


### I2U2: Sharing Large-Project Science Data with Students via the Web





- Dale Ingram (LHO EPO) on behalf of the I2U2 Collaboration
- LIGO Hanford Observatory, Richland, WA
- www.ligo.caltech.edu
- outreach@ligo-wa.caltech.edu
- 509-372-8248 (Dale Ingram)





# The Platform: NSF's *Interactions in Understanding the Universe* (I2U2) Program

- www.i2u2.org
- Also supported by the Office of High Energy Physics in the Office of Science, U.S. Department of Energy.
- Students use I2U2 e-Labs (virtual laboratories) to conduct science research using data sets from large projects.
- Museum-based i-Labs provide opportunities for the general public to interact with data.
- I2U2 partners include Fermilab (QuarkNet), U. of Chicago (grid computing), LIGO, Notre Dame (CMS) and the Adler Planetarium.

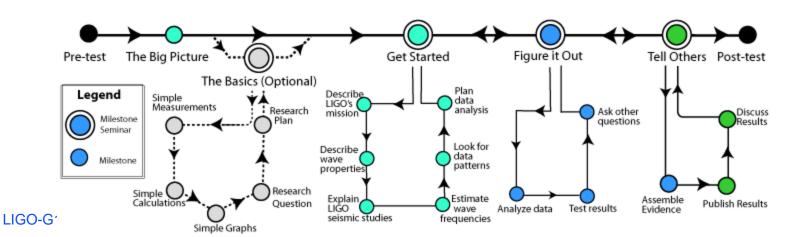










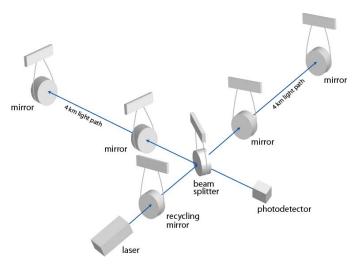



LIGO I2U2



## I2U2 e-Labs Provide Data and Additional Resources to Support Student Inquiry

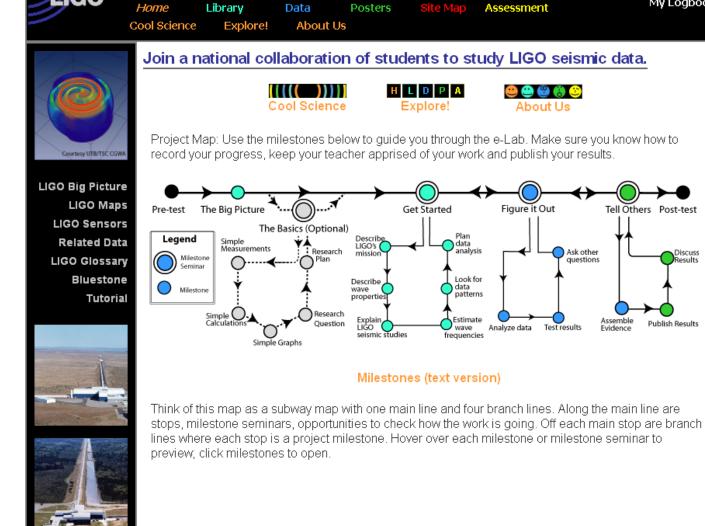
- Current e-Labs: Cosmic Rays, LIGO, CMS (beta testing).
- Usage: High school physics classrooms. LIGO's e-Lab has been used in physics, physical science, integrated science and earth science classrooms down to grades 7-8.
- Selling points: e-Labs are entirely Web-based. No software downloads are necessary at the school. e-Labs share a common structure.
- Features: A paperless environment that provides online pre- and post-tests, a milestone-based road map, a teacher-viewable e-logbook and online posters.
- Teacher features: Learner objectives/outcomes, correlations to standards, assessment rubrics, sample lessons and discussion forums.
- One of the goals of I2U2 is to provide reliable customer-friendly software tools for students. A student's capacity for challenge should be exercised in the doing of inquiry rather than in the mastery of idiosyncratic tools.






#### The LIGO e-Lab

- LIGO: Laser Interferometer Gravitationalwave Observatory. 4-km interferometers in WA and LA, designed to make direct detections of gravitational waves from astrophysical sources.
- Exquisitely sensitive instrumentation capable of resolving test mass displacements of 10<sup>-19</sup> m.
- LIGO operates a network of seismometers at each facility to monitor the effects of seismicity on detector operations.
- Seismometer data forms the central focus of the LIGO e-Lab. The e-Lab data pool also includes magnetometers and weather stations.



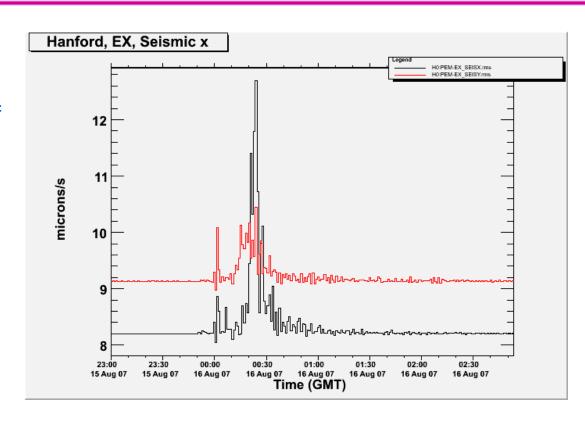







The **LIGO** e-Lab Web site




Publish Results

LIGO-G1000705-v



# Common Investigation Themes with the LIGO e-Lab

- Noise-hunting studies ("What caused that?").
- Earthquake studies (Lots of possible research questions here).
- Correlation studies of natural seismic drivers (wind, rain, ocean waves).
- Correlation studies of human activity (traffic patterns, day-night patterns).
- Frequency-based studies using filtered channels.



Directionality of 8.0 Peru Earthquake at LIGO Hanford in 2007 (Hanford High School student investigation)



#### Avenues for Teacher Involvement

- Participate in the current round of pilot testing!
- Subscribe to the LIGO e-Lab newsletter (outreach@ligowa.caltech.edu).
- Find a group of like-minded colleagues and request an e-Lab workshop.
- Use <a href="mailto:outreach@ligo-wa.caltech.edu">outreach@ligo-wa.caltech.edu</a> as the point of contact for any e-Lab questions or requests.

LIGO is operated by Caltech and MIT for the NSF under Cooperative Agreement PHY-0757058



I2U2 receives NSF support through PHY-0736126 (DRK-12).