

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- E1000315	LIGO	July 23rd, 2012						
aLIGO HAM-ISI, Pr LHO Unit #6 (p	re-integration T post-assembly, b	est Report, Phase I, efore storage)						
	E1000323 – v3							
Hugo Paris, F Hugh Radkins, Jim Warner, Robins	abrice Matichard, Vince son Mitchel, Corey Gray	nt Lhuillier , Gregory Grabeel, Eric Allwine						
Dist A This	ribution of this documen Advanced LIGO Project	t:						
I his O	f the LIGO Laboratory	ote						

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

LIGO Hanford Observatory P.O. Box 1970 Mail Stop S9-02 Richland WA 99352 Phone 509-372-8106 Fax 509-372-8137 Massachusetts Institute of Technology LIGO Project – NW22-295 185 Albany St Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

> LIGO Livingston Observatory P.O. Box 940 Livingston, LA 70754 Phone 225-686-3100 Fax 225-686-7189

Table of contents:

Intr	roduction	
I.	Pre-Assembly Testing	5
•	Step 1: Position Sensors	5
•	Step 2: GS13 testing prior to shippement	7
-	 Step 2.1 – Horizontal GS-13s 	
-	• Step 2.2 – Vertical GS-13s	9
-	• Step 3: Actuators	
-	 Step 5 – Seismometer inspection after shipping 	
II.	Tests to be performed during assembly	
-	 Step 1: Parts Inventory (E1000052). 	
	• Step 2: Check torques on all bolts	
-	• Step 3: Check gaps under Support Posts	
-	• Step 4: Pitchfork/Boxwork flatness before Optical Table install	
-	• Step 5: Blade spring profile	
	• Step 6: Gap checks on actuators-after installation on Stage 1	
-	• Step 7: Check level of Stage 0	
-	• Step 8: Check level of Stage 1 Optical Table	
	• Step 9: Mass budget	
	• Step 10: Shim thickness	
-	• Step 11: Lockers adjustment	
III.	Tests to be performed after assembly	
	 Step 1 - Electronics Inventory 	
	 Step 2 - Set up sensors gap. 	
	 Step 3 - Measure the Sensor gap 	
	 Step 4 - Check Sensor gaps after the platform release. 	
	 Step 5 – Performance of the limiter 	
-	Step 5 1 - Test N°1 - Pushing "in the general coordinates"	25
	 Step 5.2 - Test N°2 – Pushing "locally" 	25
	 Step 6 - Position Sensors unlocked/locked Power Spectra 	
	 Step 7 - GS13 power spectra -tabled tilted 	
	 Step 9 - GS13 pressure readout 	30
-	 Step 9 - Coil Driver cabling and resistance check 	31
-	 Step 10 - Actuators Sign and range of motion (Local drive) 	32
	 Step 11 - Vertical Sensor Calibration 	33
	 Step 12 - Vertical Spring Constant 	34
	 Step 12 - Version Spring Constant Inclosed basis) 	34
	 Step 12 - Linearity test 	35
-	 Step 15 - Cartesian Basis Static Testing 	36
	 Step 16- Frequency response 	
	 Step 16.1 - Local to local measurements 	
	• Step 16.2 – GS13 Response extraction	
	• Step 16.3 GS13 response fitting	43
	 16.4 Symmetrization Filters 	46
	Step 16.4 - Cartesian to Cartesian TF computation	48
	 Step 17 - Transfer function comparison with Reference 	50
	 Step 17.1 - Local to local - Comparison with Reference 	50
	 Step 17.2 - Cartesian to Cartesian - Comparison with Reference 	53
	1 · · · · · · · · · · · · · · · · · · ·	

LIGO-E1000323-v3

-	Step 18 - Lower Zero Moment Plane	61
IV.	HAM-ISI Unit #6 testing summary	63
-	List of tests that failed and don't need to be redone:	
-	Tests that failed and need to be done during phase II	
•	List of test that were skipped and that we will not do because they are not essential	

Introduction

HAM-ISI Unit #6 was assembled during June 2012. The testing of this Unit is presented here. It started on June 18th and lasted until July 14th. Production GS13s and Stage-0 L4Cs were installed during tests.

Testing was delayed due to omissions in assembly, instrument failure and strong temperature changes:

- Due to forgotten barrel nuts, GS13s had to be removed and re-installed (LHO aLOG #3193).
- Even though GS13s were working properly at reception from LLO, one of the GS13s broke during the reinstallation process (LHO aLog # 3198). It was quickly replaced with a functional instrument (LHO aLog #3193).
- The replacement GS13 was not fully torqued down to the ISI (diagnosis details in LHO aLOG #3328).
- In air cables mismatched sensors/corners.
- Electrical connections on X1-SEI electronics rack, and on the in-air cable extensions, were found loose after electronic maintenance was performed on the rack, causing the gain on some instruments to be suddenly divided by 2. (LHO aLog #3328)
- 1/3 of the outer walls' bolts of the ISI were left non-torqued.
- The ISI went down of -0.09mm (appox. 3000cts down) when the temperature dramatically rose on site (30 degrees Fahrenheit, see figure below, LHO aLog # 3370, and comments). CPSs and Lockers were left as they were initially set before the temperature rise. They might have to be reset for the in-chamber installation of the ISI, depending on the temperature in the LVEA.
- Data loggers (temperature/humidity) were set in the staging building, in order to assess future strong temperature changes (LHO aLog #3431).

Figure – Evolution of outside temperature at LIGO HANFORD – 07/03 to 07/09

The procedure document used to perform these tests is:

- E1000309–V12 - aLIGO HAM-ISI, Pre-Integration Testing Procedure, Phase I (post assembly, before storage)

Other useful information can be found in:

- E1000300 - HAM-ISI LLO test stand: software and electronic check

Remark regarding SVN paths:

Units need to be tested under a folder that matches medm channels' names. Since MEDM channels' names all refer to HAMX during this phase of testing, units are all tested under:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/

Once a unit is tested, a folder called after its order of assembly is created. For Unit #6, the name of this folder will be:

/SeiSVN/seismic/HAM-ISI/X1/Unit_6/

Test data is then moved from HAMX testing folder to this final folder. All the data related to the Phase I testing of this unit is then stored in this folder. The data set names, the location of the test results, and the locations of the programs used to obtain them are specified along this document.

Even if they are tested under HAMX, units are called per their order of assembly in programs, figures and data files.

I. Pre-Assembly Testing

S/N sensor	S/N board	ADE Gap Standoff (mm)	Location on the Jig	Gap Standoff on Jig (mm/in)	Voltage before zeroing	Voltage after zeroing. Prebake	Voltage after zeroing. Post bake
12032	11961	NR	NR	~2.057	1	~.01	NR
12051	11965	NR	NR	~2.057	1.5	~.01	NR
12050	11963	NR	NR	~2.057	0.4	~.01	NR
12053	11962	NR	NR	~2.057	1.2	~.01	NR
11994	NR	NR	NR	NR	NR	NR	NR
11980	NR	NR	NR	NR	NR	NR	NR

• Step 1: Position Sensors

NR: Not recorded

The back panel reads 0.508V/0.001"

Sensors noise spectra measured before baking E1000257, and before shielding per procedure T1000636:

Issues/difficulties/comments regarding this test:

- Sensors #12051 and #11980 were initially discarded because of their high noise level below 1Hz. These sensors were then sent back to be repaired. The spectra presented here were measured before their repair. No spectra was taken afterward.
- No testing information available for sensors #11994 and #11990.

Acceptance Criteria:

- Power spectrum magnitudes must be lower than:
 - \circ 9.e-10 m/ $\sqrt{\text{Hz}}$ at 0.1Hz
 - \circ 6.e-10 m/ $\sqrt{\text{Hz}}$ at 1Hz

Test result:

Passed: ____

Failed: X

<u>Comment</u>: Test failed due to the lack of information available. However, further tests (i.e. step 6, spectra of CPSs) show that the instruments are functional.

• Step 2: GS13 testing prior to shippement

Data related to GS-13 post podding testing can be found in the SVN at: \SeismicSVN\seismic\Common\Data\aLIGO_GS13_TestData\PostMod_TestResults_PDFs. **Power spectra measured at reception, after shipment from LLO, can be found at** \SeismicSVN\ seismic\Common\Data\aLIGO_GS13_TestData_LHO\

aLIGO GS13 Testing page is E1100367. It contains links to:

- LIGO-E1000058: aLIGO GS-13 Status Chart
- LIGO-24: aLIGO GS-13 as received testing results
- LIGO-E1100394: aLIGO GS-13 prior shipping testing results
- LIGO-E1100395: aLIGO GS-13 Post Modification testing results
- LIGO-F0900070: GS-13 Inspection Checklist

		Corner 1	Corner 2	Corner 3
Ц	Pod	018	058	066
П	Instrument	810	854	817
V	Pod	049	069	023
V	Instrument	708	737	751

Table- GS13 instrument and Pod S/Ns

Step 2.1 – Horizontal GS-13s

Figure - Huddle testing of Horizontal GS-13 810(H1), 854(H2), and 817(H3) after aLIGO modifications

• Step 2.2 – Vertical GS-13s

Figure - Huddle testing of Vertical GS-13 708(V1), 737(V2), and 751(V3) after aLIGO modifications

Figure - Driven testing of Vertical GS-13 708(V1), 737(V2), and 751(V3) after aLIGO modifications

Acceptance Criteria:

- GS13 have already been tested at LLO. GS13 Inspection/Pod Assembly is described in document D047810. Checklist is defined in F090070-v6

Test result:

Passed:	X	Failed:
I HOUVAN	1 1	1

• Step 3: Actuators

Actuator data can be found at: <u>T0900564-V2</u>. Actuator inventory is made at Section II – Step 1.

Actuator Serial #: L019	Actuator Serial #: L014
Operator Name: Smith, Lane	Operator Name: Smith, Lane
Date: 8/12/2009 Time: 1:44 PM	Date: 8/12/2009 Time: 3:58 PM
Actuator Coil Resistance: 6.37 Ohms, PASS	Actuator Coil Resistance: 6.34 Ohms, PASS
Ambient Temperature: 70.0 F	Ambient Temperature: 72.0
Hi Pot Test Results: 1000 MOhms, PASS	F Hi Pot Test Results: 1000 MOhms, PASS
X Travel Limit (inches): 0.522	X Travel Limit (inches): 0.517
Y Travel Limit (inches): 0.205	Y Travel Limit (inches): 0.205
Z Travel Limit (inches): 0.505	Z Travel Limit (inches): 0.505
Actuator Serial #: L006	Actuator Serial #: L002
Operator Name: Smith, Lane	Operator Name: Hartmann, Donna
Date: 8/12/2009 Time: 7:20 AM	Date: 8/12/2009 Time: 5:30 PM
Actuator Coil Resistance: 6.39 Ohms, PASS	Actuator Coil Resistance: 6.33 Ohms, PASS
Ambient Temperature: 68.0 F	Ambient Temperature: 72.7 F
Hi Pot Test Results: 1000 MOhms, PASS	Hi Pot Test Results: 1000 MOhms, PASS
X Travel Limit (inches): 0.517	X Travel Limit (inches): 0.527
Y Travel Limit (inches): 0.214	Y Travel Limit (inches): 0.205
Z Travel Limit (inches): 0.484	Z Travel Limit (inches): 0.506
Actuator Serial #: L0094	Actuator Serial #: L001
Operator Name: Gordon, Matt	Operator Name: Smith, Lane
Date: 11/20/2009 Time: 5:22 PM	Date: 8/11/2009 Time: 5:37 PM
Actuator Coil Resistance: 6.34 Ohms, PASS	Actuator Coil Resistance: 6.42 Ohms, PASS
Ambient Temperature: 71.1 F	Ambient Temperature: 72.0 F
Hi Pot Test Results: 1000 MOhms, PASS	Hi Pot Test Results: 1000 MOhms, PASS
X Travel Limit (inches): 0.530	X Travel Limit (inches): 0.530
Y Travel Limit (inches): 0.205	Y Travel Limit (inches): 0.196
Z Travel Limit (inches): 0.508	Z Travel Limit (inches): 0.478

TBC: To Be Completed once horizontal actuators' S/N are retrieved (GS13 door opened)

Issues/difficulties/comments regarding this test:

- Actuators S/Ns were recorded after assembly.

Acceptance Criteria:

- Actuators were previously tested and results are reported in T0900564-V2.

Test result:

Passed: X	Failed:
-----------	---------

• Step 5 – Seismometer inspection after shipping

Frequency (Hz) Figure – Vertical L4C inspection after reception at LHO

Results saved under the SVN at:

/SeiSVN/seismic/Common/Data/aLIGO_GS13_TestData_LHO/ /SeiSVN/seismic/Common/Data/aLIGO_L4C_TestData_LHO/

Acceptance Criteria:

- Geophones must have been tested after reception the geophones at LHO
- ASDs of the geophones must confirm that they are still functioning after shipping.
- Results must be available in the SVN

Test result:

Passed: X Failed: ____

Note: Horizontal GS13s have *nylon patches* on their flexure's screws.

II. Tests to be performed during assembly

DCC Number	Part name	Configuration	Corner 1 S/N	Corner 1 Corner 2 S/N S/N			
D071001	Stage 0 base	NA		009			
D071051	Stage 1 base	NA		009			
D071050	Optical table	NA	005				
D071002	Spring Post	NA	11	04	20		
D071100	Spring	NA	10	18	11		
D071102	Flexure	NA	19	06	30		
	Position	Horizontal	12032	12050	11994		
ADE	sensor	Vertical	12051	12053	11980		
D047912	CS 12 pod	Horizontal	018	058	066		
D04/812	03-15 pou	Vertical	049	069	023		
D047922	L4C mod	Horizontal	134	089	060		
D04/823	L4C pod	Vertical	132	087	073		
D0002740	Actuator	Horizontal	019	006	094		
D0902749	Actuator	Vertical	014	002	001		

• Step 1: Parts Inventory (E1000052)

Table – Parts inventory

Cable	Connects	Cable S/N				
Part Name	Configuration	Corner 1	Corner 2	Corner 3		
GS13	Horizontal	\$1106665	\$1106670	\$1104701		
GS13	Vertical	51100005	51100070	51104701		
L4C	Horizontal	S1106652	S1104700	S1104602		
L4C	Vertical	51100055	51104709	51104002		
Actuator	Horizontal	S1106673	S1104097	S1104099		
	Vertical	S1104096	S1106676	S1104101		

Table – Cables inventory

Step 2: Check torques on all bolts

Acceptance Criteria:

- All bolts should trip the wrench, and start moving immediately after. If any bolts in a pattern move before torque is reached, recheck after all bolts are brought to spec.

Test result:

Passed: X Failed: ____

• Step 3: Check gaps under Support Posts

Figure - Showing edges that need checked on support posts and gussets

Acceptance Criteria:

- A 0.001 inch shim cannot be passed freely through any connection to Stage 0 or between post and gussets. If shim can pass through, loosen all constraining bolts, and then retighten iteratively from the center of the part to the edges. Retest.

Test result:

Passed: X Failed: ____

• Step 4: Pitchfork/Boxwork flatness before Optical Table install

Figure - Showing what needs to be checked on Boxworks and Pitchforks

Acceptance Criteria:

- Shim inserted won't pass between parts.

Test result:

Passed: <u>X</u> Failed: ____

• Step 5: Blade spring profile

figure – Blade spring profile measurement points

Blade #	Root (Mils)	Tip(Mils)	Flatness (mils)
1	615	625	10
2	623	628	5
3	620	627	7
3	620 T	627	7

Table - Blade profile

Issues/difficulties/comments regarding this test:

Measurement was taken after the ISI level was lowered by about 0.9mm, due to temperature increase.

Acceptance Criteria:

- Blades must be flat within 0.015" inches.

Note that the tip measurement should be constant and that root value can be impacted by shims change.

Test result:

• Step 6: Gap checks on actuators-after installation on Stage 1

Figure - Showing gaps that need to be checked on actuators.

Issues/difficulties/comments regarding this test:

Since layers of shims are difficult to use accurately, a Go (70mils shim set) vs. No Go (90 mils shim set) technique was used for this test. To pass the test an actuator gap has to allow the 70mils shim set to be inserted and refuse the 90mils shim set.

The gaps on the backside of horizontal actuators are hard to access.

Acceptance Criteria

- Gaps must be within 0.010" of design (i.e. 0.090" and .070" pass, but 0.095" and 0.065" doesn't).

Test result:

Passed: <u>X</u> Failed: ____

Step 7: Check level of Stage 0

Figure – Level measured on Stage 0

Issues/difficulties/comments regarding this test:

The accuracy of the measurement limited by the measurement tool: optical level + ruler on a block. The ruler only has 1/100" graduations. Values are deduced from the relative distance to graduations. The uncertainty is about 1mil.

Max angle is calculated between the opposite points that have the most different level.

Max angle=0.005/57.5 (± 0.001/57.5) = 86.95 (±17.39) µrad

Acceptance Criteria

- The maximum angle of the table with the horizontal mustn't exceed $\sim 100 \mu rad$

Test result:

Step 8: Check level of Stage 1 Optical Table

Figure – Level measured on Stage 1

Issues/difficulties/comments regarding this test:

The accuracy of the measurement is limited by the measurement tool: optical level + ruler on a block. The ruler only has 1/100" graduations. Values are deduced from the relative distance to graduations. The uncertainty is about 1mil.

Max angle is calculated between the opposite points that have the most different level.

Max angle = 0.003/86 (± 0.001/86) = 34.88 (± 11.7) µrad

Acceptance Criteria

- The maximum angle of the table with the horizontal mustn't exceed $\sim 100 \mu rad$

Test result:

• Step 9: Mass budget

	00	01	02	03	04	05	06		
	0.6	1.1	2.2	4.5	7.9	15.6	27.2	lbs	kgs
W9			1	2	1		1	46.3	21.00
W1		1		1	1		1	40.7	18.46
W2			1	1	1		1	41.8	18.96
W3			1	1	1		1	41.8	18.96
W4		1		2	1		1	45.2	20.50
W5				1	1		1	39.6	17.96
W6			1				1	29.4	13.34
W7		2			1		1	37.3	16.92
W8		1	1	1	1		1	42.9	19.46
Side Masses Total	0	5	5	9	8	0	9	365	165.56

Table – Wall masses distribution

	00	01	02	03	04	05	06		
	0.6	1.1	2.2	4.5	7.9	15.6	27.2	lbs	kgs
K1						2		31.2	14.15
K2					1		1	35.1	15.92
К3						2		31.2	14.15
K4					1		1	35.1	15.92
K5						2		31.2	14.15
K6					1		1	35.1	15.92
Keel Masses Total	0	0	0	0	3	6	3	198.9	90.22

Table – Keel masses distribution

	Mass (kg)
T1	\$20.00
T2	\$270.79
Т3	\$25.00
T4	5.00
Total	320.79

Table – Optic table masses distribution

Figure – Wall Masses (W) and Keel masses (K) location. South of picture = corner 1

Figure – Optic table masses distribution

	Side	Keel	Тор	Total
Weight (kg)	165.56	90.22	320.79	576.57
Table – Mass budget sum up				

Issues/difficulties/comments regarding this test:

- T2's big mass evaluated at nominal value: 270.79kg. Gauge not available for measurement.
- A few shims were used for balancing. Their weight is negligible in comparison with the mass budget. Hence their weight is not reported in the mass budget.

Acceptance Criteria

The Mass budget must be

- 579.1 Kg (cf. E1100427)+/-25Kg (5%)

Test result:

Passed: X Failed: ____

21

Step 10: Shim thickness

Lockers	Shim thickness (mils)
А	125
В	124
С	122
D	124
C D	122 124

Table – Shims Thickness

Acceptance Criteria

- The shim thickness should be $125 \text{ mils } \pm -5$

Test result:

Passed: X Failed: ____

• Step 11: Lockers adjustment

D.I. at Locker	Vertical D.I.	Horizontal D.I.
А	0	0
В	0	1
С	-1	0
D	-1	-1

Table – Dial indicators read-out (in thousands of an inch)

Issues/difficulties/comments regarding this test:

Lockers might have to be reset once the ISI is installed in the interferometer.

Acceptance Criteria

Vertical and horizontal displacement near the lockers must be lower than 2 mils (0.002") -

Test result:

Passed: X **Failed:**

III. Tests to be performed after assembly

• Step 1 - Electronics Inventory

Hardware	LIGO reference	S/N
	D000 27 44	S1000266
Coll driver	D0902744	S1000269
Anti Image filter	D070081	S1000250
Anti aliasing filter	D1000260	S1102694
Anti anasing inter	D1000209	S1102679
		1102223
Interface chassis	D1000067	1102224
		1102214

Table - Inventory electronics

Step 2 - Set up sensors gap

	Locked, 10 Kg masses at each corners		
Table locked	ADE boxes on		
Sensors	Offset (Mean)	Std deviation	
H1	235.95	7.35	
H2	-212.87	8.08	
Н3	-266.46	8.58	
V1	220.75	7.21	
V2	194.15	9.29	
V3	9.19	8.52	

Capacitive position sensor readout after gap set-up

Acceptance criteria:

- All mean values must be lower than +/-400 cts (a bit less than .0005").
- All standard deviations below 20 counts.
- No cross talk

Test result:

• Step 3 - Measure the Sensor gap

Issues/difficulties/comments regarding this test:

Measured in the previous step. Waived to avoid scratching targets.

Test result:

Passed: ____ Failed: ____ Waived: _X_

Step 4 - Check Sensor gaps after the platform release

	Table locked		Tabl		
Sensors	Mean	Std Deviation	Mean	Std Deviation	Difference
H1	403.87	7.34	280.22	22.43	123.65
H2	-127.51	7.35	-109.21	24.04	18.30
Н3	-238.54	7.84	107.51	29.86	346.05
V1	353.46	7.41	41.85	40.92	311.61
V2	377.52	9.94	9.60	22.05	367.92
V3	49.43	7.92	-34.61	46.81	84.04

Table – Sensor gaps after platform release

Acceptance criteria:

- Absolute values of the difference between the unlocked and the locked table must be below:
 - \circ 1600 cts for horizontal sensors (~0.002")
 - \circ 1600 cts for vertical sensors (~0.002")
- All mean values must be lower than:
 - 2000 cts for horizontal sensors (~0.0025")
 - 2000 cts for vertical sensors (~0.0025")

Test result:

• Step 5 – Performance of the limiter

• Step 5.1 - Test N°1 - Pushing "in the general coordinates"

Pushing Z,-Z	CPS read out		Calcula calib	ted after ration	ROM
Sensors	UP (Counts)	Down (Counts)	UP (mil)	Down (mil)	
V1	20500	-19500	24.6	-23.4	40000
V2	18000	-18500	21.6	-22.2	36500
V3	20000	-20000	24.0	-24.0	40000

Pushing RZ, - RZ	CPS read out		Calculated after calibration		ROM
Sensors	CCW (+RZ)	CW(-RZ)	CW (mil)	CCW (mil)	
H1	-20000	21100	-24.0	25.3	41100
H2	-22200	21800	-26.7	26.2	44000
Н3	-22300	21300	-26.8	25.6	43600

Table - Optic table range of motion

• Step 5.2 - Test N°2 – Pushing "locally"

Pushing Locally	Push in positive direction	Push in negative direction	Railing	Actuator Gap Check	ROM
H1	-23500	21550		Х	45050
H2	-19500	22150		Х	41650
Н3	-22400	22100		Х	44500
V1	21100	-19900		Х	41000
V2	32300	-32300	Х	Х	64600
V3	23000	-24800		Х	47800

Table - Optic table range of motion

Issues/difficulties encountered during this test:

- Contact points are difficult to check on vertical actuators.
- V2 railing.
- Horizontal motion (Rz) was computed in mils from the vertical CPS calibration (Step 11).

Acceptance criteria:

- The vertical sensor readout must be positive when the optic table is pushed in the +Z direction
- The horizontal sensor readout must be negative when the optic table is pushed in the +RZ direction
- Step 5.1
 - \circ Absolutes value of all estimated motions must be higher than 16000counts (~0.020")
- Step 5.2
 - No contact point on sensors
 - \circ Absolute value of sensor read out must be higher than 16000counts (~0.020")
 - No contact point on actuators

Test result:

Passed: X Failed: .

Locked/Unlocked Power Spectra are presented below.

Scripts files for processing and plotting in SVN at:

/SeiSVN/seismic/HAM-ISI/Common/Testing Functions HAM ISI/

- ASD Measurements Locked Unlocked HAM ISI.m

Data in SVN at:

SeiSVN/seismic/ HAM-ISI/X1/HAMX/Data/Spectra/Undamped/

- LHO ISI UNIT 6 ASD m CPS T240 L4C GS13 Locked vs Unlocked 2012 07 13.mat

Figures in SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Data/Figures/Spectra/Undamped

- LHO_ISI_UNIT_6_ASD_m_L4C_Requirements_Locked_vs_Unlocked_2012_07_13
- LHO ISI UNIT 6 ASD m GS13 Requirements Locked vs Unlocked 2012 07 13
- LHO ISI UNIT 6 ASD m CPS Requirements Locked vs Unlocked 2012 07 13

Issues/difficulties/comments regarding this test:

 10Hz-100Hz peaks on CPS spectra were investigated for the testing phase I of Unit #3, and reported in Part 1, last step: *Capacitive Position Sensor Investigation*, of the related report (Document #E1000312-v3)

Acceptance criteria:

- No cross talk (peaks at low frequencies + harmonics on measurements)
- Magnitudes of power spectra must be between requirement curves

Test result:

Passed: X Failed:

Note: When a seismometer fails, its low frequency response is affected. Spectra are within requirements in low frequency. The production GS13s installed on this unit are functional.

GS13 spectra when the table is tilted are presented below.

Scripts files for processing and plotting in SVN at:

SeiSVN/seismic/HAM-ISI/Common/Testing Functions HAM ISI/

- ASD_Measurements_Stages_Tilted_HAM_ISI.m

Data in SVN at:

SeiSVN/seismic/ HAM-ISI/X1/HAMX/Data/Spectra/Undamped/

- LHO_ISI_UNIT_6_ASD_m_GS13_Stage_Tilted_2012_07_16

Figures in SVN at:

SeiSVN/seismic/HAM-ISI/X1/HAMX/Data/Figures/Spectra/Undamped

- LHO_ISI_UNIT_6_m_PSD_GS13_Tilted_2012_07_16

Acceptance criteria:

- With table unlocked and tilted, magnitudes of power spectra must be fully included within requirement curves.

Test result:

Passed:	Χ	Failed:

Note:

When a seismometer fails, its low frequency response is affected. Spectra are within requirements in low frequency. The production GS13s installed on this unit are functional.

Step 8- GS13 pressure readout

Acceptance criteria:

- The pressure on *GS13_P* channels must be 102KPa +/-8 KPa (25000 counts +/- 3000 counts)

- *GS13_P* must vary the same way in each corner and *GS13_DIFF* must be constant (channels follow comparable trend)

Test result:

Passed: X Failed: ____

Note: Pressure fluctuated a lot with the recent changes of temperature. The drift observed on CPS readouts appears well correlated to the evolution of pressure (See figure below. More details in LHO aLOG #3371).

Figure - CPS vs Pressure readouts - Over 5 1/2 days (UTC time)

Actuator	V1		H1		V2	
Coil driver	S1000266 - Coarse 2		S1000266 - Coarse 1		S1000269 - Coarse 2	
Cable #	S1104096		S1106673		S1106676	
Resistance	P1 - P2	P2 - P3	P1 - P2	P2 - P3	P1 - P2	P2 - P3
(Ohm)	O.L (infinity)	6.8	O.L (infinity)	6.8	O.L (infinity)	6.9
MEDM offset	Measurement P2 (+) ; P1&P3 (-)		Measurement P2 (+) ; P1&P3 (-)		Measurement P2 (+) ; P1&P3 (-)	
(1000 counts)	0.3070V		0.3117V		0.3115V	

Step 9 - Coil Driver, cabling and resistance check

Actuator	Н2		V3		Н3	
Coil driver	S1000269 - Coarse 1		S1102692 - Coarse 2		S1102692 - Coarse 1	
Cable #	S1104097		S1104101		S1104099	
Resistance	P1 - P2	P1 - P2 P2 - P3		P2 - P3	P1 - P2	P2 - P3
(Ohm)	O.L (infinity)	6.9	O.L (infinity)	6.9	O.L (infinity)	6.9
MEDM offset	Measurement P2 (+) ; P1&P3 (-)		Measurement P2 (+) ; P1&P3 (-)		Measurement P2 (+) ; P1&P3 (-)	
(1000 counts)	0.3138V		0.3044V		0.3106V	

 Table - Actuators resistance check

Issues/difficulties/comments regarding this test:

- Voltages measured from Pin #2 (+) to pin #3 (-) with compensation filters engaged.
- Resistances are given +/-0.2V

Acceptance criteria:

- The measured resistance between the middle pin and one side pin must be 6.5 ± -1 ohms
- Actuator neutral pins must be connected on pin #3 (left side pin of the plug)
- Actuator drive pins must be connected on pin #2 (middle pin of the plug)
- Actuator ground shield pins must be connected on pin #1 (right pin of the plug)
- All LEDs on the coil driver front panel must be green

Test result:

	Negative drive	No Drive	Positive drive	ROM (Counts)
H1 readout (count)	-23224	355	24555	47779
H2 readout (count)	-24092	-1	23617	47709
H3 readout (count)	-24503	245	24654	49157
V1 readout (count)	-18817	157	19937	38754
V2 readout (count)	-25768	297	26901	52669
V3 readout (count)	-22341	257	21736	44077

• Step 10 - Actuators Sign and range of motion (Local drive)

Table - Range of motion - Local drive

Issues/difficulties/comments regarding this test:

- Test performed BEFORE the dramatic temperature changes that caused Stage-1 to be lowered.
- Compensation filters are ON.
- Symmetrization filters are OFF

Acceptance criteria:

- Main couplings sensors readout must be at least 16000 counts (~0.02")
- A positive offset drive on one actuator must give positive sensor readout on the collocated sensor. Signs will also be tested when measuring local-to-local transfer functions.

Test result:

Step 11 - Vertical Sensor Calibration

Lockers	D.I readout with for a negative drive	D.I readout without any drive	D.I readout with for a positive drive
А	-18.50	0.00	19.00
В	-18.00	0.00	18.00
С	-18.50	0.00	18.50
D	-19.10	0.00	19.00
Average	-18.53	0.00	18.63

Sensors	Counts	Counts	Counts	Difference
V1	-14856.00	679.18	16031.00	30887.00
V2	-14643.00	1063.20	16808.00	31451.00
V3	-14656.00	471.94	15795.00	30451.00

Vertical Sensibility			
832.56	Count/mil		
0.51	V/mil		
30.51	nm/count		
-0.89	% from ref (840count/mil)		

Issues/difficulties/comments regarding this test:

- Test performed AFTER the dramatic temperature changes that caused Stage-1 to be lowered.

Acceptance criteria:

- Deviation from nominal value < 2%. Nominal value is 840 count/mil.

Test result:

Step 12 - Vertical Spring Constant

Sensors	Mean diff counts	Mean diff m	K (N/m)	Error with average
V1	-7784	-2.351E-04	85182	2.09%
V2	-8033	-2.426E-04	82537	-1.08%
V3	-8027	-2.424E-04	82602	-1.00%
		Average (N/m)	250321	

1.33 % variation from nominal

 Table - Vertical spring constant

Issues/difficulties/comments regarding this test:

- Test performed AFTER the dramatic temperature changes that caused Stage-1 to be lowered. Hence, blade stiffness might be underestimated.

Acceptance criteria:

- +/-2 % of 2.4704e5 N/m (i.e. between 2.421e5 and 2.520e5 N/m)
- +/-5% of variation between each spring and the average

Test result:		
i est result:		

Passed: X	Failed:
-----------	---------

	Sensors (counts)							
	H1	H1 H2 H3 V1 V2 V3						
H1	2097	1318	1310	-13	2	13		
H2	1277	2056	1293	-14	4	10		
Н3	1281	1286	2054	0	-5	-6		
V1	186	191	-387	1496	-39	-661		
V2	-410	204	199	-662	1510	-56		
V3	189	-392	204	-49	-651	1444		

• Step 13 - Static Testing (Tests in the local basis)

Table - Main couplings and cross couplings

Acceptance criteria:

- Vertical

For a +1000 count offset drive on vertical actuators

 \circ Collocated sensors must be 1400 counts +/- 10%

- Horizontal

For a +1000 count offset drive on horizontal actuators

- \circ Collocated sensors must be 2000 counts +/- 10%
- Non-collocated horizontal sensors must be 1250 counts +/-10%

Test result:

Step 14 - Linearity test

	Slope	Offset	Average slope	Variation from average(%)
H1	2.05	2241.39		1.65
H2	2.01	2443.47	2.02	-0.33
Н3	1.99	2636.76		-1.32
V1	1.44	906.31		0.70
V2	1.44	453.42	1.43	0.36
V3	1.42	596.87		-1.06

Table - Slopes and offset of the triplet 'Actuators - HAM-ISI - Sensors'

in both Horizontal and vertical directions

Issues/difficulties encountered during this test:

- H1, slightly out of requirements.
- Unusual noise on H3 around 200cts. Minor issue. Measurement good enough to compute the linearity of the actuators. Peak not featured on previous linearity measurements of this Unit.
- The tendencies on linearity test slopes seem to match the tendencies on cable resistance (coildriver to feedthrough section). Cable resistance, which is proportional to cable length, would then be a possible explanation for the linearity results obtained.
- Test performed AFTER the dramatic temperature changes that caused Stage-1 to be lowered.

Acceptance criteria:

 Horizontal and vertical slopes of the triplet actuators x HAM-ISI x sensors: Average slope +/-1.5%

Test result:

Passed: ____ Failed: X

Note: we will check that these values are within tolerance when we'll use the final field cables.

Step 15 - Cartesian Basis Static Testing

1000 counts Drive	H1	H2	Н3	V1	V2	V3	Direction read out
X Drive	282.27	271.86	-512.8	10.458	6.8598	-15.222	514.77
Y Drive	-470.12	429.42	-18.594	-7.767	-11.684	-4.3266	513.37
Z Drive	-9.2672	6.2335	-3.7407	257.35	284.18	244.57	262.78
Rx Drive	-466.56	480.49	-8.7913	-500.86	1740.2	-1237.2	2655.6
Ry Drive	-273.13	-264.37	547.21	-1741.3	419.16	1271.8	2659
Rz Drive	-2011.7	-2008.9	-2007.5	-11.823	-11.107	2.1088	2546.9
1000 counts	H1	Н2	Н3	V1	V2	V3	Direction
Drive	111	112	115	V 1	V 2	۷5	read out
X Drive	+	+	-				+
Y Drive	-	+	0				+
Z Drive				+	+	+	+
Rx Drive				-	+	-	+
Ry Drive				-	+	+	+
Rz Drive	-	-	-				+
1000 counts	x	v	7	RX	RV	R7	Direction
Drive	24	1	Ľ	104	K1	ICZ.	read out
X Drive	514.77	-3.1062	-5.7654	-18.763	-17.896	-18.709	514.77
Y Drive	-3.0346	513.37	-1.6451	24.245	-9.781	24.22	513.37
Z Drive	-5.6827	4.7914	262.78	11.13	10.43	5.086	262.78
Rx Drive	3.7762	4.7105	-13.145	2655.6	-2.5031	3.5096	2655.6
Ry Drive	4.8097	1.631	-16.182	13.652	2659	4.0995	2659
Rz Drive	-6.8198	1.2627	4.4958	-4.3493	36.663	2546.9	2546.9

 Table – Cartesian static testing reference table

Issues/difficulties/comments regarding this test:

- Test performed BEFORE the dramatic temperature changes that caused Stage-1 to be lowered.

Acceptance criteria:

For a positive drive in the Cartesian basis:

- Local sensor readout must have the same sign that the reference table
- Cartesian sensors read out must be positive in the drive direction

Test result:

Step 16- Frequency response

Step 16.1 - Local to local measurements

FREQ. RANGE			DRIVE		MEAS. TIME		
Min	Max	Freq. Res. (Hz)	Н	V	Time for 1 Rep. (s)	Number of Reps	Estimated duration (min)
0.01	0.1	0.01	3500	3500	620	10	103.3
0.1	0.5	0.02	420	420	320	30	160
0.5	5	0.025	24.5	24.5	260	55	238.3
5	200	0.1	140	140	80	50	66.7
200	1000	0.2	140	140	50	150	125
					Estimated Measur	ement Time (h)	11.6

Table – Transfer function settings, by frequency band

Data collection script files:

/SeiSVN/seismic/HAM-ISI/Common//Transfer Function Scripts/

- Run_TF_L2L_10mHz_100mHz.m
- Run_TF_L2L_100mHz_500mHz.m
- Run_TF_L2L_500mHz_5Hz.m
- Run_TF_L2L_5Hz_100Hz.m
- Run_TF_L2L_100Hz_1000Hz.m

Data files in SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Data/Transfer_Functions/Measurements/Undamped/

- LHO_ISI_HAM_Unit_6_Data_TF_L2L_200Hz_1000Hz_20120713-174342.mat'
- LHO_ISI_HAM_Unit_6_Data_TF_L2L_5Hz_200Hz_20120713-190116.mat'
- LHO_ISI_HAM_Unit_6_Data_TF_L2L_500mHz_5Hz_20120713-195449.mat'
- LHO_ISI_HAM_Unit_6_Data_TF_L2L_100mHz_500mHz_20120713-234425.mat'
- LHO ISI HAM Unit 6 Data TF L2L 10mHz 100mHz 20120714-022604.mat'

Scripts files for processing and plotting in SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Scripts/Control_Scripts/Version_0/

- Step_1_TF_Loc_to_Loc_X1_ISI_HAMX

Figures in SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Data/ Figures/Transfer_Functions/Measurements/Undamped/

- X1_ISI_HAMX_TF_L2L_Raw_from_ACT_to_CPS_2012_07_13.fig
- X1_ISI_HAMX_TF_L2L_Raw_from_ACT_to_GS13_2012_07_13.fig

Storage of measured transfer functions in the SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Data/Transfer_functions/ Simulations/Undamped/

- X1_ISI_HAMX_TF_L2L_Raw_2012_07_13.mat

HAM-ISI - LHO - Unit #6 - July 13th 2012 - On test stand, In air - Over Weekend

Figure - local-to-Local Measurements – Inertial sensors

Issues/difficulties/comments regarding this test:

Around 1Hz, H1-GS13 Transfer Function is very different from the transfer functions measured with the other horizontal GS13s. It comes from the response of GS13-H1 whose resonance frequency is significantly higher.

Figure – Extracted Instrument Responses – Horizontal Inertial sensors

Acceptance criteria:

- Local to local measurements
 - On CPS, the phase must be 0° at DC
 - On Geophones, the phase must be -90° at DC
 - Identical shape in each corner

Test result:

Plots for the extracted responses are presented below.

figure – Extracted GS13 responses comparison

Issues/difficulties encountered during this test:

- The extraction process does not appear optimal at the resonance on V1 and V3.
- Horizontal GS13s were taken apart and reassembled after their initial huddle test to install *Nylon Patch Screws* on the flexures mounts.
- Vertical GS13s were taken apart and reassembled after their initial huddle test to insert *Loctite*[®] on the screws holding the flexures.
- The Electronics and/or Digital filters used for the initial huddle testing seem to have varied along the huddle testing campaign. Gains vary from one sensor to another. Resonance frequencies are, however, unaffected which allow us to analyze their evolution.
- Lots of pods have encountered rework since the huddle testing campaign. The rework operations, such as flexure replacement or preamplifier replacement, did most likely affect the frequency responses of the instruments. Hence, these modifications would be a good explanation for the resonance frequency shifts observed between the huddle test and the extracted response of some pods.

GS13 response extraction plots under the SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Data/Figures/Instrument_Responses/GS13/

- X1_ISI_HAMX_Fitted_Responses_Comparison.fig
- X1_ISI_HAMX_GS13_H1_Pod_18_Extracted_Response_VS_Huddle.fig
- X1_ISI_HAMX_GS13_H2_Pod_58_Extracted_Response_VS_Huddle.fig
- X1 ISI HAMX GS13 H3 Pod 66 Extracted Response VS Huddle.fig
- X1 ISI HAMX GS13 V1 Pod 49 Extracted Response VS Huddle.fig
- X1 ISI HAMX GS13 V2 Pod 69 Extracted Response VS Huddle.fig
- X1 ISI HAMX GS13 V3 Pod 23 Extracted Response VS Huddle.fig

Acceptance criteria:

- The resonance frequency shift between the initial huddle test measurement and the extracted response must be lower than 15%

Test result:

Passed: X Failed:

Fitted responses for the GS13s are presented below.

GS13 response fitting plots under the SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Data/Figures/Instrument Responses/GS13/

- X1_ISI_HAMX_Fitted_Responses_Comparison.fig
- X1_ISI_HAMX_GS13_H1_Pod_18_Extracted_Response_VS_Fitt_VS_Huddle.fig
- X1 ISI HAMX GS13 H2 Pod 58 Extracted Response VS Fitt VS Huddle.fig
- X1_ISI_HAMX_GS13_H3_Pod_66_Extracted_Response_VS_Fitt_VS_Huddle.fig
- X1_ISI_HAMX_GS13_V1_Pod_49_Extracted_Response_VS_Fitt_VS_Huddle.fig
- X1_ISI_HAMX_GS13_V2_Pod_69_Extracted_Response_VS_Fitt_VS_Huddle.fig
- X1_ISI_HAMX_GS13_V3_Pod_23_Extracted_Response_VS_Fitt_VS_Huddle.fig

Acceptance criteria:

- The resonance frequency difference between the extracted response and the fitted response must be less than 5%
- The amplitude shift between the extracted response and the fitted response must be less than 10% between 0.1Hz and 100Hz.

Test result:

Passed:	Χ	Failed:

Symmetrized Local to Local TFs are presented below.

figure – Symmetrized L2L – Computed TFs – Inertial sensors

Symmetrization filters under the SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Filters/

- X1_ISI_HAMX_Filters_20120522-134354.mat

Symmetrized L2L TFs under the SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Data/Figures/Transfer_Functions/Simulations/Undamped/

- X1_ISI_HAMX_TF_L2L_Symmetrized_from_ACT_to_GS13_2012_05_22
- X1_ISI_HAMX_TF_L2L_Symmetrized_from_ACT_to_CPS_2012_05_22

Issues/difficulties encountered during this test:

- Symmetrization dilters substantially improved the symmetry of the GS13 Transfer Functions.

Test result:

• Step 16.4 - Cartesian to Cartesian TF computation

The Cartesian to Cartesian transfer functions are presented below:

Scripts files for processing and plotting in SVN at:

- /SeiSVN/seismic/HAM-ISI/X1/HAMX/Scripts/Control_Scripts/
 - Step_3_TF_Cart_to_Cart_X1_ISI_HAMX.m

Figures in SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Data/ Figures/Transfer_Functions/Simulations/Undamped/

- X1_ISI_HAMX_TF_C2C_Symmetrized_from_ACT_to_CPS_2012_07_13.fig
- X1_ISI_HAMX_TF_C2C_Symmetrized_from_ACT_to_GS13_2012_07_13.fig

Storage of measured transfer functions in the SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Data/Transfer_functions/Simulations/Undamped/

- X1_ISI_HAMX_TF_C2C_Raw_2012_07_13.mat

Acceptance criteria:

- Cartesian to Cartesian measurements
 - \circ On CPS, the phase must be 0° at DC
 - On Geophones, the phase must be -90° at DC
 - Identical shape X/Y and RX/RY

Test result:

- Step 17 Transfer function comparison with Reference
- Step 17.1 Local to local Comparison with Reference

Scripts files for processing and plotting in SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Scripts/Control_Scripts/
 Step_1_Plot_TF_L2L_HAM_Testing.m
 /SeiSVN/seismic/HAM-ISI/Common/Testing_Functions_HAM_ISI/
 Step 1 TF Loc to Loc X1 ISI HAMX

Local to local comparison figures in SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Data/

Figures/Transfer Functions/Measurements/Comparisons/L2L/

- X1_ISI_HAMX_TF_L2L_Raw_from_ACT_H_to_CPS_H_vs_UNIT_1_2012_02_02_With_3_W ashers_Under_Top_Mass.fig
- X1_ISI_HAMX_TF_L2L_Raw_from_ACT_H_to_CPS_H_vs_UNIT_1_2012_02_02_With_3_W ashers_Under_Top_Mass.pdf
- X1_ISI_HAMX_TF_L2L_Raw_from_ACT_H_to_GS13_H_vs_UNIT_1_2012_02_02_With_3_ Washers_Under_Top_Mass.fig
- X1_ISI_HAMX_TF_L2L_Raw_from_ACT_H_to_GS13_H_vs_UNIT_1_2012_02_02_With_3_ Washers_Under_Top_Mass.pdf
- X1_ISI_HAMX_TF_L2L_Raw_from_ACT_V_to_CPS_V_vs_UNIT_1_2012_02_02_With_3_W ashers_Under_Top_Mass.fig

Figure – local-to-Local measurements, comparison with Unit #1 reference Capacitive Position Sensors - Horizontal motion

Figure – local-to-Local measurements, comparison with Unit #1 reference Inertial Sensors - Horizontal motion

Acceptance criteria:

IGO

No difference with the reference transfer functions (Unit #1)

- Phase less than 10° In Phase Out of Phase
- Damping (fit by eye with Reference transfer functions)
- DC gain
- Eigen frequencies shift less than 10%

Test result:

Passed: X Failed:

Step 17.2 - Cartesian to Cartesian - Comparison with Reference

Scripts files for processing and plotting in SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Scripts/Control Scripts/

- Step_3_TF_Cart_to_Cart_M1_ISI_HAMX.m

/SeiSVN/seismic/HAM-ISI/Common/Testing_Functions_HAM_ISI/

- Plot_TF_C2C_HAM_Testing_With_LHO_Unit_1_Reference.m

Cartesian to Cartesian figures in SVN at:

/SeiSVN/seismic/ HAM-ISI/X1/HAMX/Data/

Figures/Transfer Functions/Measurements/Comparisons/C2C/

- X1_ISI_HAMX_TF_C2C_Raw_from_ACT_H_to_CPS_H_Symmetrized_vs_Unit_1_2012_07_13.fig
- X1_ISI_HAMX_TF_C2C_Raw_from_ACT_V_to_CPS_V_Symmetrized_vs_Unit_1_2012_07_13.fig
- X1_ISI_HAMX_TF_C2C_Raw_from_ACT_H_to_GS13_H_Symmetrized_vs_Unit_1_2012_07_13.fig X1_ISI_HAMX_TF_C2C_Raw_from_ACT_V_to_GS13_V_Symmetrized_vs_Unit_1_2012_07_13.fig

Figure – Cartesian to Cartesian measurements, comparison with Unit #1 reference Capacitive Position Sensors - Horizontal motion

Horizontal motion

<u>Issues/difficulties encountered during this test:</u> Cartesian-TFs were simulated. Coherence is not available.

Acceptance criteria:

- No difference with the reference transfer functions (SVN)
 - Phase less than 10° In Phase Out of Phase
 - Damping (fit by eye with Reference transfer functions)
 - DC gain
 - Eigen frequencies shift less than 10%

Test result:

Step 17.3 - Cartesian to Cartesian - Comparison with other Units

Scripts files for processing and plotting in SVN at:

/SeiSVN/seismic/HAM-ISI/Common/Plot Functions HAM ISI/

- Plot_HAM_ISI__Cartesian_Result_Comparison.m

Cartesian to Cartesian figures in SVN at:

/SeiSVN/seismic/ HAM-ISI/X1/ Data/

All Units Compared/Transfer Functions/C2C/

- CPS X.fig
- CPS_Y.fig
- CPS Z.fig
- CPS RX.fig
- CPS RY.fig
- CPS RZ.fig
- GS13 X.fig
- GS13_Y.fig
- GS13 Z.fig
- GS13_RX.fig
- GS13_RY.fig
- GS13_RZ.fig

LIGO

Step 18 - Lower Zero Moment Plane

Data collection script files:

/SeiSVN/seismic/HAM-ISI/Common/Transfer_Function_Scripts/

- Run_TF_C2C_10mHz_100mHz_LZMP_HAM_ISI.m

Data files in SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Data/Transfer Functions/Measurements/Undamped/

- LHO ISI HAM Unit 6 Data TF C2C 10mHz 100mHz LZMP 20120714-042748.mat

Scripts files for processing and plotting in SVN at:

/SeiSVN/seismic/HAM-ISI/Common/Testing_Functions_HAM_ISI/

- LZMP_HAM_ISI.m

Figures in SVN at:

/SeiSVN/seismic/HAM-ISI/X1/HAMX/Data/ Figures/Transfer_Functions/Measurements/Undamped/ - LHO_ISI_UNIT_6_LZMP_20120714.fig

The result of the measurement performed is presented below. Symmetrization filters are not engaged. Measurement was performed over 200 averages, during the weekend.

LHO HAM-ISI - Unit #6 - July 14th - Over Weekend

Figure - Lower Zero Moment Plane - Main and cross couplings at low frequency

Issues/difficulties encountered during this test:

- Test performed BEFORE the dramatic temperature changes that caused Stage-1 to be lowered.
 Coherence is low.

Acceptance criteria:

- X offset must be less than 2 mm
- Y offset must be less than 2 mm

Test result:

Passed: X Failed:

IV. HAM-ISI Unit #6 testing summary

HAM-ISI Unit #6 was assembled during June 2012. The testing of this Unit is presented here. It started on June 18th and lasted until July 14th.

Testing was delayed due to omissions in assembly, instrument failure and strong temperature changes.

Complementary Investigation:

- The ISI went down of -0.09mm (appox. 3000cts down) when the temperature dramatically rose on site (30 degrees Fahrenheit). Strong temperature changes caused the blades to sag. The matter was investigated and reported in LHO aLog # 3370, and comments.
- Data loggers (temperature/humidity) were set in the staging building, in order to assess future strong temperature changes (LHO aLog #3431).

Particularities:

- CPS & lockers were set before strong temperature changes caused the blades to sag.
- Full set of production GS13s
- L4Cs and brackets installed

FAILED AND WAIVED TESTS

• List of tests that failed and don't need to be redone:

Step I.1: Initial testing data missing/obsolete on CPSs. CPSs spectra were validate with up to date measurements anyway (step 6)

• Tests that failed and need to be done during phase II

Step III.14: Actuators appear to be linear on measurements. However, deviation from average slope is out of spec. It seems to correlate with cable+actuator resistance measurements. Make sure that linearity test results correlate with the final field cables.

This scale factor, which varies from an actuation point to another, could be corrected with an adjustment gain applied on the excitation signal sent to the actuators.

Step 19: The simulation, and implementation, of the damping loops represent a "bonus test" and was not performed because of delays caused by omissions in assembly, instrument failure and temperature changes.

• List of test that were skipped and that we will not do because they are not essential

Step III.3: Sensor gap measurement with a jig. Waved to avoid scratching targets. Distance between sensor and target has also been checked during the assembly while adjusting target distance.