. 20 Step 5 - Performance of the limiter 21 Step 5.1 - Test N°1 - Push "in the general coordinates" 21 Step 6 - Position Sensors unlocked/locked Power Spectrum. 22 Step 7 - GS13 power spectrum -tabled tilted 24 Step 8 - GS13 pressure readout. 26 Step 10 - Actuators Sign and range of motion (Local drive) 28 Step 11 - Vertical Sensor Calibration 29 Step 12 - Vertical Spring Constant 30 Step 13 - Static Testing (Tests in the local basis) 30 Step 14 - Linearity test. 32 Step 15 - Cartesian Basis Static Testing 34 Step 16 - Prequery response 35 Step 16 - I coal to local measurements 38 Step 17 - Transfer function comparison with Reference 41 Step 17 - Transfer function comparison with Reference 41 </td <td>-</td> <td>Step 9: Mass budget</td> <td> 16</td>	-	Step 9: Mass budget	16
Step 11: Lockers adjustment 18 III. Tests to be performed after assembly 19 Step 1 - Electronics Inventory 19 Step 2 - Set up sensors gap 19 Step 3 - Measure the Sensor gap 20 Step 4 - Check Sensor gaps after the platform release 20 Step 5 - Performance of the limiter 21 Step 5.1 - Test N°1 - Push "in the general coordinates" 21 Step 6 - Porsition Sensors unlocked/locked Power Spectrum. 22 Step 7 - GS13 power spectrum -tabled tilted 24 Step 8 - GS13 pressure readout. 26 Step 10 - Actuators Sign and resistance check 27 Step 11 - Vertical Sensor Calibration 29 Step 12 - Vertical Spring Constant 30 Step 13 - Static Testing (Tests in the local basis) 30 Step 16 - Frequency response 35 Step 16.1 - Local to local measurements 35 Step 16.2 - Cartesian Basis Static Testing 34 Step 17 - Transfer function comparison with Reference 41 0 Step 17 - Transfer function comparison with Reference 41 0 Step 17 - Transfer function comparison with Reference 41 0 Step 18 - Lower	-	Step 10: Shim thickness	18
III. Tests to be performed after assembly 19 Step 1 - Electronics Inventory. 19 Step 2 - Set up sensors gap 19 Step 3 - Measure the Sensor gap after the platform release 20 Step 5 - Performance of the limiter 21 Step 5.1 - Test N°1 - Push "in the general coordinates" 21 Step 5 - Performance of the limiter 21 Step 5.2 - Test N°2 - Push "locally" 21 Step 6 - Position Sensors unlocked/locked Power Spectrum. 22 Step 7 - GS13 power spectrum -tabled tilted 24 Step 8 - GS13 pressure readout. 26 Step 9 - Coil Driver, cabling and resistance check 27 Step 10 - Actuators Sign and range of motion (Local drive) 28 Step 11 - Vertical Sensor Calibration 29 Step 12 - Vertical Spring Constant 30 Step 13 - Static Testing (Tests in the local basis) 30 Step 14 - Linearity test 32 Step 15 - Cartesian Basis Static Testing 34 Step 16.1 - Local to local measurements 35 Step 17 - Transfer function comparison with Reference 41 O Step 18 - Lower Zero Moment Plane 47 Step 19 - Damping	-	Step 11: Lockers adjustment	18
Step 1 - Electronics Inventory	III.	Tests to be performed after assembly	19
Step 2 - Set up sensors gap 19 Step 3 - Measure the Sensor gap. 20 Step 4 - Check Sensor gaps after the platform release. 20 Step 5 - Performance of the limiter 21 Step 5.1 - Test N°1 - Push "in the general coordinates" 21 Step 6 - Position Sensors unlocked/locked Power Spectrum 22 Step 7 - GS13 power spectrum -tabled tilted 24 Step 8 - GS13 pressure readout. 26 Step 9 - Coil Driver, cabling and resistance check 27 Step 10 - Actuators Sign and range of motion (Local drive) 28 Step 11 - Vertical Sensor Calibration 29 Step 12 - Vertical Spring Constant 30 Step 13 - Static Testing (Tests in the local basis) 30 Step 14 - Linearity test 32 Step 15 - Cartesian Basis Static Testing 34 Step 16.1 - Local to local measurements 35 Step 17 - Transfer function comparison with Reference 41 Step 17.1 - Local to local - Comparison with Reference 41 Step 18 - Lower Zero Moment Plane 47 Step 19 - Damping loops 49 Step 19 - Damping loops 49	-	Step 1 - Electronics Inventory	19
Step 3 - Measure the Sensor gap. 20 Step 4 - Check Sensor gaps after the platform release. 20 Step 5 - Performance of the limiter . 21 Step 5.1 - Test N°1 - Push "in the general coordinates" 21 Step 5.2 - Test N°2 - Push "locally" 21 Step 6 - Position Sensors unlocked/locked Power Spectrum 22 Step 7 - GS13 power spectrum -tabled tilted 24 Step 9 - Coil Driver, cabling and resistance check 27 Step 10 - Actuators Sign and range of motion (Local drive) 28 Step 11 - Vertical Spring Constant 30 Step 13 - Static Testing (Tests in the local basis) 30 Step 14 - Linearity test. 32 Step 16.1 - Local to local measurements 35 Step 16.2 - Cartesian to Cartesian measurements 36 Step 17 - Transfer function comparison with Reference 41 Step 17.1 - Local to local - Comparison with Reference 41 Step 18 - Lower Zero Moment Plane 47 Step 19 - Damping loops 49 Step 19.1 - Transfer functions - Simulation 49	-	Step 2 - Set up sensors gap	19
Step 4 - Check Sensor gaps after the platform release. 20 Step 5 - Performance of the limiter 21 Step 5.1 - Test N°1 - Push "in the general coordinates" 21 Step 5.2 - Test N°2 - Push "locally" 21 Step 6 - Position Sensors unlocked/locked Power Spectrum. 22 Step 7 - GS13 power spectrum -tabled tilted 24 Step 8 - GS13 pressure readout. 26 Step 9 - Coil Driver, cabling and resistance check 27 Step 10 - Actuators Sign and range of motion (Local drive). 28 Step 11 - Vertical Sensor Calibration 29 Step 12 - Vertical Spring Constant 30 Step 13 - Static Testing (Tests in the local basis) 30 Step 14 - Linearity test. 32 Step 16. Frequency response 35 Step 16.1 - Local to local measurements 35 Step 17 - Transfer function comparison with Reference 41 O Step 17 - Tansfer function comparison with Reference 41 Step 18 - Lower Zero Moment Plane 47 Step 19 - Damping loops. 49 Step 19.1 - Transfer functions - Simulation. 49	-	Step 3 - Measure the Sensor gap	20
 Step 5 – Performance of the limiter	-	Step 4 - Check Sensor gaps after the platform release	20
 Step 5.1 - Test N°1 - Push "in the general coordinates" 21 Step 5.2 - Test N°2 - Push "locally" 21 Step 6 - Position Sensors unlocked/locked Power Spectrum 22 Step 7 - GS13 power spectrum -tabled tilted 24 Step 8 - GS13 pressure readout. 26 Step 9 - Coil Driver, cabling and resistance check 27 Step 10 - Actuators Sign and range of motion (Local drive) 28 Step 11 - Vertical Sensor Calibration 29 Step 12 - Vertical Spring Constant 30 Step 13 - Static Testing (Tests in the local basis) 30 Step 15 - Cartesian Basis Static Testing 34 Step 16 - Frequency response 35 Step 16.1 - Local to local measurements 38 Step 17 - Transfer function comparison with Reference 41 Step 17.2 - Cartesian to Cartesian - Comparison with Reference 43 Step 18 - Lower Zero Moment Plane 47 Step 19 - Damping loops 49 	-	Step 5 – Performance of the limiter	21
 Step 5.2 - Test N°2 – Push "locally"	-	Step 5.1 - Test Nº1 - Push "in the general coordinates"	21
Step 6 - Position Sensors unlocked/locked Power Spectrum.22Step 7 - GS13 power spectrum -tabled tilted24Step 8- GS13 pressure readout.26Step 9 - Coil Driver, cabling and resistance check27Step 10 - Actuators Sign and range of motion (Local drive)28Step 11 - Vertical Sensor Calibration29Step 12 - Vertical Spring Constant30Step 13 - Static Testing (Tests in the local basis)30Step 14 - Linearity test32Step 15 - Cartesian Basis Static Testing34Step 16.1 - Local to local measurements35Step 16.2 - Cartesian to Cartesian measurements38Step 17 - Transfer function comparison with Reference41Step 17.2 - Cartesian to Cartesian - Comparison with Reference43Step 18 - Lower Zero Moment Plane47Step 19 - Damping loops49Step 19 - Damping loops49	-	Step 5.2 - Test N°2 – Push "locally"	21
Step 7 - GS13 power spectrum -tabled tilted24Step 8- GS13 pressure readout26Step 9 - Coil Driver, cabling and resistance check27Step 10 - Actuators Sign and range of motion (Local drive)28Step 11 - Vertical Sensor Calibration29Step 12 - Vertical Spring Constant30Step 13 - Static Testing (Tests in the local basis)30Step 14 - Linearity test32Step 15 - Cartesian Basis Static Testing34Step 16- Frequency response35Step 16.1 - Local to local measurements38Step 17 - Transfer function comparison with Reference41Step 17.1 - Local to local - Comparison with Reference43Step 18 - Lower Zero Moment Plane47Step 19 - Damping loops49Step 19 - Damping loops49	-	Step 6 - Position Sensors unlocked/locked Power Spectrum	22
Step 8- GS13 pressure readout	-	Step 7 - GS13 power spectrum -tabled tilted	24
Step 9 - Coil Driver, cabling and resistance check27Step 10 - Actuators Sign and range of motion (Local drive)28Step 11 - Vertical Sensor Calibration29Step 12 - Vertical Spring Constant30Step 13 - Static Testing (Tests in the local basis)30Step 14 - Linearity test32Step 15 - Cartesian Basis Static Testing34Step 16- Frequency response35Step 16.1 - Local to local measurements35Step 17 - Transfer function comparison with Reference41Step 17.1 - Local to local - Comparison with Reference41Step 18 - Lower Zero Moment Plane47Step 19 - Damping loops49Step 19.1 - Transfer functions - Simulation49	-	Step 8- GS13 pressure readout	26
Step 10 - Actuators Sign and range of motion (Local drive)28Step 11 - Vertical Sensor Calibration29Step 12 - Vertical Spring Constant30Step 13 - Static Testing (Tests in the local basis)30Step 14 - Linearity test32Step 15 - Cartesian Basis Static Testing34Step 16 - Frequency response35Step 16.1 - Local to local measurements38Step 17 - Transfer function comparison with Reference41Step 17.1 - Local to local - Comparison with Reference41Step 18 - Lower Zero Moment Plane47Step 19 - Damping loops49Step 19.1 - Transfer functions - Simulation49	-	Step 9 - Coil Driver, cabling and resistance check	27
 Step 11 - Vertical Sensor Calibration	-	Step 10 - Actuators Sign and range of motion (Local drive)	28
 Step 12 - Vertical Spring Constant	-	Step 11 - Vertical Sensor Calibration	29
 Step 13 - Static Testing (Tests in the local basis) Step 14 - Linearity test Step 15 - Cartesian Basis Static Testing Step 16 - Frequency response Step 16.1 - Local to local measurements Step 16.2 - Cartesian to Cartesian measurements Step 17 - Transfer function comparison with Reference Step 17.1 - Local to local - Comparison with Reference Step 17.2 - Cartesian to Cartesian - Comparison with Reference Step 18 - Lower Zero Moment Plane. Step 19.1 - Transfer functions - Simulation. 	-	Step 12 - Vertical Spring Constant	30
 Step 14 - Linearity test	-	Step 13 - Static Testing (Tests in the local basis)	30
 Step 15 - Cartesian Basis Static Testing	-	Step 14 - Linearity test	32
 Step 16- Frequency response	-	Step 15 - Cartesian Basis Static Testing	34
 Step 16.1 - Local to local measurements	-	Step 16- Frequency response	35
 Step 16.2 - Cartesian to Cartesian measurements	-	Step 16.1 - Local to local measurements	35
 Step 17 - Transfer function comparison with Reference	-	Step 16.2 - Cartesian to Cartesian measurements	38
 Step 17.1 - Local to local - Comparison with Reference	•	Step 17 - Transfer function comparison with Reference	41
 Step 17.2 - Cartesian to Cartesian - Comparison with Reference	0	Step 17.1 - Local to local - Comparison with Reference	41
 Step 18 - Lower Zero Moment Plane		Step 17.2 - Cartesian to Cartesian - Comparison with Reference	43
 Step 19 - Damping loops	•	Step 18 - Lower Zero Moment Plane	47
 Step 19.1 - Transfer functions - Simulation	•	Step 19 - Damping loops	49
	•	Step 19.1 - Transfer functions - Simulation	49

•	Step 19.2 - Powerspectra –	Experimental	1
Concl	usion		1

Introduction

This document presents the tests performed to characterize and validate the "HAM-ISI LLO Unit #3". This unit was the 3rd unit assembled for aLIGO at LLO. This unit was partially assembled in Fall 2010, but following the discovery of unauthorized repairs in the parts, the assembly was interrupted. All parts in questions were disassembled. This unit was the 1st to be re-assembled when the assembly started back in Spring 2011.

Following that testing, the testing procedure was modified (going to v7), that latest version of the test report (v5)was created afterwards, some data being re-processed. In other words, v4 was still using the older requirements.

The procedure document used to perform this test is:

- E1000309 –V7 - aLIGO HAM-ISI, Pre-Integration Testing Procedure, Phase I (post assembly, before storage)

Other useful information can be found in:

- E1000300 - HAM-ISI LLO test stand: software and electronic check

I. Pre-Assembly Testing

• Step 1: Position Sensors

Note: The back panel reads 0.508V/0.001"

S/N sensor	S/N board	ADE Gap Standoff(m m)	Location on the Jig	Gap Standoff on Jig(mm/in)	Voltage before zeroing	Voltage after zeroing. Prebake	Voltage after zeroing. Post bake
12057	NR	NR	NR	NR	NR	NR	NR
12026	NR	NR	NR	NR	NR	NR	NR
12013	NR	NR	NR	NR	NR	NR	NR
12059	NR	NR	NR	NR	NR	NR	NR
12056	NR	NR	NR	NR	NR	NR	NR
12083	NR	NR	NR	NR	NR	NR	NR

NR: not recorded

Will be measured for the next units.

Sensors noise spectra measured before baking:

Figure - H1 and V1 sensor noise

Figure - H2 and V2 sensor noise

Figure - H3 and V3 sensor noise

Acceptance Criteria:

- Power spectrum magnitudes must be lower than:
 - o 9.e-10 m/ $\sqrt{\text{Hz}}$ at 0.1Hz
 - o 6.e-10 m/ $\sqrt{\text{Hz}}$ at 1Hz

<u>Issues/difficulties/comments regarding this test:</u> Values of sensor gaps and zeroing were not recorded. Waived for this unit.

12013 (used for H2) is noisier than other sensors, still passes.

Test result:

Passed: X

Failed: ____

• Step 2: GS13

All the data related to GS-13 post podding testing can be found in the SVN at : SeismicSVN\seismic\Common\Data\aLIGO_GS13_TestData\PostMod_TestResults_PDFs. E1000058 spreadsheet provides the status of each individual GS-13 at LLO site during aLIGO HAM assembly

Data files in SVN at:

 $/opt/svncommon/seisvn/seismic/Common/Data/aLIGO_GS13_TestData/PostMod_TestResults_RawASCII$

Scripts files for processing and plotting in SVN at:

/opt/svncommon/seisvn/seismic/Common/MatlabTools

- gs13qatest.m

Figures in SVN at:

/opt/svncommon/seisvn/seismic/Common/Data/aLIGO_GS13_TestData/PostMod_TestResults_PDFs

Step 2.1 – Horizontal GS-13s

Huddle testing

Figure - Huddle testing of Horiz GS-13 804,795, and 792 after aLIGO modifications

Step 2.2 – Vertical GS-13s

Huddle testing

Figure - Driven Transfer Function of Vert GS-13 679,683 and 699 after aLIGO modifications

Acceptance Criteria:

- GS13 should have been already modified and tested. GS-13 Inspection/Pod Assembly (D047810). Checklist is defined in F090070-v6
- Resonant frequency at 1 Hz (huddle testing)
- No spring resonance on vertical driven tests

Test result:

Passea: A	Passed:	Χ		
-----------	---------	---	--	--

Failed: ____

• Step 3: Actuators

Actuator data can be found at: T0900564. Actuator inventory is made at Section II – Step 1.

Actuator Serial #: L087	Actuator Serial #: L088
Operator Name: Gordon, Matt	Operator Name: Gordon, Matt
Date: 11/22/2009 Time: 11:48 AM	Date: 11/21/2009 Time: 4:48 PM
Actuator Coil Resistance: 6.28 Ohms, PASS	Actuator Coil Resistance: 6.31 Ohms, PASS
Ambient Temperature: 71.1 F	Ambient Temperature: 70.0 F
Hi Pot Test Results: 1000 MOhms, PASS	Hi Pot Test Results: 1000 MOhms, PASS
X Travel Limit (inches): 0.526	X Travel Limit (inches): 0.530
Y Travel Limit (inches): 0.205	Y Travel Limit (inches): 0.206
Z Travel Limit (inches): 0.508	Z Travel Limit (inches): 0.506
Actuator Serial #: L096	Actuator Serial #: L134
Operator Name: Gordon, Matt	Operator Name: Gordon, Matt
Date: 11/23/2009 Time: 3:50 PM	Date: 4/12/2010 Time: 3:25 PM
Actuator Coil Resistance: 6.26 Ohms, PASS	Actuator Coil Resistance: 6.34 Ohms, PASS
Ambient Temperature: 71.1 F	Ambient Temperature: 73.3 F
Hi Pot Test Results: 1000 MOhms, PASS	Hi Pot Test Results: 1000 MOhms, PASS
X Travel Limit (inches): 0.530	X Travel Limit (inches): 0.536
Y Travel Limit (inches): 0.206	Y Travel Limit (inches): 0.205
Z Travel Limit (inches): 0.509	Z Travel Limit (inches): 0.506
Actuator Serial #: L137	Actuator Serial #: L145
Operator Name: Gordon, Matt	Operator Name: Gordon, Matt
Date: 4/12/2010 Time: 4:19 PM	Date: 4/13/2010 Time: 11:44 AM
Actuator Coil Resistance: 6.42 Ohms, PASS	Actuator Coil Resistance: 6.45 Ohms, PASS
Ambient Temperature: 73.3 F	Ambient Temperature: 73.1 F
Hi Pot Test Results: 1000 MOhms, PASS	Hi Pot Test Results: 1000 MOhms, PASS
X Travel Limit (inches): 0.530	X Travel Limit (inches): 0.526
Y Travel Limit (inches): 0.206	Y Travel Limit (inches): 0.205
Z Travel Limit (inches): 0.501	Z Travel Limit (inches): 0.506

Acceptance Criteria:

- Actuators were previously tested and results are reported in T900564.

The tests report must contain:

1- Test results (Passed: _____ Failed: _____)

II. Tests to be performed during assembly

• Step 1: Inventory (E1000052)

aLIGO HAM-ISI Serial Number Registration								
Assembly Site	LLO	Assembly S/N	003	Destination	L1-H3			
DCC/Vendor number	Part name	Configuration	S/N	S/N	S/N			
D071001	Stage 0 base		6					
D071051	Stage 1 base		5					
D071050	Optical table		6					
D071002	Spring Post		42	28	34			
D071100	Spring		42	15	14			
D071102	Flexure		14	26	15			
	Position	Horizontal	12057	12013	12056			
ADE	sensor	Vertical	12026	12059	12083			
D047912	CS 12 pod	Horizontal	66/46	26	92			
D047812	GS-13 pod	Vertical	56	2	60			
D047922	14C pad	Horizontal	N/A	N/A	N/A			
0047023		Vertical	N/A	N/A	N/A			
D0002740	Actuator	Horizontal	145	088	134			
DU9U2749	Actuator	Vertical	096	137	087			

Step 2: Check torques on all bolts

Acceptance Criteria:

All bolts should trip the wrench, and start moving immediately after. If any bolts in a pattern _ move before torque is reached, recheck after all bolts are brought to spec.

Test result:

Passed:	Χ	Failed:	

Step 3: Check gaps under Support Posts

Acceptance Criteria:

_ A 0.001 inch shim cannot be passed freely through any connection to Stage 0 or between post and gussets. If shim can pass through, loosen all constraining bolts, and then retighten iteratively from the center of the part to the edges. Retest.

Test result:

Passed: X Step 4: Pitchfork/Boxwork flatness before Optical Table install

Acceptance Criteria:

Shim inserted won't pass between parts. -

Test result:

Passed: X

Failed:

Failed:

Step 5: Blade spring profile

Blade #	Base (")	Tip(")	Flatness (mils)				
1	.495	.491	+4				
2	.501	.489	+12				
3	.498	.490	+8				
Table 1 Diada profile							

 Table 1 - Blade profile

Acceptance Criteria:

Blades must be flat within 0.015" inches. _

Test result:

Passed: X

Failed: ____

Actuator	Front Gap (1/1000'')	Back Gap (1/1000'')
V1	80	90
V2	90	75
V3	95/85	65/80
H1	85	
H2	80	
H3	80	

• Step 6: Gap checks on actuators-after installation on Stage 1

Acceptance Criteria

- Gaps must be within 0.010" of design (i.e. 0.090" and .070" pass, but 0.095" and 0.065" doesn't).

Test result:

Passed: _____ Failed: __X__

• Step 7: Check level of Stage 0

Not recorded.

Test result:

Passed: ____

Failed: X

• Step 8: Check level of Stage 1 Optical Table

Optical Level measurement of Stage 1 at large (12 - 15) number of points.

Max angle=(.5/64)/85.59= 91 urad

Acceptance Criteria

- The maximum angle of the table with the horizontal mustn't exceed $\sim 100 \mu rad$

Test result: Passed: X Failed:

• Step 9: Mass budget

Figure – Keel Masses and Wall masses location

Figure - Optical table masses distribution

LIGO-E1000327-v6

	//	1	11	1	
-	/	//		/	
-	/	1	10	-	
-	1	_	К	2	
-	1	~	7 -		-
-	_	/			
1000	-				

	00	01	02	03	04	05	06		
	0.6	1.1	2.2	4.5	7.9	15.6	27.2	lbs	kgs
w9						1	1	42.8	19.41
w1	1					1	1	43.4	19.69
w2						1	1	42.8	19.41
w3						1	1	42.8	19.41
w4		1		1		1	1	48.4	21.95
w5		1				1	1	43.9	19.91
w6	2					1	1	44	19.96
w7						1	1	42.8	19.41
w8						1	1	42.8	19.41
Side Masses									
Total	3	2	0	1	0	9	9	393.7	178.58

Table – Wall masses distribution

	00	01	02	03	04	05	06		
	0.6	1.1	2.2	4.5	7.9	15.6	27.2	lbs	kgs
k1					1		1	35.1	15.92
k2	1	1	1				1	31.1	14.11
k3					1		1	35.1	15.92
k4	1	1	1				1	31.1	14.11
k5					1		1	35.1	15.92
k6	1	1	1				1	31.1	14.11
	3	3	3	0	3	0	6	198.6	90.08

	Side	Keel	Тор	Total
Weigh (kg)	178.58	90.08	305.00	573.66
Torque x at O (N.m)	-13.85	0.00	-8.72	-22.57
(N.m)	-24.30	5.26	11.21	-7.83

 Table - Masses distribution (computed using T1100261)

Acceptance Criteria

The Mass budget must be

- 579.1 Kg (cf E1100427)+/-25Kg (5%)

Test result:

Passed: X Failed:

• Step 10: Shim thickness

Lockers	Shim thickness (mil)
Α	125
В	125
С	125
D	125

Table – Shims Thickness

Acceptance Criteria

- Inventory is complete

Test result:

Passed: X Fail

Failed: ____

• Step 11: Lockers adjustment

D.I at Lockers	Dial indicators V	Dial indicators H
Α	0.5	-1
В	2	0
С	.25	0
D	-1.5	-1.5

Table – Dial indicators read-out (in thousands of an inch)

Issues/difficulties encountered during this test : N/A

Acceptance Criteria

- Vertical and horizontal displacement near the lockers must be lower than 2 mils (0.002")

Test result:

Passed: X Failed: ____

III. Tests to be performed after assembly

• Step 1 - Electronics Inventory

Hardware	LIGO reference	S/N
	D0002744	S1000317
Coll driver	D0902744	S1000316
Anti Image filter	D070081	S1000251
Anti aliacing filtor	D1000260	S1000244
Anti anasing inter	D1000269	S1000245
		S1000311
Interface chassis	D1000067	S1000312
		S1000314

Table - Inventory electronics

Acceptance Criteria

- Inventory is complete

Test result:

Passed: X

Failed: ____

Step 2 - Set up sensors gap

10 Kg masses at each

	corne	ers	No n	nass
Table				
тоскеа		les on		oxes on
	Offset	Std	Offset	Std
Sensors	(Mean)	deviation	(Mean)	deviation
H1	-36.967	1.2	-109.44	1.5
H2	254.8	1.1	243.71	0.8
H3	-23.343	0.7	-91.761	1.1
V1	-264.62	0.6	-52.461	1.6
V2	-148.73	1.8	24.719	1.5
V3	196.35	1.4	296.66	1.2

Table – Capacitive position sensor readout after gap set-up

Issues/difficulties/comments regarding this test: HAM-ISI – LLO unit#3 uses synchronized satellite boxes

Acceptance criteria:

- All mean values must be lower than 400 cts (a bit less than .0005").
- All standard deviations below 5 counts.
- No cross talk

Test result:

Passed: X

Failed:

Step 3 - Measure the Sensor gap

Sensors	Gap measured on	Gap measured on
H1	NR	0.085"
H2	NR	0.085"
H3	NR	0.085"
V1	NR	0.082"
V2	NR	0.085"
V3	NR	0.082"

Acceptance criteria:

Sensors gap measured on the jig and on the optic table must be:

0.080" +/-0.002" _

Test result:

Passed: X Failed: ____

• Step 4 - Check Sensor gaps after the platform release

	Table I	ocked	Table un	locked
Sensors	Offset (Mean)	Std deviation	Offset (Mean)	Difference
H1	-274.44	0.83234	664.2	938.64
H2	-43.197	0.75333	-327.25	-284.053
H3	159.76	0.74358	-561.14	-720.9
V1	-296.64	1.0669	583.93	880.57
V2	245.48	1.4453	495.1	249.62
`V3	-362.15	1.627	-1144.2	-782.05

 Table – Sensor gaps after platform release

Acceptance criteria:

- Absolute values of the difference between the unlocked and the locked table must be below: _
 - o 1600 cts for horizontal sensors (~0.002")
 - o 1600 cts for vertical sensors (~0.002")
- Considering the acceptance criteria of step 4, all mean values must be lower than
 - o 2000 cts for horizontal sensors (~0.0025")
 - o 2000 cts for vertical sensors (~0.0025")

Test result:

Failed: ____ Passed: X

• Step 5 – Performance of the limiter

	CPS	read out	Calculated afte		
Sensors	UP (Counts)	Down (Counts)	UP (mil)	Down (mil)	
V1	20269	-20331	24.0	-24.1	
V2	20234	-20363	23.9	-24.1	
V3	19885	-19746	23.5	-23.4	
	0.00			<u>((</u>	
	CPS	read out	Calculated a	itter calibration	
Sensors	CW(-RZ)	CCW (+RZ)	CW (mil)	CCW (mil)	
H1	18281	-22331	21.6	-26.4	
H2	24413	-19937	28.9	-23.6	
H3	18099	-22126	21.4	-26.2	

• Step 5.1 - Test N°1 - Push "in the general coordinates"

Table - Optic table range of motion

Step 5.2 - Test N°2 – Push "locally"

	Push in positive direction	Push in negative direction	Railing	Actuator Gap Check
H1	20691	-26431		Х
H2	24701	-24100		Х
H3	25028	-22929		Х
V1	19785	-20422		Х
V2	31629	-32519		Х
V3	19762	-21787		Х

Table - Optic table range of motion

Acceptance criteria:

- The vertical sensor readout be positive when the optic table is pushed in the +Z direction
- The horizontal sensor readout be negative when the optic table is pushed in the +RZ direction - Step 7.1
- Step 7.1
 - \circ Absolutes value of all estimated motions must be higher than 16000counts (~0.020")
- Step 7.2
 - No contact point on sensors
 - Absolute value of sensor read out must be higher than 16000counts (~0.020")
 - o No contact point on actuators

Test result:

Passed: X Failed: .

Step 6 - Position Sensors unlocked/locked Power Spectrum

Data files in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/ Powerspectra/Undamped - LLO_HAM_ISI_Unit_3_Calibrated_PSD_CPS_GS13_Unlocked_Locked_2011-03-25.mat - LLO_HAM_ISI_Unit_3_Calibrated_PSD_GS13_Table_Tilted_2011-03-29.mat

Scripts files for processing and plotting in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Powerspectra/Undamped - Powerspectra_Measurement_HAM_ISI_Locked_Unlocked.m /opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_collection/

- - Powerspectra_Measurements_Tilted_HAM_ISI.m

Figures in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/ Powerspectra/Undamped - LLO_HAM_ISI_Unit_3_Calibrated_PSD_CPS_GS13_Unlocked_Locked_2011-03-25.mat - LLO_HAM_ISI_Unit_3_Calibrated_PSD_GS13_Table_Tilted_2011-03-29.mat

CPS calibration:

The CPS power spectrums are calibrated by using a sensitivity of 30.2 nm/count.

Figure - Calibrated CPS power spectrum

Figure – Power spectrum Calibrated GS13

Acceptance criteria:

- No cross talk (peaks at low frequencies + harmonics on measurements)
- Magnitudes of power spectra must be between requirement curves such as in the following figures (dashed lines)

Sensors	ISI state	Frequency	$2x10^{-2}$	1×10^{-1}	1	10	20	100	1000
		(Hz)							
	Table	Max	3x10 ⁻¹	$3x10^{-4}$	$3x10^{-7}$	10-7		10-11	10 ⁻¹⁴
CS 12	locked	Min	$3x10^{-4}$	$3x10^{-7}$	$3x10^{-10}$	10 ⁻¹²		10 ⁻¹⁴	10 ⁻¹⁷
05-15	Table	Max	1	$3x10^{-3}$	10-5	10-9		10 ⁻¹¹	10 ⁻¹⁴
	unlocked	Min	10 ⁻⁴	$3x10^{-7}$	10 ⁻⁹	10 ⁻¹³		10 ⁻¹⁵	10 ⁻¹⁸
	Table	Max	$2*10^{-7}$	$2x10^{-8}$	10 ⁻⁸	5×10^{-8}	$2x10^{-7}$	5x10 ⁻⁹	10-9
CDS	locked	Min	5×10^{-9}	$2x10^{-9}$	8×10^{-10}	5×10^{-10}		10^{-10}	5×10^{-11}
Cr5	Table	Max	$2x10^{-6}$	8×10^{-7}	8x10 ⁻⁷	5×10^{-8}	$2x10^{-7}$	$2x10^{-8}$	10 ⁻⁹
	unlocked	Min	10 ⁻⁷	$5x10^{-8}$	8x10 ⁻⁹	5×10^{-10}		$2x10^{-10}$	10^{-10}

Table - Step 6 -Normal conditions-Sensors power spectra requirements

Test result:

Passed: X

Failed:

Step 7 - GS13 power spectrum -tabled tilted

The figure below presents the GS13 power spectrum when the table is unlocked and loaded with a 20Kg mass at one of its corner.

Data files in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/ Powerspectra/Undamped - LLO_HAM_ISI_Unit_3_Calibrated_PSD_CPS_GS13_Unlocked_Locked_2011-03-25.mat - LLO_HAM_ISI_Unit_3_Calibrated_PSD_GS13_Table_Tilted_2011-03-29.mat

Scripts files for taking and processing the data, and plotting it in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_collection/

- Powerspectra_Measurements_Tilted_HAM_ISI.m

Figures in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Figures/ Powerspectra/Undamped - LLO_HAM_Unit_3_Calibrated_PSD_GS13_Unlocked_Locked_2011-03-25.pdf - LLO_HAM_ISI_Unit_3_Calibrated_PSD_GS13_Table_Tilted_2011-03-29.pdf

Acceptance criteria:

- With table unlocked and tilted, magnitudes of power spectra must be fully included within:

Sensor	ISI State	Frequency	$5 \text{x} 10^{-1} \text{Hz}$	1	10	100	1000
GS-13	Table	Max	2x10 ⁵	2x10 ⁶	8x10 ⁻⁸	$4x10^{-11}$	$3x10^{-14}$
	Tilted	Min	10 ⁻⁸	10 ⁻⁹	$2x10^{-11}$	10 ⁻¹⁴	10 ⁻¹⁷

Table - Table Tilted- Sensors power spectra requirements

Test result:

Passed: X

Failed: ____

• Step 8- GS13 pressure readout

Scripts files for taking and processing the data, and plotting it in SVN at:

seismicSVN/Common/MatlabTools

- gs13Presstest.m

Figures in SVN at:

- seismicSVN/Common/Data/Pressure_Plots

Figure – Pressure Plots

Issues/difficulties/comments regarding this test

We know that the drop to 0 at the end of the plot is due to issues with getdata. We can notice issues with V2 dropping a few hundreds of counts now and then. We could not measure V3, due to an issue with the read-out electronics.

Acceptance criteria:

- The pressure on all channels must be 25000 counts +/- 3000 counts

- All channels must follow comparable trend

Test result:

Passed: ____

Failed: X

Actuator	V1		H1		V2	
Coil driver	S1000317 - Coarse 1		S1000317 - Fine 1		S1000317 - Fine 2	
Anti image pin #						
Cable #	28		25		30	
Resistance	stance P1 - P2 P2 - P3		P1 - P2	P2 - P3	P1 - P2	P2 - P3
(Ohm)	6.3	O.L (infinity)	6.5	O.L (infinity)	6.4	O.L (infinity)
MEDM offset	Measurement P2 (-) ; P1&P3 (+)		Measurement P2 (-) ; P1&P3 (+)		Measurement P2 (-) ; P1&P3 (+)	
(1000 counts)		0.3	0	.303		0.3

Step 9 - Coil Driver, cabling and resistance check

Actuator	H2		V3		H3		
Coil driver	S1000317 - Coarse 2		S1000316 - Coarse 1		S1000316 - Fine 1		
Anti image pin #							
Cable #	29		26		27		
Resistance	P1 - P2	P2 - P3	P1 - P2	P2 - P3	P1 - P2	P2 - P3	
(Ohm)	6.4	O.L (infinity)	6.4	O.L (infinity)	6.3	O.L (infinity)	
MEDM offset Measurement P2 (-) ;		ement P2 (-) ; &P3 (+)	Measurement P2 (-) ;		Measurement P2 (-) ;		
(1000 counts)	().303	0	.296	0	0.298	

 Table - Actuators resistance check

Acceptance criteria:

- The measured resistance between the middle pin and one side pin must be 6.5 ± -1 ohms
- Actuator neutral pins must be connected on pin #1 (left side pin of the plug)
- Actuator drive pins must be connected on pin #2 (middle pin of the plug)
- Actuator ground shield pins must be connected on pin #3 (right pin of the plug)
- All LEDs on the coil driver front panel must be green

The tests report must contain:

- 1- The table "Actuators resistance check"
- 2- Issues/difficulties/comments regarding this test
- **3-** Test result (Passed: ______ Failed: _____)

	Negative drive	Positive drive
H1 readout (count)	-24840	23704
H2 readout (count)	-23504	24473
H3 readout (count)	-25079	24232
V1 readout (count)	-19988	19535
V2 readout (count)	-25296	27191
V3 readout (count)	-22424	21599

• Step 10 - Actuators Sign and range of motion (Local drive)

 Table - Range of motion - Local drive

Data files in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Static_Tests - LLO_HAM-ISI_Unit_3_Range_Of_Motion_20110329.mat

Scripts files for taking and processing the data, and plotting it in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_collection

- Range_Motion_HAM_ISI.m

Acceptance criteria:

- Main couplings sensors readout must be at least 16000 counts (~0.02")
- A positive offset drive on one actuator must give positive sensor readout on the collocated sensor. Signs will also be tested when measuring local to local transfer functions.

Test result:

Passed: X Failed:

Lockers	D.I readout for a negative drive	D.I readout without any drive	D.I readout for positive drive	
Α	19	0	-19	
В	19.25	0	-19	
С	18.5	0	-19	
D	19	0	-19	
Average	18.9375	0	-19	-37.9
Sensors	Counts	Counts	Counts	Difference (Counts)
V1	-15407	703	16730	-32137
V2	-15595	551	16437	-32032
V3	-17675	-1772	14357	-32032
			Average	-32067
			••	

Step 11 - Vertical Sensor Calibration

Table - Calibration of capacitive position sensors

Vertical sensitivity:	32067/37.91 = 845.3 count/mil
-----------------------	-------------------------------

or $845.5 \text{ count/mil} \approx 1/1058 \text{ v/count} = 0.510 \text{ v/mil}$	or	845.3 count/mil * 1/1638 V/count = 0.516V/mil
---	----	---

or 25400nm/mil * 1/845.3 mil/count = 30.05 nm/count

Nominal Calibration

CPS Sensitivity: 20V/0.039'' = 20V/39mils = 0.513V/mil

Calibration in counts: $2^{15}/20 * 20/39 = 840$ count/mil

or 25400 nm/mil * 1/840 mil/count = 30.2nm/count

Difference with Nominal sensitivity = (845.3-840)/840=-0.63%

Acceptance criteria:

- Deviation from nominal value < 2%. Nominal value is 840 count/mil.

Test result:

Passed: X Failed:

Step 12 - Vertical Spring Constant

Results presented below are obtained after the initial sensors calibration.

	Mean diff			Error with
Sensors	counts	Mean diff m	K (N/m)	average
V1	7370	2.23E-04	8.81E+04	5.59 %
V2	7538	2.28E-04	8.62E+04	3.32 %
V3	8553	2.58E-04	7.60E+04	-8.91 %
		Average (N/m)	8.34E+04	
		Total Stiffness		
		(N/m)	2.50E+05	

Table - Vertical spring constant

Acceptance criteria:

- +/-2 % of 2.4704e5 N/m (i.e. between 2.421e5 and 2.520e5 N/m)
- +/-5% of variation between each spring and the average

The measured error on the vertical stiffness is 1.32%.

Test result:

Passed: ____ Failed: X___

- H1 H2 H3 V1 V2 **V**3 Actuators (1000 counts) H1 1967.669 1210.834 1224.792 -3.392 12.744 -33.92 H2 2017.293 1207.9290 1256.419 11.939 21.785 -21.05 H3 2015.90 1224.299 1259.544 -30.849 37.030 16.072 V1 201.7530 172.320 1415.569 -546.33 -313.735 -43.636 V2 261.940 -276.287 230.952 -554.369 1437.609 -44.9600 V3 159.632 -385.887 142.389 44.354 -612.036 1403.714
- Step 13 Static Testing (Tests in the local basis)

Table - Main and cross coupling

Data files in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Static_Tests

- LLO_HAM_ISI_Unit_3_Sensor_Readout_Local_20110331.mat

Scripts files for taking data in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_Collection

- Sensor_Readout_Local_Drive_MEDM_HAM_ISI.m

Issues/difficulties/comments regarding this test:

Acceptance criteria:

- Vertical

For a +1000 count offset drive on vertical actuators

• Collocated sensors must be 1400 counts +/- 10%

- Horizontal

For a +1000 count offset drive on horizontal actuators

- Collocated sensors must be 2000 counts +/- 10%
- Non-collocated horizontal sensors must be 1250 counts +/-10%

Test result:

Passed: <u>X</u> Failed: ____

Step 14 - Linearity test

	Slope	Offset	Average slope	Variation from average(%)
H1	2.077	127.6		-0.37
H2	2.102	-763	2.0845	0.83
H3	2.075	-711		-0.46
V1	1.498	-282		0.74
V2	1.479	368.3	1.4872	-0.53
V3	1.484	-1024		-0.20

Table - Slopes and offset of the triplet Actuators - HAM-ISI - Sensors

Scripts files for taking data in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_Collection

- Linearity_Test_Awgstream_HAM_ISI.m

Data files in SVN at:

- /opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Linearity_test
 - LLO_HAM_ISI_Unit_3_Linearity_test_20110407.mat

Figures in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Figures/Linearity_test

- LLO_HAM_ISI_Unit_3_Linearity_test_20110407.fig
- LLO_HAM_ISI_Unit_3_Linearity_test_20110407.pdf

Acceptance criteria:

- Horizontal and vertical slopes of the triplet actuators x HAM-ISI x sensors: Average slope +/- 1%

Test result:

Passed: X Failed: ____

	1000 counts drive	X Drive	Y Drive	Z Drive	Rx Drive	Ry Drive	Rz Drive
Ļ	H1	263.528	-390.4432	39.232	-351.599	-234.314	-1870.593
nop	H2	232.73	510.05	51.46	511.84	-214.09	-1926.44
eac nt)	H3	-492.32	23.53	10.56	70.06	532.44	-1901.82
s r	V1	-5.871	6.292	248.899	-510.236	-1619.426	11.019
sor (cc	V2	-21.28	-33.566	239.421	1633.514	398.43	-57.855
ens	V3	2.8	-18.2	270.36	-1169.8	1208.911	29.8
S	Direction read out	492.38	524.71	256.965	2516.66	2506.73	2404.763
					•		

Step 15 - Cartesian Basis Static Testing

Table - Tests in the general coordinate basis

.

Issues/difficulties/comments regarding this test:

Acceptance criteria:

		X Drive	Y Drive	Z Drive	Rx Drive	Ry Drive	Rz Drive
ŧ	H1	+	-				-
lot	H2	+	+				-
eac ht)	H3	-	0				-
a su	V1			+	-	-	
CC SO	V2			+	+	+	
ens	V3			+	-	+	
S	Direction read out	+	+	+	+	+	+

Table – Reference table

For a positive drive in the Cartesian basis:

- Local sensor readout must have the same sign that the reference table (**CONT2ACT check**)
- Cartesian sensors read out must be positive (**DISP2CEN check**) in the drive direction

Test result:

Passed: X Failed: ____

• Step 16- Frequency response

Compensation filters of the new GS13 interface chassis are located in the geophone pre-filters bank. Powerspectra were measured with masses on the optic table not bolted.

• Step 16.1 - Local to local measurements

Local to local transfer functions have been measured with 90 repetitions.

Data files in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Transfer_Functions/Measurements/ Undamped/

- LLO_HAM_ISI_Unit_3_Data_TF_L2L_50mHz_500mHz_20110406-181629.mat
- LLO_HAM_ISI_Unit_3_Data_TF_L2L_500mHz_5Hz_20110406-151108.mat
- LLO_HAM_ISI_Unit_3_Data_TF_L2L_200Hz_800Hz_20110406-120426.mat
- LLO_HAM_ISI_Unit_3_Data_TF_L2L_5Hz_200Hz_20110406-133747.mat

Data collection script files:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_Collection

- Run_TF_L2L_50mHz_500mHz.m
- Run_TF_L2L_500mHz_5Hz.m
- Run_TF_L2L_5mHz_200Hz.m
- Run_TF_L2L_200Hz_800Hz.m

Scripts files for processing and plotting in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Transfer_Functions/Measurements/ Undamped/

- Plot_LLO_HAM_ISI_Unit_3_TF_L2L_2011_04_06.m

Figures in SVN at:

opt/svncommon/seisvn/seismic/HAMISI/X2/Data/Unit_3/Figures/Transfer_Functions/Measurements/Undamped/

- LLO_HAM_ISI_Unit_3_TF_L2L_H_CPS_50mHz_800Hz_2011_04_06.fig
- LLO_HAM_ISI_Unit_3_TF_L2L_V_CPS_50mHz_800Hz_2011_04_06.fig
- LLO_HAM_ISI_Unit_3_TF_L2L_H_GS13_50mHz_800Hz_2011_04_06.fig
- LLO_HAM_ISI_Unit_3_TF_L2L_V_GS13_50mHz_800Hz_2011_04_06.fig

Storage of measured transfer functions in the SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Transfer_functions/ Measurements/ Undamped/

- LLO_HAM_ISI_Unit_3_Data_TF_L2L_2011_04_06.mat

The local to local transfer functions are presented below.

Figure - Local to Local Measurements - Horizontal inertial sensors

Issues/difficulties/comments regarding this test:

Around 1 Hz, the inertial sensors seem to indicate different behaviors of each corner.

Step 16.2 - Cartesian to Cartesian measurements

Cartesian to Cartesian transfer functions have been measured with 90 repetitions.

Data files in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Transfer_Functions/Measurements/Undamped/

- LLO_HAM_ISI_Unit_3_Data_TF_C2C_50mHz_500mHz_20110405-215335.mat
- LLO_HAM_ISI_Unit_3_Data_TF_C2C_500mHz_5Hz_20110405-184814.mat
- LLO_HAM_ISI_Unit_3_Data_TF_C2C_5Hz_200Hz_20110405-171453.mat
- LLO_HAM_ISI_Unit_3_Data_TF_C2C_200Hz_800Hz_20110405-154132.mat

Scripts files for processing and plotting in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Transfer_Functions/Measurements/ Undamped/

- Plot_LLO_HAM_ISI_Unit_3_TF_C2C_2011_04_06.m

Figures in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Figures/Transfer_Functions/ Measurements/Undamped/

- LLO_HAM_ISI_Unit_3_TF_C2C_X_Y_RZ_CPS_50mHz_800Hz_2011_04_05.fig
- LLO_HAM_ISI_Unit_3_TF_C2C_X_Y_RZ_GS13_50mHz_800Hz_2011_04_05.fig
- LLO_HAM_ISI_Unit_3_TF_C2C_Z_RX_RY_CPS_50mHz_800Hz_2011_04_05.fig
- LLO_HAM_ISI_Unit_3_TF_C2C_Z_RX_RY_GS13_50mHz_800Hz_2011_04_05.fig

Storage of measured transfer functions in the SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Transfer_functions/Cartesian_to_Cartesian - LLO_HAM_ISI_Unit_3_Data_TF_C2C_2011_04_05

Figure - Cartesian to Cartesian CPS measurements – X, Y, RZ directions

Figure - Cartesian to Cartesian measurements - Z, RX, RY directions

Issues/difficulties/comments regarding this test:

Acceptance criteria:

- Local to local measurements _
 - On CPS, the phase must be 0° at DC 0
 - On Geophones, the phase must be -90° at DC 0
 - Identical shape in each corner 0
- Cartesian to Cartesian measurements _
 - On CPS, the phase must be 0° at DC 0
 - On Geophones, the phase must be -90° at DC 0
 - Identical shape X/Y and RX/RY 0

Test result:

Passed: X Failed:

Step 17 - Transfer function comparison with Reference

Step 17.1 - Local to local - Comparison with Reference

This is the 1st unit compared to LHO Unit #2 instead of LLO HAM 6 (v4 was comparing to LLO HAM 6 and both data can be found on the SVN).

Scripts files for processing and plotting in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Transfer_Functions/Measurements/ Undamped/

- Plot_LLO_HAM_ISI_Unit_3_TF_L2L_2011_04_06.m

Local to local figures in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Figures/Transfer_Functions/Measurements/

- LLO_HAM_ISI_Unit_3_TF_L2L_H_CPS_50mHz_800Hz_wRef_2011_04_06.fig
- LLO_HAM_ISI_Unit_3_TF_L2L_V_CPS_50mHz_800Hz_wRef_2011_04_06.fig
- LLO_HAM_ISI_Unit_3_TF_L2L_H_GS13_50mHz_800Hz_wRef_2011_04_06.fig
- LLO_HAM_ISI_Unit_3_TF_L2L_V_GS13_50mHz_800Hz_wRef_2011_04_06.fig

GS13, Local to local measurement

Figure - Local to local measurements comparison with LHO UNIT 2 - Horizontal GS-13

CPS, Local to local measurement, Undamped

Figure - Local to local measurements comparison – Horizontal Position sensors

Step 17.2 - Cartesian to Cartesian - Comparison with Reference

Scripts files for processing and plotting in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Transfer_Functions/Measurements/Undamped/

- Plot_LLO_HAM_ISI_Unit_3_TF_C2C_2011_04_06.m

Cartesian to Cartesian figures in SVN at :

- LLO_HAM_ISI_Unit_3_TF_C2C_X_Y_RZ_CPS_50mHz_800Hz_wRef_2011_04_05.fig
- LLO_HAM_ISI_Unit_3_TF_C2C_Z_RX_RY_CPS_50mHz_800Hz_wRef_2011_04_05.fig
- LLO_HAM_ISI_Unit_3_TF_C2C_X_Y_RZ_GS13_50mHz_800Hz_wRef_2011_04_05.fig
- LLO_HAM_ISI_Unit_3_TF_C2C_Z_RX_RY_GS13_50mHz_800Hz_wRef_2011_04_05.fig

GS13, Cartesian to Cartesian measurement, Undamped

Figure - Cartesian to Cartesian measurements comparison with LHO Unit2 – Vertical GS13

CPS, Cartesian to Cartesian measurement, Undamped

Figure - Cartesian to Cartesian measurements comparison with LHO Unit2 - Horizontal Position sensors

Figure - Cartesian to Cartesian measurements comparison with LHO Unit2 - Vertical Position sensors

Acceptance criteria:

- No difference with the reference transfer functions (SVN)
 - Phase less than 10° In Phase Out of Phase
 - Damping (fit by eye with Reference transfer functions)
 - DC gain
 - Eigen frequencies shift less than 10%

Test result:

Passed: X

Failed:

Step 18 - Lower Zero Moment Plane

Data collection script files:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_Collection

- Run_Cart2Cart_10mHz_100mHz.m

Data files in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Transfer_Functions/Measurements/Undamped/

- LZMP_LLO_HAM-ISI-Unit_3_2011_04_06.mat

Scripts files for processing and plotting in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Transfer_Functions/Measurements/Undamped/

- LZMP_2011_04_06.m

Figures in SVN at:

opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Figures/Transfer_Functions/ Measurements/Undamped/

- LZMP.fig

X & Y offsets:

X offset (mm)	0.399
Y offset (mm)	0.738

Table – Offset of the Lower Zero Moment Plane

The results from two measurements are presented on the figure below:

Figure - Lower Zero moment plane – Main and cross couplings at low frequency

Issues/difficulties/comments regarding this test

It was discovered after the testing was complete and the unit stored away, that this measurement was done with an insufficient amount of averages. This measurement should be redone during Phase #2 of the testing.

Acceptance criteria:

- X offset must be less than 2 mm
- Y offset must be less than 2 mm

Test result:

Passed: X Fail

Failed: ____

Step 19 - Damping loops

In this step, HAM6 damping loops are implemented. First, damping performances are evaluated in simulation. Second, Damping loops are implemented and performance is experimentally measured.

Step 19.1 - Transfer functions - Simulation

Scripts files for processing and plotting in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Transfer_Functions/Simulation/Damping

- HAM_ISI_LLO_Unit_3_Damping_TF_2011_04_18.m

Figures in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Transfer_Functions/Simulations/ Damping/

- Damping_LOOP_H1_H2_H3.fig
- Damping_LOOP_V1_V2_V3.fig

Results are saved in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Transfer_Functions/Simulations/ Damping/

The following figures present the plant, controller, open loop, closed loop and sensitivity of vertical and horizontal damping loops. H1 (respectively V1) are plotted in solid line, H2 (respectively V2) are plotted in dash line, H3 (respectively V3) are plotted in dash-dot line.

Figure - Horizontal damping loops - Simulation

Figure - Vertical damping loops - Simulation

Acceptance criteria:

- HAM6 damping loops must implemented and stable with
 - Phase margin must be at least 45°
 - o Gain margin must be at least 20dB

Test result:

Passed: X Failed:

Step 19.2 - Powerspectra – Experimental

Data files in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Powerspectra/Damping/

Scripts files for taking data and plotting in SVN at:

/opt/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_Collection/

- Powerspectra_Measurements_Undamped_Damped_HAM_ISI.m

Figures in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_3/Figures/Powerspectra/Damping/

- LLO_HAM_ISI_Unit_3_Calibrated_PSD_CPS_Undamped_Damped_2011_04_08.fig
- Simulation_vs_experimental_Suppression.fig

Sensitivity:

The figure below compare the sensitivity ('Undamped/Damped') of LLO HAM (Aug 2008) and LHO Unit 2. Performances are very similar, which confirms that we can use the damping loop as they are (modulo electronics change compensation). The plot also shows that the measured performance matches with the prediction.

Figure – Horizontal (left) and vertical (right) damping loops - Experimental

Acceptance criteria:

- HAM6 damping loop must stable when all damping loops are engaged
- Similar damping effect than in simulated plots

Test result:

Passed: X Failed:

Conclusion

A few issues were found during the testing of this unit. Some were only discovered after reprocessing of the data following the requirements update. This unit was approved based on the precedent version of this document (v4). The known issues are summed up here:

- sensor gaps not recorded on the jig
- actuator gaps do not meet requirements, it was decided during the approval meeting to
- LZMP measurements were done with only 1 average (high uncertainty), they should be redone on the side of the chamber
- Vertical spring constant: one spring appears to have a much lower constant than the others (-8.91% than the average of the 3). Because no significant difference can be seen between the 3 corners in the vertical local to local transfer functions, it's likely that it's due
- Could not check pressure on V3 GS-13 and V2 GS-13 gives some weird results.