

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- E1000325

LIGO

August 16, 2010

aLIGO HAM-ISI, Pre integration Test report, Phase 1, LLO Unit #1

Celine Ramet, Michael Vargas, Richard Mittleman, Fabrice Matichard, Vincent Lhuillier

Distribution of this document: Advanced LIGO Project

This is an internal working note of the LIGO Laboratory

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

LIGO Hanford Observatory P.O. Box 1970 Mail Stop S9-02 Richland WA 99352 Phone 509-372-8106 Fax 509-372-8137 Massachusetts Institute of Technology LIGO Project – NW22-295 185 Albany St Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

LIGO Livingston Observatory P.O. Box 940 Livingston, LA 70754 Phone 225-686-3100 Fax 225-686-7189

Intro	oduction	2
I.	Pre-Assembly Testing	3
•	Step 1: Position Sensors	3
-	Step 2: GS13	4
-	Step 3: Actuators	4
II.	Tests to be performed during assembly	5
•	Step 1: Check torques on all bolts	5
-	Step 2: Check gaps under Support Posts	5
•	Step 3: Pitchfork/Boxwork flatness before Optical Table install	5
•	Step 4: Blade spring profile	5
-	Step 5: Gap checks on actuators	6
•	Step 6: Check level of Stage 0	6
•	Step 7: Mass budget	6
•	Step 8: Lockers adjustment	8
III.	Tests to be performed after assembly	9
•	Step 1 - Actuators Inventory	9
•	Step 2 - Sensors Inventory	9
•	Step 3 - Electronics Inventory	10
•	Step 4 - Set up sensors gap	10
•	Step 5 - Measure the Sensor gap	11
•	Step 6 - Check Sensor gaps after the platform release	11
•	Step 7 - Check range of motion (hand pushing)	12
0	Step $7.1 - \text{Test N}^\circ \text{I}$	12
0	Step $7.2 - \text{Test N}^{\circ}2$	12
•	Step 8 - Capacitive position sensor Power Spectrum	13
•	Step 9 - GS13 power spectrum	14
•	Step 10 - Coil Driver, cabling and resistance check	16
•	Step 11 - Actuators Sign and range of motion (Local drive)	16
0	Step 11.1 - Actuators sign	16
0	Step 11.2 - Range of motion - Local drive	17
•	Step 12 - Vertical Sensor Calibration	17
-	Step 13 - Vertical Spring Constant	18
•	Step 14 - Static Testing (Tests in the local basis)	18
•	Step 15 - Linearity test (might not be necessary)	19
•	Step 16 - Tests in the general coordinate basis	20
•	Step 17 - Frequency response	21
0	Step 17.1 - Local to local measurements	21
0	Step 17.2 - Cartesian to Cartesian measurements	22
•	Step 18 - Transfer function comparison	24
0	Step 18.1 - Local to local - Comparison with HAM6	24
0	Step 18.2 - Cartesian to Cartesian - Comparison with HAM6	25
•	Step 19 - Lower Zero Moment Plan	26
•	Step 20 - Damping loops	27
0	Step 20.1 - Transfer functions - Simulation	27
0	Step 20.2 - Powerspectrum – Experimental	28
IV.	Testing Summary	30

_

Introduction

This document presents the tests performed to characterize and validate the "HAM-ISI LLO Unit #1". This unit is the first unit assembled for aLIGO at LLO.

The procedure document used to perform this test is:

- E1000309 - aLIGO HAM-ISI, Pre-Integration Testing Procedure, Phase I (post assembly, before storage)

Other useful information can be found in:

- E1000300 - HAM-ISI LLO test stand: software and electronic check

I. Pre-Assembly Testing

• Step 1: Position Sensors

Note: The back panel reads 0.508V/0.001"

S/N sensor	S/N board	ADE Gap Standoff(mm)	Location on the Jig	Gap Standoff on Jig(mm/in)	Voltage before zeroing	Voltage after zeroing. Prebake	Voltage after zeroing. Post bake
12000	12000	NR	NR	NR	NR	NR	NR
12001	12001	NR	NR	NR	NR	NR	NR
12067	12067	NR	NR	NR	NR	NR	NR
11985	11985	NR	NR	NR	NR	NR	NR
11923	11992	NR	NR	NR	NR	NR	NR
12066	12066	NR	NR	NR	NR	NR	NR

NR: not recorded

Will be measured for the next units.

Sensors noise spectra measured before baking:

Figure - H1 and V1 sensor noise

Figure - H2 and V2 sensor noise

Figure - H3 and V3 sensor noise

Acceptance Criteria: To be defined.

<u>Issues/difficulties/comments regarding this test:</u> Values of sensor gaps and zeroing were nor recorded. Waived for this unit.

Test result:

Passed: X Failed: ____

• Step 2: GS13

All the data related to GS-13 post podding testing can be found in the SVN at : SeismicSVN\seismic\Common\Data\aLIGO_GS13_TestData\PostMod_TestResults_PDFs.

E1000058 spreadsheet provides the status of each individual GS-13 at LLO site during aLIGO HAM assembly

Acceptance Criteria: To be defined.

Test result:

Passed: ____ Failed: ____

Step 3: Actuators

Actuator data can be found at: T0900564. Actuator inventory is made at Section II – Step 1.

Acceptance Criteria: To be defined.

Test result:

Passed: ____ Failed: ____

4

II. Tests to be performed during assembly

• Step 1: Check torques on all bolts

Acceptance Criteria:

- All bolts should trip the wrench, and start moving immediately after. If any bolts in a pattern move before torque is reached, recheck after all bolts are brought to spec.

Test result:

Passed: X Failed:

• Step 2: Check gaps under Support Posts

Acceptance Criteria:

- The test is passed if: a 0.001 inch shim cannot be passed freely through any connection to Stage 0 or between post and gussets. If shim can pass through, loosen all constraining bolts, and then retighten iteratively from the center of the part to the edges. Retest.

Test result:

Passed: X Failed:

• Step 3: Pitchfork/Boxwork flatness before Optical Table install

Acceptance Criteria:

- Shim inserted won't pass between parts.

Test result:

Passed: X Fai

Failed:

• Step 4: Blade spring profile

Test Results, August 5, 2010:

	Base (")	Tip(")	Flatness (mils)
Spring 1	0.5115	0.49375	17.75
Spring 2	0.502	0.48875	13.25
Spring 3	0.501	0.4875	13.5

Acceptance Criteria

- Blades must be flat within 0.020" inches. To be approved

Test result:

Passed: ____

Failed: ____

• Step 5: Gap checks on actuators

Acceptance Criteria

- Gaps must be within 0.010" of design (i.e. 0.090" and .070" pass, but 0.095" and 0.065" doesn't).

Test result:

Passed: X

Failed: ____

• Step 6: Check level of Stage 0

Acceptance Criteria To be defined.

Test result:

Passed: ____

Failed: ____

• Step 7: Mass budget

Optical Mass (Kg)	Wall Mass (Kg)	Keel Mass (Kg)	Total Mass (Kg)	
325.00	164.02	90.08	579.10	
Table - Massas distribution				

 Table - Masses distribution

The total weight is 579.1Kg.

Figure - Masses distribution

					Ma	SS				
	Туре	00	01	02	03	04	05	06		
	Weight	0.6	1.1	2.2	4.5	7.9	15.6	27.2	lbs	kgs
	w1				1	1		1	39.6	18.0
	w2	0	0	1	1		2		37.9	17.2
	w3	0	1	1	1	2	1		39.2	17.8
on	w4		1	1	1	1	2	0	46.9	21.3
cati	w5	0	3	1	1	2	1		41.4	18.8
ĕ	w6	0	1	1	1	0	2	0	39	17.7
	w7				1	1		1	39.6	18.0
	w8	0	1	1	1	0	2		39	17.7
	w9	0	1	1	1		2	0	39	17.7
		0	7	6	8	7	10	2	361.6	164.0
	k1					1		1	35.1	15.9
ç	k2	1	1	1				1	31.1	14.1
Locatio	k3					1		1	35.1	15.9
	k4	1	1	1				1	31.1	14.1
	k5					1		1	35.1	15.9
	k6	1	1	1				1	31.1	14.1
		3	3	3	0	3	0	6	198.6	90.1
	Table Wall masses and Keel masses distribution									

Table – Wall masses and Keel masses distribution

Locker shim thickness indicated in mils.

Lockers	Shim thickness (mil)
Α	
В	
С	
D	

Table – Shims Thicness

Acceptance Criteria

The total weight must be Kg +/- Kg

Test result:

Passed: ____

Failed: ____

• Step 8: Lockers adjustment

D.I at Lockers	Dial indicators V	Dial indicators H
Α	0.5	1
В	0	-1
С	1	1
D	1	-1.5

Table – Dial indicators read-out

<u>Issues/difficulties encountered during this test</u> : This test has been performed three times due to important variation of the plant with time. On initial measurements, measured variations between locked and unlocked configuration were around 3 mils on horizontal D.I and 1 mil on vertical D.I. We saw that one actuator cable was touching stage 1. After clamping the cable properly to stage 0 to avoid contact with stage 1, variations between locked and unlocked configurations fall to 1 mil on vertical dial indicators and 1.5 mil on horizontal dial indicators (table above).

Acceptance Criteria

- Vertical and horizontal displacement near the lockers must be lower than 2 mils

Test result:

Passed: ____ Failed: ____

III. Tests to be performed after assembly

• Step 1 - Actuators Inventory

Actuator	Actuator S/N
H1	
H2	
H3	
V1	147
V2	74
V3	95

Table - Actuators' inventory

Issues/difficulties/comments regarding this test: Horizontal actuators S/N missing

Acceptance Criteria: all S/N must be recorded.

Test result:

Passed: ____

Failed: X

Sensor	CPS S/N	Mount S/N	ADE board serial #
H1	12000		8800-12000
H2	12001		8800-12001
H3	12067		8800-12067
V1	11985		8800-11985
V2	11992		8800-11992
V3	12066		8800-12066

• Step 2 - Sensors Inventory

 Table - Capacitive position sensors' inventory

Geophones GS13	Serial Number	POD
H1	785	57
H2	789	47
H3	797	52
V1	682	6
V2	691	4
V3	707	1

Table - Geophones' inventory

Issues/difficulties/comments regarding this test:

Test result:

Passed: ____

Failed: X

• Step 3 - Electronics Inventory

Write down serial number of coil driver, Anti aliasing chassis, Anti image chassis and interface chassis used for this test are listed below:

Hardware	LIGO reference	S/N
	D0002744	S1000317
Con driver	D0902744	S1000316
Anti Image filter	D070081	S1000251
Anti olioping filtor	D1000260	S1000244
Anti aliasing inter	D1000269	S1000298
		S1000311
Interface chassis	D1000067	S1000312
		S1000314

 Table - Inventory electronics

Issues/difficulties/comments regarding this test:

Test result:

Passed: ____ Faile

Failed: ____

Step 4 - Set up sensors gap

Table locked	ADE boxes on		ADE box	es on/off
Sensors	Offset (Mean)	Std deviation	Offset (Mean)	Std deviation
H1	180	3.7	181	3.4
H2	155	4.8	-155	3.9
H3	-28	3.7		
V1	-329	3.1	-329	3.2
V2	-390	4.1	-391	4.2
V3	144	2.8		

Table - Set-up sensors gap

Issues/difficulties/comments regarding this test: HAM-ISI - LLO unit#1 uses synchronized satellite boxes

Acceptance criteria:

- All mean values must be lower than 400 cts (a bit less than .0005").
- All standard deviations below 5 counts.

Test result:

Passed: ____

Failed: ____

• Step 5 - Measure the Sensor gap

H1 0.085" 106 H2 0.08" -298 H3 0.085" 373	le % of change Offset sensors (counts)	Gap measured on the Jig Gap measured on the table	Sensors
H2 0.08" -298 H3 0.085" 373	106	0.085"	H1
H3 0.085" 373	-298	0.08"	H2
0.000 010	373	0.085"	H3
V1 0.085" 441	441	0.085"	V1
V2 0.085" 165	165	0.085"	V2
V3 0.085" -252	-252	0.085"	V3

Table - Sensors gap

Issues/difficulties/comments regarding this test: No information of gaps measured on the Jig

Acceptance criteria:

Change of gaps lower than 2% (reference is the gap measured on the Jig) _

Test result:

- Passed: ____
 - Failed:
- Step 6 Check Sensor gaps after the platform release

	Table	locked	Table u	nlocked
Sensors	Offset (Mean)	Std deviation	Offset (Mean)	Diff unlocked - locked
H1	-63	4.0	1658	1721
H2	-19	4.0	1408	1427
H3	158	3.0	1849	1691
V1	-278	3.0	-1028	-750
V2	-379	4.0	-771	-392
V3	129	3.0	-505	-634

Table – Sensor gaps after platform release

Issues/difficulties/comments regarding this test:

Acceptance criteria:

- Absolute values of the difference between the unlocked and the locked table must be below: _
 - o 1600 cts for horizontal sensors (~0.002")
 - o 1600 cts for vertical sensors (~0.002")
- Considering the acceptance criteria of step 4, all mean values must be lower than
 - o 2000 cts for horizontal sensors (~0.0025")
 - o 2000 cts for vertical sensors (~0.0025")

Test result:

Passed:

Failed:

Step 7 - Check range of motion (hand pushing) Step 7.1 - Test N°1

	CPS	read out	Calculated	after calibration
Sensors	UP (Counts)	Down (Counts)	UP (mil)	Down (mil)
V1	20634	-19404	24.6	-23.1
V2	20165	-20185	24.0	-24.0
V3	20482	-18891	24.4	-22.5

	CPS	read out	Calculated	after calibration
Sensors	CW(-RZ)	CCW (+RZ)	CW (mil)	CCW (mil)
H1	23340	-22750	27.8	-27.1
H2	20600	-20750	24.5	-24.7
H3	21000	20940	25.0	24.9

Table - Optic table range of motion

<u>Issues/difficulties/comments regarding this test:</u> the results indicate that all displacement sensor signals have the same sign all the way through the read chain.

• Step 7.2 – Test N°2

Displacement sensors and actuator gap check:

	Push in positive direction	Push in negative direction	Railing	Actuator Gap Check
H1	23973	-24453		Х
H2	23636	-24425		X
H3	24861	-24552		Х
V1	19800	-17583		Х
V2	32767	-32768	Х	Х
V3	18664	-19104		X

Table - Sensor and Actuator gap check

Acceptance criteria:

- The vertical sensor readout be positive when the optic table is pushed in the +Z direction
- The horizontal sensor readout be negative when the optic table is pushed in the +RZ direction
- Step 7.1
 - Absolutes value of all estimated motions must be higher than 16000counts (~0.020")
- Step 7.2
 - No contact point on sensors
 - Absolute value of sensor read out must be higher than 16000counts (~0.020")
 - o No contact point on actuators

Test result:

Passed: ____

Failed: _____ .

Step 8 - Capacitive position sensor Power Spectrum

Data files in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/DTT_Powerspectrum_Undamped

- Power_spectrum_table_locked_ADE_Sync_072910_N2.xml
- Power_spectrum_table_unlocked_ADE_Sync_072910.xml
- Power_spectrum_table_locked_ADE_Sync_072910_N2.txt
- Power_spectrum_table_unlocked_ADE_Sync_072910.txt

Scripts files for processing and plotting in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/DTT_Powerspectrum_Undamped

- PSD_GS13_lock_unlock_HAM_ISI_LLO_unit_1_2010_08_05.m

Figures in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Figures/Powerspectrum_GS13_CPS

- Calibrated_CPS_Powerspectrum_when_Locked_Unlocked.fig

CPS calibration:

The CPS power spectrums are calibrated by using a sensitivity of 30.2nm/count.

Figure - Calibrated CPS power spectrum

Acceptance criteria:

- No cross talk (peaks at low frequencies + harmonics on measurements)
 - Magnitude of power spectrums must be
 - Less than 5e-10m/ $\sqrt{\text{Hz}}$ at 0.1Hz
 - Less than 5e-10m/ $\sqrt{\text{Hz}}$ at 1Hz
 - Less than 5e-10m/ $\sqrt{\text{Hz}}$ at 10Hz

Test result:

Passed:

Failed:

Step 9 - GS13 power spectrum

Figure – Power spectrum Calibrated GS13 with mass at corner

The figure below presents the GS13 powerspectrum when the table is unlocked and loaded with a 20Kg mass at one of its corner.

Figure – Power spectrum Calibrated GS13 with mass at corner

Data files in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/DTT_Powerspectrum_Undamped

- Power_spectrum_table_locked_ADE_Sync_072910_N2.xml
- Power_spectrum_table_unlocked_ADE_Sync_072910.xml
- Power_spectrum_table_locked_ADE_Sync_072910_N2.txt
- Power_spectrum_table_unlocked_ADE_Sync_072910.txt
- Gs13_test_corner_a_loaded_072910.txt / Gs13_test_corner_a_loaded_072910.xml
- Gs13_test_corner_b_loaded_072910.txt / Gs13_test_corner_b_loaded_072910.xml
- Gs13_test_corner_c_loaded_072910.txt / Gs13_test_corner_c_loaded_072910.xml
- Gs13_test_corner_d_loaded_072910.txt / Gs13_test_corner_d_loaded_072910.xml
- Gs13 test corner e loaded 072910.txt / Gs13 test corner e loaded 072910.xml
- Gs13_test_corner_f_loaded_072910.txt / Gs13_test_corner_f_loaded_072910.xml

Scripts files for processing and plotting in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/DTT_Powerspectrum_Undamped

- PSD_GS13_lock_unlock_HAM_ISI_LLO_unit_1_2010_08_05.m

Figures in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Figures/Powerspectrum_GS13_CPS

- Calibrated_Geophones_Powerspectrum_when_table_locked_Unlocked.fig
- Calibrated_Geophones_Powerspectrum_with_20Kg_mass_at_one corner.fig

Acceptance criteria:

- Table locked
 - Less than xx at 0.1Hz
 - Less than xx at 1Hz
 - Less than xx at 10Hz
- Table unlocked (no tilt)
 - Less than xx at 0.1Hz
 - o Less than xx at 1Hz
 - Less than xx at 10Hz
- Table unlocked (tilt Rx & Ry)
 - Less than xx at 0.1Hz
 - Less than xx at 1Hz
 - Less than xx at 10Hz

Test result:

Passed:

Failed: X

Actuator	V1		H1		V2	
Coil driver	S1000316 – Coarse 1 OUT		S1000316 – Fine 1 OUT		S1000317 – Fine 2 OUT	
Anti image pin #	1		2		3	
Cable #	28		25		30	
Resistance	P1 - P2	P2 - P3	P1 - P2	P2 - P3	P1 - P2	P2 - P3
(Onin)	6.4	O.L (infinity)	6.4	O.L (infinity)	6.3	O.L (infinity)
MEDM offset	Volt out: P2 (-) ; P1&P3 (+)		Volt out: P2 (-) ; P1&P3 (+)	Volt out: P2 (-); P1&P3 (+)
(1000 counts)						

• Step 10 - Coil Driver, cabling and resistance check

Actuator	H2		V3		H3	
Coil driver	S1000317 – Coarse 2 OUT		S1000317 – Coarse 1 OUT		S1000317 – Fine 1 OUT	
Anti image pin #	4		5		6	
Cable #	29		26		27	
Resistance	P1 - P2	P2 - P3	P1 - P2	P2 - P3	P1 - P2	P2 - P3
(Ohm)	6.3	O.L (infinity)	6.3	O.L (infinity)	6.4	O.L (infinity)
MEDM offset	Volt out: P2 (-) ; P1&P3 (+)		Volt out: P2 (-) ; P1&P3 (+)	Volt out: P2 (-) ; P1&P3 (+)
(1000 counts)						

Table - Actuators resistance check

<u>Issues/difficulties/comments regarding this test:</u> During testing, we had to check anti-image pins due to a no actuator drive.

Acceptance criteria:

- The measured resistance between the middle pin and one side pin must be 6.5 +/-1 ohms
- Actuator neutral pins must be connected on pin #1 (left side pin of the plug)
- Actuator drive pins must be connected on pin #2 (middle pin of the plug)
- Actuator ground shield pins must be connected on pin #3 (right pin of the plug)
- All LEDs on the coil driver front panel must be green

Test result:

Passed: ____ Failed: ____

• Step 11 - Actuators Sign and range of motion (Local drive)

• Step 11.1 - Actuators sign

Acceptance criteria: A positive offset drive on one actuator must give positive sensor readout on the collocated sensor. Signs will also be tested when measuring local to local transfer functions.

Test result:

Passed:	Χ	Failed:

16

	Positive and negative offset Drive(+/-30000 counts)						
	V1	V2	V3	H1	H2	H3	
V1 readout (counts)				Х	Х	Х	
V2 readout (counts)				Х	Х	Х	
V3 readout (counts)				Х	Х	Х	
H1 readout (counts)	Х	Х	Х				
H2 readout (counts)	Х	Х	Х				
H3 readout (counts)	Х	Х	Х				

• Step 11.2 - Range of motion - Local drive

Table - Range of motion - Local drive

Issues/difficulties/comments regarding this test: No time to perform that test

Acceptance criteria:

- Main couplings read out must be at least 16000 counts (~0.002")
- Signs of actuators drive and sensors read out have to be the same

Test result:

```
Passed:
```

Failed: X

37.9

Step 12 - Vertical Sensor Calibration

D.I at Lockers	D.I readout with for a negative drive	D.I readout without any drive	D.I readout with for a positive drive
Α	-19	0	20
В	-19	0	19
С	-18.5	0	19
D	-18	0	19
Average	-18.625	0	19.3

Sensors	Read out (Counts)	Readout (Counts)	Readout (Counts)	Difference (Counts)
V1	-16223	-500	14749	30972
V2	-16125	-8	15987	32112
V3	-17814	-1625	14525	32339
			Average	31808

Table - Calibration of capacitive position sensors

Vertical sensitivity: 31808/37.9 = 839.8 count/mil

839.8 count/mil * 1/1638 V/count = 0.513V/mil

25400nm/mil * 1/839.8 mil/count = 30.24 nm/count

Difference with Nominal sensitivity = (839.8-840)/840=-0.02%

Issues/difficulties/comments regarding this test:

Acceptance criteria: Deviation from nominal value < 2%. Nominal value is 840 count/mil.

Test result:

or

or

Passed: ____ Failed: ____

Step 13 - Vertical Spring Constant

Sensors	Mean diff counts	Mean diff m	K (N/m)
V1	7800.25	2.36E-04	8.30E+04
V2	7711.5	2.33E-04	8.40E+04
V3	7881.5	2.38E-04	8.22E+04
		Average (N/m)	2.49E+05

Table - Vertical spring constant

The measured vertical stiffness is 2.491e5N/m. The nominal vertical spring constant is 2.428e5N/m. The measured error on the vertical stiffness is 2.62%.

Issues/difficulties/comments regarding this test:

Acceptance criteria:

Spring constant is within +/- 10/-1% of 2.41e4 N/m (HPD FEA Results). _

Test result:

Passed: _____

Failed: ____

• Step 14 - Static Testing (Tests in the local basis)

		Sensors (counts)					
		H1	H2	H3	V1	V2	V3
(;	H1	2019.5	1277.5	1239	-1	21.5	-46.5
rs nts	H2	1264.5	2031.5	1238	2	12.5	-13.5
ato	H3	1235.5	1238.5	1958	21	5.5	-0.5
stu: 0 c	V1	230	210	-337	1411	-35	-579
100	V2	-327	196	177	-589	1371	26
,	V3	154	-374	192	-68	813	1443

Main coupling Important cross coupling

Table - Main and cross coupling

Issues/difficulties/comments regarding this test:

Acceptance criteria:

Vertical _

For a +1000 count offset drive on vertical actuators

- \circ Collocated sensors must be 1400 counts +/- 10%
- Horizontal

For a +1000 count offset drive on horizontal actuators

- \circ Collocated sensors must be 2000 counts +/- 10%
- Non-collocated horizontal sensors must be 1250 counts +/-10%

Test result:

Passed:

Failed:

		Sensors (counts)					
		V1/V1	V2/V2	V3/V3	H1/H1	H2/H2	H3/H3
	-7000						
	-3000						
Actuators (counts)	-1000						
	-300						
	0						
	300						
	1000						
	3000						
	7000						

• Step 15 - Linearity test (might not be necessary)

Table - Linearity test of the triplet Actuators - HAM-ISI - Sensors

	Slope	Offset
H1		
H2		
H3		
V1		
V2		
V3		

Table - Slopes and offset of the triplet Actuators - HAM-ISI - Sensors

Linearity tests plots

Add figure

Figure - Horizontal actuators x HAM-ISI x sensors

Add figure

Figure - Vertical actuators x HAM-ISI x sensors

Issues/difficulties/comments regarding this test: No time to perform that test

Acceptance criteria:

- Horizontal and vertical slopes of the triplet actuators x HAM-ISI x sensors: Average slope +/- 3%.

Test result:

Passed:

Failed: ____

1000 counts Drive	X Drive	Y Drive	Z Drive	Rx Drive	Ry Drive	Rz Drive
H1	265	-459	12	-447	-266	-1996
H2	243	410	-7	454	-265	-1988
H3	-513	-9	11	-5	534	-1961
V1	12	17	267	2943	-1638	27
V2	1	10	271	1706	423	28
V3	21	9	290	-1220	1287	22
Direction read out	-512	-514	-230	-2595	-2582	-2514

• Step 16 - Tests in the general coordinate basis

 Table - Tests in the general coordinate basis

<u>Issues/difficulties/comments regarding this test:</u> CPS Modal readout read negative when drive a positive offset. Actuator matrix signs is good (comparison with reference table). For example, a positive drive on Z gives a positive readout on vertical sensors (local basis) but a negative readout in the "reconstructed Cartesian basis sensors". Consequently sign of the **CONT2ACT** matrix is right and sign of the **DISP2CEN** matrix is wrong. Cartesian to Cartesian transfer functions (step 17) also show the sign issue on **DISP2CEN** matrix.

DISP2CEN is (the bad one – Used for this test)

	Х	Y	Z	RX	RY	RZ
H1	-0.333	0.577	0	0	0	0.431
H2	-0.333	-0.577	0	0	0	0.431
H3	0.667	0	0	0	0	0.431
V1	0	0	-0.333	0	0.937	0
V2	0	0	-0.333	-0.812	-0.469	0
V3	0	0	-0.333	0.812	-0.469	0

with Cartesian_vector = **DISP2CEN** x Local_vector

For the next unit, **DISP2CEN** matrix sign is modified such that a physical displacement in the positive direction gives a positive readout on "Cartesian sensors".

The second confected for the next differ into the bight a card is						
	H1	H2	H3	V1	V2	V3
Х	0.333	0.333	-0.667	-0.194	0.049	0.145
Y	-0.577	0.577	0	0.056	-0.196	0.140
Z	0	0	0	0.333	0.333	0.333
RX	0	0	0	-0.273	0.961	-0.688
RY	0	0	0	-0.952	0.240	0.712
RZ	-0 422	-0 422	-0 422	0	0	0

DISP2CEN has been corrected for the next unit. New **DISP2CEN** is

Acceptance criteria:

For a positive drive in the Cartesian basis:

- Local sensor readout must have the same sign that the reference table (CONT2ACT check)
- Cartesian sensors read out must be positive (DISP2CEN check) in the drive direction

Test result:

Passed: ____ Failed: ____

20

Step 17 - Frequency response

• Step 17.1 - Local to local measurements

Local to local transfer functions have been measured with 90 repetitions.

Data files in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Transfer_functions/Local_to_local

- Data_L2L_50mHz_500mHz_20100802-221530.mat
- Data_L2L_500mHz_5Hz_20100805-104653.mat
- Data_L2L_5_200Hz_20100731-184659.mat
- Data_L2L_200_800Hz_20100731-171336.mat

Data collection script files:

/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_Collection

- Run_L2L_50mHz_500mHz.m
- Run_L2L_500mHz_5Hz.m
- Run_L2L_5mHz_200Hz.m
- Run_L2L_200Hz_800Hz.m

Scripts files for processing and plotting in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Transfer_functions/Local_to_local

- Plot_TF_Local_to_Local_2010_08_05.m

Figures in SVN at:

/svncommon/seisvn/seismic/HAMISI/X2/Data/Unit_1/Figures/Transfer_functions/Local_to_Local

- TF_H_CPS.fig
- TF_V_CPS.fig
- TF_H_Geophone.fig
- TF_V_Geophone.fig

Storage of measured transfer functions in the SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Transfer_functions/Local_to_local

- Local_2_Local_LLO_HAM-ISI-Unit_1_2010_08_05.mat

The local to local transfer functions are presented below.

Figure - Local to Local Measurements

Figure - Local to Local Measurements - Vertical sensors

Issues/difficulties/comments regarding this test:

- Even with 90 repetitions, coherence falls to 0.85 at 500mHz 800mHz (section 2) on vertical sensors (Geophones and CPS).
- Below 1 Hz, GS13 transfer function from actuator V1 to geophone V1 is higher than the other transfer functions (V2, V3) by respectively 25%. The Q at 1 Hz is also lower. These differences are not noticed on the CPS transfer functions.

• Step 17.2 - Cartesian to Cartesian measurements

Cartesian to Cartesian transfer functions have been measured with 90 repetitions.

Data files in SVN at:

- Data_M2M_50mHz_500mHz_20100805-062421.mat
- Data_M2M_500mHz_5Hz_20100805-031900.mat
- Data_M2M_5_200Hz_20100805-014539.mat
- Data_M2M_200_800Hz_20100805-001218.mat

Scripts files for processing and plotting in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Transfer_functions/Cartesian_to_cartesian

- Plot_TF_cartesian_to_cartesian_2010_08_05.m

Figures in SVN at:

/svncommon/seisvn/seismic/HAMISI/X2/Data/Unit_1/Figures/Transfer_functions/Cartesian_to_cartesian

- TF_X_Y_RZ_CPS.fig
- TF_X_Y_RZ_Geophone.fig
- TF_Z_RX_RY_CPS.fig
- TF_Z_RX_RY_Geophone.fig

Storage of measured transfer functions in the SVN at:

 $/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Transfer_functions/Cartesian_to_Cartesian_ta_Cartesian_ta_Cartesian_ta_Cartesian_ta_Cartesian_ta_Cartesian_ta_Cartesian_ta_Cartaa_ta_Cartaa_artaan_ta_Cartaa_ta_Cartaa_ta_Cartaa_ta_Cartaa_ta_Cartaa_ta_C$

- Cartesian_2_Cartesian_LLO_HAM-ISI-Unit_1_2010_08_05.mat

Figure - Modal to modal measurements

<u>Issues/difficulties/comments regarding this test:</u> During testing, we overdrove RY creating saturation in section 2 (500mHz to 5Hz). We used a wrong **DISP2CEN** matrix as mentioned at **step 17**.

Acceptance criteria:

- Local to local measurement
 - On CPS, the phase must be 0° at DC
 - On Geophones, the phase must be -90° at DC
- Modal to modal measurement
 - On CPS, the phase must be 0° at DC
 - On Geophones, the phase must be -90° at DC

Test result:

Passed: ____

Failed: ____

Step 18 - Transfer function comparison
 Step 18.1 - Local to local - Comparison with HAM6

Scripts files for processing and plotting in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Transfer_functions/Local_to_local

- Plot_TF_local_to_local_2010_08_05.m

Local to local figures in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Figures/Transfer_functions/Local_to_Local

- TF_H_CPS_vs_HAM6.fig
- TF_V_CPS_vs_HAM6.fig
- TF_H_Geophone_vs_HAM6.fig
- TF_V_Geophone_vs_HAM6.fig

GS13, Local to local measurement

Figure - Local to local measurements comparison with HAM6 - GS13

CPS, Local to local measurement, Undamped

Figure - Local to local measurements comparison - Position sensors

Difference with HAM6:

- Sign difference on CPS and Geophones.
- Change of the GS13 interface chassis (1 zero at 10Hz and 1 pole at 50Hz)

• Step 18.2 - Cartesian to Cartesian - Comparison with HAM6

Scripts files for processing and plotting in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Transfer_functions/Cartesian_to_cartesian - Plot TF cartesian to cartesian 2010 08 05.m

Cartesian to Cartesian figures in SVN at :

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Transfer_functions/Cartesian_to_cartesian

- TF_X_Y_RZ_CPS_vs_HAM6.fig
- TF_Z_RX_RY_CPS_vs_HAM6.fig
- TF_X_Y_RZ_Geophone_vs_HAM6.fig
- TF_Z_RX_RY_Geophone_vs_HAM6.fig

GS13, Cartesian to Cartesian measurement, Undamped

Figure - Cartesian to Cartesian measurements comparison with HAM6 - GS13

CPS, Cartesian to Cartesian measurement, Undamped

Figure - Cartesian to Cartesian measurements comparison - Position sensors

Difference with HAM6:

- Resonance at 1 Hz (RX and RY) is slightly higher than HAM6
- Sign difference on CPS and Geophones
- Change of the GS13 interface chassis (1 zero at 10Hz and 1 pole at 50Hz)

Acceptance criteria:

- No difference with the reference transfer functions (SVN)
 - Phase less than 10° In Phase Out of Phase
 - Damping (fit by eye with the reference transfer functions)
 - DC gain
 - Eigen frequencies shift less than 5%

Test result:

Passed: ____

Failed: ____

Step 19 - Lower Zero Moment Plan

Data collection script files:

/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Data_Collection

- Run_Cart2Cart_10mHz_100mHz.m

Data files in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Transfer_functions/LZMP

- Data_M2M_10mHz_100mHz_20100805-121423.mat

Scripts files for processing and plotting in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Transfer_functions/LZMP

- LZMP_2010_08_05.m

Figures in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Figures/Transfer_functions/LZMP

LZMP.fig

X & Y offsets:

X offset (mm)	0.16
Y offset (mm)	0.19

 Table – Offset of the Lower Zero Moment Plane

The results from two measurements are presented on the figure below:

Figure - Lower Zero moment plane - Main and cross coupling at low frequency

Acceptance criteria:

- Vertical offset must be less than mm
- Horizontal offset must be less than mm

Test result:

Passed: ____

Failed:

Step 20 - Damping loops

Filters used by Damping loops in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Scripts/Damping_Loops

- G1ISIHAM_LLO_Unit_1_2010_08_10.txt (digitalized filters copied and rename to G1ISIHAM.txt in /opt/rtcds/geo/g1/chans)

Scripts files for processing and plotting in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/

Damping_Loops_DTT_Powerspectrum_Transfer_functions

- HAM_ISI_LLO_unit1_Control_unlocked_no_damping_damping_100803.m

Data files in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/

Damping_Loops_DTT_Powerspectrum_Transfer_functions

- Powerspectrum_table_unlocked_no_damping_damping.txt

Figures in SVN at:

/svncommon/seisvn/seismic/HAM-ISI/X2/Data/Unit_1/Figures/Damping_Loops

- Damping_LOOP_GEO_Powerspectrum.fig
- Damping_LOOP_H1_H2_H3.fig
- Damping_LOOP_V1_V2_V3.fig
- Simulation_vs_experimental_Suppression.fig

• Step 20.1 - Transfer functions - Simulation

The following figures present the plant, controller, open loop, closed loop and sensitivity of vertical and horizontal damping loops. H1/V1 are plotted in solid line, H2/V2 are plotted in dash line, H3/V3 are plotted in dash-dot line.

Figure - Vertical damping loops - Simulation

Figure – Horizontal damping loops - Simulation

• Step 20.2 - Powerspectrum – Experimental

Powerspectrum:

The figure below shows power spectrum of Geophones when there when there is no damping loop and when all damping loops are engaged.

Figure - Horizontal (left) and vertical (right) damping loops - Experimental

Sensitivity:

The figure below compare the sensitivity ('Undamped/'Damped') of LLO HAM (Aug 2008) and LLO Unit 1. Performances are very similar, which confirms that we can use the damping loop as they are (modulo electronics change compensation). The plot also shows that the measured performance matches with the prediction.

Figure - Damping loop sensitivity

Acceptance criteria:

- Ham 6 damping loop must implemented and stable with
 - Phase margin must be at least 45°
 - Gain margin must be at least 20dB

Test result:

Passed: ____

Failed:

IV. Testing Summary