
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T990030-v2 2010/03/25

LIGO Scientific Collaboration Algorithm Library
Specification and Style Guide

Bruce Allen, Kent Blackburn, Duncan Brown, Jolien Creighton, Teviet Creighton, Sam
Finn, Albert Lazzarini, Adam Mercer, and Alan Wiseman

Distribution of this draft:

LIGO Scientific Collaboration
DRAFT

California Institute of Technology Massachusetts Institute of Technology
LIGO Project - MS 51-33 LIGO Project - MS NW22-295

Pasadena CA 91125 Cambridge, MA 01239
Phone (626) 395-2129 Phone (617) 253-4824

Fax (626) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

RCS Id — Processed with LATEX on 2010/03/25

LIGO-T990030

Contents
1 Introduction 3

1.1 The LSC Algorithm Library . 3
1.2 The goal of the LAL software specification . 3
1.3 The elements of the library specification . 3
1.4 The LAL and XLAL interfaces . 3

2 Coding style guidelines 4
2.1 Atomic data types . 4
2.2 Names of functions, variables, etc. 4
2.3 Header and source file conventions . 5
2.4 Language requirements . 5
2.5 Filename conventions . 6

3 Common rules for both the LAL and the XLAL functions 6
3.1 Function arguments . 6
3.2 Functions should not have any dependence on system environment 6
3.3 Memory management . 6
3.4 Functions must be reentrant and thread-safe . 7
3.5 Functions should always return control to the calling program . 7

4 Rules for LAL functions 7

5 Rules for XLAL functions 8
5.1 Four kinds of XLAL functions . 9
5.2 XLAL error numbers and error handlers . 11

6 Documentation and unit tests 12

7 Other libraries required for LAL 12

8 Notable exceptions 12

9 Beyond LAL... LALSupport, LALMetaIo, LALFrame 12
9.1 The LALSupport library . 13
9.2 The LALMetaIo library . 13
9.3 The LALFrame library . 13

A Language issues 13
A.1 Namespace requirements . 13
A.2 Allowed functions from standard C . 15

B LAL Datatypes 16
B.1 Primitive Datatypes . 16
B.2 Aggregate datatypes . 17
B.3 Structured datatypes . 18
B.4 The LAL universal status structure LALStatus . 20

C The LALStatus structure 20

D The lalDebugLevel 21

E LAL Constants 22
E.1 Mathematical Constants . 22
E.2 Physical Constants . 23
E.3 Astrophysical Parameters . 24

page 2 of 26

LIGO-T990030

1 Introduction

1.1 The LSC Algorithm Library
The LSC Algorithm Library, hereafter LAL, is a library of routines for use in gravitational wave data analysis.

1.2 The goal of the LAL software specification
From the first edition of this guide: The defining purpose of this document is to establish a software specifica-
tion that fosters widespread-use and collaborative-development of a well-tested analysis library. The goal is to
develop a portable and convenient library, both for users and developers.

To achieve portability, the library is a library of routines written in a subset of C99, which is well supported
on nearly every modern computing environment, and the routines can easily be used by programs written in other
languages (C++, Fortran, Python, etc.).

The first edition of this specification contained several highly restrictive rules that were conceived to give LAL
routines a standard “look and feel” to promote their ease of use and also to promote good programming practice. Un-
fortunately, some of these rules turned out to be counterproductive, making some routines have an awkward interface
and encouraging large, monolithic functions, i.e., promoting poor programming practices.

This second edition makes several significant changes to the original specification in an attempt to alleviate the
most egregious over-restrictive rules. However, since there is already a large existing code-base, it is not possible to
completely re-write the specification. The new specification must be consistent with the old conventions. Therefore
this new specification still retains many of the elements of the old specification.

And sometimes for good reason! Many of the rules in the original specification, while perhaps being somewhat
restrictive and burdensome on the developer, were nevertheless very important for the concept of a portable data
analysis algorithm library (and did represent good programming practices).

The more rigid rules in this document are set aside in boxes with red type. Here is the first rigid rule:

The rules in this specification may need to be periodically reexamined. Therefore, this is a living docu-
ment. The librarian will amend this document as needed. Significant changes to the document will be
made in consultation with the LSC Software Change Control Board.

1.3 The elements of the library specification
The library specification has the following elements:

1. A coding style, which is needed in order to establish a library namespace (so that routines in the LAL library
can be used in conjunction with other libraries), and to maintain a (somewhat) uniform look-and-feel.

2. Function requirements, which are needed in order to maintain portability and to establish a (relatively) standard
API.

3. Standard data structures, macros, and functions, which assist in providing a common set of tools for developers
to promote uniformity (where desired) and collaborative development.

1.4 The LAL and XLAL interfaces
Because the original LAL specification was relatively “heavy-weight,” (in that there was significant overhead required
for new functions), LAL functions tended to be large and monolithic, and often a particular “routine” was re-written
many times in-line in many different functions. It is not possible to simultaneously maintain the semblance of the
original LAL requirements on functions and completely remedy this deficiency. Instead, this specification introduces
a second, parallel interface, called the XLAL interface, specifically for writing small, light-weight, helper routines.
The intent is for the LAL interface to be the primary interface for users of the LAL library, but for the XLAL interface
to be a convenient interface for use within the LAL library. (Think of the “X” being an underscore.)

There are some rules that apply to both the LAL and the XLAL interfaces, and these will be described first. Then
the rules that are specific to the two interfaces will be described in separate sections.

page 3 of 26

LIGO-T990030

All functions in the LAL library that have external linkage shall be either LAL functions or XLAL
functions. The LAL functions shall conform to the general rules for functions and to the rules specific
to LAL functions. The XLAL functions shall conform to the general rules for functions and to the rules
specific to XLAL functions.

2 Coding style guidelines

2.1 Atomic data types
For historical reasons more than anything I can think of, LAL routines should use the LAL-specific atomic data types
(REAL4 rather than float, REAL8 rather than double, CHAR rather than char, UCHAR rather than unsigned char)
and should use INT2, UINT2, INT4, UINT4, INT8, and UINT8, which have a platform-independent size, rather than
short int, unsigned short int, int, unsigned int, long int, and unsigned long int (and especially
not long long or long double) which do not. LAL makes certain requirements on these types. For example,
REAL4 and REAL8 must be single and double precision IEEE-754 floating-point variables. Invariably they are equiv-
alent to float or double on a given system (or else LAL won’t work at all on that system). Similarly, a INT4 is a
four-byte integer (and it is assumed that each byte is eight bits on any system that LAL is installed), so it will be valid
over the expected range.

Sometimes when the size of an integer variable is not crucial (e.g., for return codes from XLAL functions), int is
used. It is also necessary to allow the int type in LAL for functions such as frexp. Standard C functions that have
arguments that are pointers to type double, e.g., modf, can receive a pointer to type REAL8 instead. That is, the type
REAL8 can be assumed to be equivalent to the type double.

2.2 Names of functions, variables, etc.
These rules are to define a standard namespace scheme. They apply to all functions with external linkage (i.e., those
functions not preceded by the static keyword), as well as types, macros, etc., in header files.

1. All function names use StudlyCaps and begin with either LAL or XLAL, e.g., LALExampleFunction, LALDoICare,
etc. Underscores are not used.

2. All types also use StudlyCaps and begin with a capital letter, e.g., LALMyType. Custom data structures must be
given names that try to avoid namespace conflicts; we suggest simply prefixing the name with LAL or XLAL or
with the name of one of the LAL atomic data types, e.g., REAL4.

3. Global variables of which there are NONE (except those specifically allowed by the Librarian), and fields
within a structure or a union, are in studlyCaps beginning with a lower case letter. Global variables will begin
with either lal or xlal, e.g., lalDebugLevel.

4. Macros are generally all in UPPERCASE and compound macro names may use underscores. As with the types,
to avoid namespace collisions, it is recommended that the macro begin with LAL_ or XLAL_.

5. Local variables can have any name that does not shadow a standard global symbol name (whether in LAL or in
a standard C library or other likely names). Thus, do not call a variable exit or LALMalloc or even pow. And
don’t declare the variable i at the top level of a function and then shadow it in a block within that function. This
is just good programming practice.

New data types will be declared as shown in this example for the data type LALMyType:

typedef struct
tagLALMyType
{

INT4 firstField;
REAL4 secondField;

}
LALMyType;

Note that the structure name is tagLALMyType.

page 4 of 26

LIGO-T990030

2.3 Header and source file conventions
The LAL API is defined by the installed header files (there may be additional header files that are used when compiling
LAL that are not installed, but these then do not form part of the API as they are not made available to the user). All
functions and variables with external linkage as well as any datatypes, enumeration constants, macros, etc., that form
part of the API must be defined in these installed header files. These installed header files will be installed in the
location where header files normally reside on a system in a subdirectory called lal. All header files should include
other LAL header files as follows: suppose that LALThisHeader.h needs to include LALAnotherHeader.h, then it
should do so as follows:

#include <lal/LALAnotherHeader.h>

All header files should be idempotent. This means they need to have include guards. To do so, the first two lines
of LALThisHeader.h should be something like:

#ifndef LALTHISHEADER_H
#define LALTHISHEADER_H

and the last line of the file should be

#endif /* LALTHISHEADER_H */

To be compatible with C++, all declarations should be wrapped as follows:

#ifdef __cplusplus
extern "C" {
#endif

〈declarations〉

#ifdef __cplusplus
}
#endif

It is important that all source files (header files, whether installed or not, and the C source files) contain the RCS
ID information, which is then put into the LAL library so that it can be examined later. The convention for this is to
have all .h have lines similar to these (for LALThisHeader.h):

#include <lal/LALRCSID.h> /* if no other LAL header has been included */
NRCSID(LALTHISHEADERH, "Id");

near the top. Since all LAL header files will ultimately include lal/LALRCSID.h, it only explicitly needs to be
included if no other LAL header has yet been included. Note that the string "Id" will be expanded by CVS into
some string describing the current version of the file. Similarly, a .c file such as LALThisSourceFile.c would have
the following

#include <lal/LALRCSID.h> /* if no other LAL header has been included */
NRCSID(LALTHISSOURCEFILEC, "Id");

2.4 Language requirements
LAL code should all be in “clean C,” i.e., that language that is a subset of both C and C++. This is not quite the same
as just the C programming language. Only C-style comments should be used and avoid any constructs that would
behave differently with C++-style comments. Names of variables, functions, etc., should not be any of the reserved
keywords or names for the library. Some of the keywords and reserved names are listed here. The LAL namespace
will assist in making sure that no conflicts arise. But even local variables names must be chosen carefully (e.g., so that
they aren’t the same as a C++ keyword). A list of keywords and reserved names, along with those standard C library
functions that can be used, is found in appendix A

page 5 of 26

LIGO-T990030

2.5 Filename conventions
Purely for the sanity of the Librarian, LAL has a rigid directory structure. LAL is composed of directories called
packages whose names consist of entirely lower-case letters with no underscores. Within each package are four sub-
directories called doc, include (which contains all the header files that are installed), src (which contains all the
source files other than the installed header files but including those header files that are not installed), and test.
Source files within these directories will be named with StudlyCaps (starting with a capital letter, no underscores).
Refer to the LAL Software Documentation [1].

For documentation purposes, a package contains a set of headers (the installed headers), which contain prototypes
for functions that are organized in modules of one or more functions, each module being a single .c file. Thus, all the
functions with external linkage in a .c file must be prototyped in the same header file in the same package.

3 Common rules for both the LAL and the XLAL functions

3.1 Function arguments
Function arguments must be one of the following (atomic) types: CHAR, UCHAR, INT2, UINT2, INT4, UINT4, INT8,
UINT8, int, REAL4, REAL8. In addition, functions may take a pointer as an argument. Structures or unions (includ-
ing COMPLEX8 and COMPLEX16) must not be passed directly to a function as an argument; pass a pointer instead.
Arguments may be qualified with const if desired.

All arguments to functions must be of one of the following types: CHAR, UCHAR, INT2, UINT2, INT4,
UINT4, INT8, UINT8, int, REAL4, REAL8, or a pointer to any object. XLAL functions may also have
no arguments (void), or a variable number of arguments of the above types (...).

3.2 Functions should not have any dependence on system environment
The first part of this rule is that functions should not do any file I/O since there should be no assumptions about
the nature of the filesystem. LAL is not supposed to assume POSIX. Furthermore, there should be no assumptions
about (or dependence on) the environment under which a LAL function is called. This will allow LAL routines to be
integrated into a wide variety of programming environments: they may be used in stand-alone programs or in loadable
modules integrated into other run environments. Specifically this means that routines in stdio.h are not allowed
(except for snprintf), several routines in stdlib.h including rand and srand (there are LAL replacements for
these), system, and getenv.

Functions will not perform any file I/O or have any dependence on the system environment. Specifically
the latter means that functions such as system, getenv, rand, srand will not be used.

3.3 Memory management
Memory should always be allocated or freed with one of the LAL custom memory managers: LALMalloc, LALCalloc,
LALRealloc, and LALFree, and not with malloc, calloc, realloc, and free. The LAL memory managers have
additional memory leak checking ability that will assist in debugging if the debug level is set appropriately.

All memory allocation shall be done with the functions LALMalloc, LALCalloc, or LALRealloc, and
shall be freed with the functions LALFree or LALRealloc; the functions malloc, calloc, realloc,
and free shall not be used.

Also, routines should free all memory allocated in that routine except for the memory that is explicitly created by
that routine, even if the routine exits with a failure code. This will prevent memory leaks. LAL provides a routine
LALCheckMemoryLeaks (which should not be called from any LAL function—instead it is for users of LAL to put at
the end of main) which will make sure that all memory allocated by LALMalloc (etc.) has been freed with LALFree.

In fact, it is a good idea not to allocate any temporary memory within a routine. All temporary memory needed
for a routine should be allocated by LAL functions that are designed for that purpose. Hence there are usually three
classes of LAL functions:

page 6 of 26

LIGO-T990030

• LALCreateFoo or LALInitFoo functions which create and initialize storage foo that the use will pass to...

• LALBar functions which uses the storage foo, and then the user calls...

• LALDestroyFoo or LALFinalizeFoo functions which destroys the storage in foo.

3.4 Functions must be reentrant and thread-safe
This rule essentially requires a functions behavior to depend only on its arguments. There should be no state saved in
static storage within the function. That is, never use the static keyword within a function. In addition, all variables
used by a function must be local to the function. That is, no global variables are allowed. (There are a few exceptions
to this, e.g., the reading of the global lalDebugLevel variable, but these types of exceptions are under the control of
the LAL librarian.)

Furthermore, use of routines that would cause a function to fail to be reentrant and thread-safe are not allowed. For
example, many of the time.h routines (asctime, ctime, gmtime, localtime), some of the string.h routines
(strerror and strtok), and other routines that are prohibited elsewhere for additional reasons.

All functions will be reentrant and thread-safe. All local variables must be automatic. No global vari-
ables will be used. Routines such as asctime, ctime, gmtime, localtime, strerror, and strtok

shall not be used as they are not reentrant and threadsafe.

3.5 Functions should always return control to the calling program
That is, routines should never explicitly raise signals, abort, or call the exit function, nor should they call functions
that might do so. Also, since LAL is a library, don’t change the behavior of exit or signals. Thus the routines exit,
atexit, and routines in signal.h and assert.h should not be used. (But note the exception that XLAL functions
do call an error handler, which can be set outside of the library to abort or exit.) Also, long-jumps are not allowed, so
any routine in setjmp.h is not allowed.

All functions will return control to the calling function. Functions such as exit, atexit, raise,
assert, abort shall not be used. Long-jumps shall not be used.

4 Rules for LAL functions
All LAL functions must return void and have as their first argument a pointer to a LALStatus structure type. Any
number of arguments may follow the status structure, though it is good style to be economical and to group miscel-
laneous data into structures where useful. The general convention is to have the first argument following the status
structure to be the primary output from the function (i.e., a pointer to the result that is not used as input to the function).
This general convention is for the convenience of the user who will come to appreciate that arguments are typically
ordered in LAL as

void LALREAL4Divide(LALStatus *status, REAL4 *result, REAL4 numerator,
REAL4 denominator)

rather than the following

void LALREAL4Divide(LALStatus *status, REAL4 numerator, REAL4 denominator,
REAL4 *result)

REAL4)

All LAL functions shall have names that begin with LAL followed by an uppercase letter.

All LAL functions shall have no return value (type void return).

page 7 of 26

LIGO-T990030

All LAL functions shall have a pointer to a LALStatus structure as their first argument. The contents
of the LALStatus structure will be populated appropriately to indicate success or failure of the function
call. The LALStatus structure is a linked list. If a LAL function (the sub-function) that is called from
within a LAL function fails (the top-function), the status structure returned by the sub-function shall be
the next element in the linked list of status structures returned by the top-function.

The status structure is maintained from the calling program and keeps a trace of all levels of LAL functions
being called (it is a linked list of status structures). If a failure occurs, the status structure can be used to identify
where and which sequence of functions have been called. The status structure is central to the “LAL interface.” The
status structure is not typically manipulated by hand. . . LAL provides several status handling macros for manipulating
the status structure and reporting errors. The use of these macros imposes additional conventions on writing LAL
functions. See the LAL Software Documentation [1] for a complete description of these conventions. As a brief
synopsis, this is what a the source code for a simple LAL function such as LALREAL4Divide (in file LALDivide.c)
might be:

#include <lal/LALDivide.h>
NRCSID(LALDIVIDEC, "Id");

void
LALREAL4Divide(

LALStatus *status,
REAL4 *result,
REAL4 numerator,
REAL4 denominator
)

{
INITSTATUS(status, "LALREAL4Divide", LALDIVIDEC);
ASSERT(result != NULL, status, LALDIVIDEH_ENULL, LALDIVIDEH_MSGENULL);
if (denominator == 0.0)

ABORT(status, LALDIVIDEH_EDIV0, LALDIVIDEH_MSGEDIV0);

*result = numerator / denominator;
RETURN(status);

}

Here the error codes LALDIVIDEH_ENULL and LALDIVIDEH_EDIV0 and the corresponding error messages LALDIVIDEH_MSGENULL
and LALDIVIDEH_MSGEDIV0 would be defined in LALDivide.h. The INITSTATUS structure is the first line of a LAL
function. It populates the status structure with useful information such as the function name and RCS ID (which are
the macro arguments). The RETURN macro prepares the status structure to indicate a nominal completion of the func-
tion; it should be used with any successful return. Error handling in this example is accomplished using either the
ASSERT or ABORT macros. The ASSERT macros are usually used to check the sanity of arguments; the first macro
argument is the result of a test that should be true otherwise the ASSERT macro will populate the status structure with
an error code and message (specified by the third and fourth macro arguments) and will return from the function. The
ASSERT functions are useful during debugging and development of code, and they are removed when LAL is compiled
in production mode, so they can be used liberally. Thus true failures are captured instead with the ABORT macro. Like
ASSERT, ABORT populates the status structure with an error code and message and returns, but it does not get removed
when LAL is compiled in production mode. The ABORT macro is the normal way of dealing with error conditions.

There are several other status structure macros that are needed when preparing a status structure within a LAL
function for calling another LAL function, for checking the result of that function call, and for handling situations
when memory needs to be cleaned up before the function exits. The conventions for these situations are all described
in the LAL Software Documentation. Here we will just note that these macros should always be used, and that a
LAL function should never declare its own LALStatus structure for use when calling other LAL functions... the
status structure used must always be one atta(t)ched to the provided status structure (so that the function call trace is
maintained).

5 Rules for XLAL functions
The goal is to have XLAL functions be as flexible as possible in their interface while still requiring strict rules on error
reporting. The XLAL functions are intended to be “lightweight” functions that can be used internally within the LAL

page 8 of 26

LIGO-T990030

library. They don’t have some of the burdens of LAL functions. In particular, they do not have a status structure. This
immediately implies to the following:

1. XLAL functions cannot call LAL functions. Since LAL functions require a status structure, and since this
status structure must initiate in the top-level program that interfaces with the LAL library (so that a trace of
function calls is returned), XLAL functions cannot call LAL functions, even by having a local status structure.
If you need to call a LAL function internally, the function must be a LAL function.

2. XLAL functions can be “lightweight.” Initializing the status structure, atta(t)ching new structures to the
list, setting the various fields of the status structure to indicate successes or failures, etc., can be somewhat
burdensome for both the programmer and for the computer. The lack of a status structure in XLAL functions will
relieve some of this burden and will hopefully allow for some of the tasks that are now done in large, monolithic
code blocks to be divided into smaller and more modular XLAL functions. Compilers can then easily optimize
code either by inlining the XLAL function or not depending on issues that the compiler understands (e.g., costs
of a function call vs. cache misses, etc.).

3. XLAL functions must report success or failure in other ways. This puts some more burden on the developers
to (i) make sure that the XLAL function correctly reports errors and (ii) understand how particular XLAL
functions report their errors and deal with these appropriately. The goal is to design some rules for the XLAL
functions that try to approach some degree of uniformity without overly hampering their interface.

For the purpose of providing a relatively uniform error reporting system, it is necessary to categorize XLAL functions
into four likely types, which are based on their return types.

All XLAL functions shall have a name beginning with XLAL followed by an uppercase letter.

XLAL functions shall not call LAL functions.

The return type of XLAL functions shall be one of: int, CHAR, INT2, INT4, or INT8 (integer-type return
XLAL functions); REAL4 or REAL8 (floating-point-type return XLAL functions); a pointer (pointer-type
return XLAL functions); or no return type (type void return XLAL functions).

5.1 Four kinds of XLAL functions
XLAL functions will be one of four types based principally on their return type, though this is also largely determined
by their functional nature. The way that the XLAL functions report an error through their return value depends on
which type it is. In addition, all XLAL functions will report errors by setting an XLAL error number, xlalErrno,
and invoking the XLAL error handler (described below). For each type of function there is a macro that will perform
all of these tasks.

1. XLAL functions that return an integer. These are XLAL functions that return one of CHAR, INT2, INT4,
INT8, or int.

Simple XLAL functions will return type int that will either be 0 to indicate success or -1 to indicate failure.
However, sometimes it is useful to have an XLAL function that counts things (e.g., nodes in a linked list). For
these functions it is useful for the count to be the return value. Therefore the rule for XLAL functions in this
category is:

All XLAL functions that return an integer type shall return a negative result to indicate a failure. In
addition, the xlalErrno shall be set to the appropriate error number and the XLAL error handler
shall be invoked.

This means that there cannot be an XLAL function that returns an unsigned integer type (including size_t).

To report an error from this type of function, use the macro XLAL_ERROR(func, errnum) where func is
the function name string and errnum is the XLAL error number (see below).

page 9 of 26

LIGO-T990030

2. XLAL functions that return a floating-point number. These are XLAL functions that return either REAL4 or
REAL8.

Such functions are quite useful for providing extended mathematical functions to do things such as compute
the value of a distribution at a certain point, etc. The value returned must still be checked to see if there
was an error. To flag an error, these functions should return a particular value that would be impossible to
obtain. The value is given by the constants XLAL_REAL4_FAIL_NAN which has the same bit pattern as the 32
bit hexadecimal integer constant 0x7fc001a1, or XLAL_REAL8_FAIL_NAN which has the same bit pattern as
the 64 bit hexadecimal integer constant 0x7ff80000000001a1 respectively. These constants are known as
“quiet” (as opposed to “signaling”) NaN (not-a-number) values. However, owing to the 1a1 at the end of the
hexadecimal representation, they are not likely to occur as a result of any calculation (e.g., 0.0/0.0) as it is
unlikely that any C library will use these particular NaN values. Thus these values are identifiable as failures
arising from XLAL functions and represent impossible results.

To summarize:

All XLAL functions that return a REAL4 floating-point type shall return the REAL4 floating-point
constant XLAL_REAL4_FAIL_NAN to indicate a failure. All XLAL functions that return a REAL8

floating-point type shall return the REAL8 floating-point constant XLAL_REAL8_FAIL_NAN to in-
dicate a failure. In addition, the xlalErrno shall be set to the appropriate error number and the
XLAL error handler shall be invoked.

To report an error from these types of functions, use one of the macros XLAL_ERROR_REAL4(func, errnum)

or XLAL_ERROR_REAL8(func, errnum) where func is the function name string and errnum is the XLAL
error number (see below). The result from a function call must be checked to see if one of these constants has
been returned. This can be done with the macros XLAL_IS_REAL4_FAIL_NAN(val) and XLAL_IS_REAL8_FAIL_NAN(val).

3. XLAL functions that return a pointer. These are often XLAL functions that are used to create structures, but
can also be functions that return a pointer to the output structure. An example of the latter, imagine the function:

COMPLEX8 *XLALCOMPLEX8Add(COMPLEX8 *result, COMPLEX8 *val1, COMPLEX8 *val2)
{
if (! result || ! val1 || ! val2) /* NULL argument */

XLAL_ERROR_NULL("XLALCOMPLEX8Add", XLAL_EFAULT);
result->re = val1->re + val2->re;
result->im = val1->im + val2->im;
return result;

}

The XLAL_ERROR_NULL(func, errnum) macro prints out the function name func, sets the XLAL errno
to errnum (in this case the error number is XLAL_EFAULT) and invokes the XLAL error handler (see below). It
then returns NULL. All functions of this type will indicate an error by returning NULL:

All XLAL functions that return a pointer type shall return the result NULL to indicate a failure. In
addition, the xlalErrno shall be set to the appropriate error number and the XLAL error handler
shall be invoked.

To report an error from this type of function, use the macro XLAL_ERROR_NULL(func, errnum) where
func is the function name string and errnum is the XLAL error number (see below).

4. XLAL functions that do not have a return value (return void. These are functions that really shouldn’t
fail. In practice, they are almost always free-type functions that destroy memory created by the create-type
functions of the previous function type. There is no way to return a success/failure flag via the return value so
all success/failure information must be returned through the XLAL error number xlalErrno.

All XLAL functions that do not return a result (i.e., they return void) shall set the xlalErrno to
the appropriate error number and shall invoke the XLAL error handler.

To report an error from this type of function, use the macro XLAL_ERROR_VOID(func, errnum) where
func is the function name string and errnum is the XLAL error number (see below).

page 10 of 26

LIGO-T990030

5.2 XLAL error numbers and error handlers
XLAL functions use the modifiable lvalue xlalErrno (think of it as a global int-type variable) to codify the nature
of a failure. It should not be used for any other purpose. The values that xlalErrno is allowed to have are controlled.
It is quite analogous to the standard C errno.

To use xlalErrno, set it to zero (no error) before calling an XLAL function; call the function; and then check the
value of xlalErrno. If it is non-zero, an error has occurred, and the value can be used to determine the nature of the
error. The following table contains the XLAL return codes and error numbers. Note that xlalErrno should only be
set to one of the error numbers (or zero if there is no error).

Code Value Meaning
Return codes (for XLAL functions that return int)
XLAL SUCCESS 0 Success
XLAL FAILURE −1 Failure
Error numbers
Standard error numbers
XLAL EIO 5 I/O error
XLAL ENOMEM 12 Memory allocation error
XLAL EFAULT 14 Invalid pointer
XLAL EINVAL 22 Invalid argument
XLAL EDOM 33 Input domain error
XLAL ERANGE 34 Output range error
Extended error numbers begin at 128
Common error numbers for XLAL functions
XLAL EFAILED 128 Generic failure
XLAL EBADLEN 129 Inconsistent or invalid vector length
Specific mathematical and numerical error numbers begin at 256
IEEE floating point error numbers
XLAL EFPINVAL 256 Invalid floating point operation
XLAL EFPDIV0 257 Division by zero floating point error
XLAL EFPOVRFLW 258 Floating point overflow error
XLAL EFPUNDFLW 259 Floating point underflow error
XLAL EFPINEXCT 260 Floating point inexact error
Numerical algorithm error numbers
XLAL EMAXITER 261 Exceeded maximum number of iterations
XLAL EDIVERGE 262 Series is diverging
XLAL ESING 263 Apparent singularity detected
XLAL ETOL 264 Failed to reach specified tolerance
XLAL ELOSS 265 Loss of accuracy
Failure from within a function call: “or” error number with this
XLAL EFUNC 1024 Internal function call failed

Note that the last error number, XLAL_EFUNC, corresponds to a bit that can be set on the current error number (using
a bitwise-or) to indicate that the this error occurred from within an internal function call, thereby preserving some
information about the error.

In addition to setting xlalErrno a failure condition should also invoke the XLAL error handler XLALErrorHandler.
This is a function pointer (actually it can be a macro that results in a function pointer) to a function; its type is

typedef void XLALErrorHandlerType(const char *func, const char *file, int line, int errnum);

Thus the error handler takes the name of the function from which it is invoked, func, the file name of the source,
file, the line number where it is called, line, and the XLAL error number errnum. The default error handler,
XLALDefaultErrorHandler, will print an error message when it is invoked. The user may set the error handler to a
different error handler, e.g., one that aborts when a failure occurs. However, the error handler should not be changed
within a LAL or an XLAL function. Replacing the error handler should always be done in the top-level program.

To assist in setting xlalErrno and invoking the error handler, the function

void XLALError(const char *func, const char *file, int line, int errnum);

page 11 of 26

LIGO-T990030

is provided which will perform both of these tasks. The arguments are the same as those of the error handler.
This function is called as part of the actions of the macros XLAL_ERROR, XLAL_ERROR_NULL, XLAL_ERROR_VOID,
XLAL_ERROR_REAL4, and XLAL_ERROR_REAL8, all of which take two argument: a character string containing the
name of the current function and the integer error number. These macros call XLALError with the filename given by
__FILE__, the line number __LINE__ where the macro occurs, and with the function name and error number. They
also return from the function with the appropriate failure return code (depending on which macro was used).

6 Documentation and unit tests
The conventions for these are not within the scope of this specification; they are described in the LAL Software
Documentation. It is a good guide that every function with external linkage should have a unit test that can be run
automatically to make sure it is (and continues to be) sane.

7 Other libraries required for LAL
LAL is not a stand-alone library. Two other libraries are required to build and use LAL. These are the “Fastest Fourier
Transform in the West (version 3)” FFTW3 library (compiled in both single and double precision formats) and the
“GNU Scientific Library” GSL library. The way these libraries are integrated into LAL is different.

The FFTW3 library is integrated by wrapping certain FFTW3 routines within LAL functions. Other LAL functions
should then use these wrapping functions rather than make direct calls to the FFTW3 API. This is possible because
only a few functions in FFTW3 are needed in LAL.

The GSL library provides many more functions than FFTW3. Some of these functions, e.g., those involving file
I/O, are not suitable for use within LAL. However, the vast majority of the functions in GSL are useful. To facilitate
their use within LAL, the macros CALLGSL(statement, status) and TRYGSL(statement, status) are
provided. These macros wrap the statement statement within a set of code designed to (i) ensure the thread-safety
and standard behavior of the error handler used by the GSL function call, and (ii) report any error conditions reported
by the GSL function in the LAL status structure status.

8 Notable exceptions

There will be exceptions to (nearly) all of these rules. Exceptions are under the strict control of the LAL
librarian.

Some parts of LAL must necessarily fail to conform to the above specifications. Clear examples include LALMalloc
and their kin routines which do not use a LAL status structure and do not have void return (apart from LALFree)
— indeed, since they must manage a heap, they are not really reentrant either. The LAL Librarian will endeavor to
make LAL conform to the specification outlined in this document as much as is practical, but there are occasions when
violations must be allowed. In such cases, the violations are under strict control of the LAL Librarian.

9 Beyond LAL... LALSupport, LALMetaIo, LALFrame
Of the LAL requirements, the most functionally limiting is the requirement that no I/O is allowed. This requirement
is in place to insulate the bulk of the library from requirements about the nature of the system on which a program is
being run. The philosophy is that since the library must always be integrated somehow into an executable program,
assumptions about the system should be made by the program rather than by the library; hence the I/O should be
contained within the program.

To assist a program with various I/O tasks and their integration with LAL, several libraries associated with LAL
are provided. These libraries do not need to conform to all of the LAL standards; in particular, their purpose is to
provide the I/O functions that are missing from LAL.

page 12 of 26

LIGO-T990030

The LALSupport, LALMetaIo, and LALFrame libraries contain routines that need not conform to all of
the LAL specifications; in particular, they contain routines that perform file I/O and/or require additional
libraries. Routines from these libraries are intended to be used along with LAL routines, but LAL
routines shall not call any routine from (or in any other way be dependent upon) these libraries.

Note that there are currently two official exchange data formats within the LSC: the XML-based “LIGO Lightweight”
LIGOlw format, and the binary “Interferometric Gravitational Wave Detector Data Frame Format” or “Frame” format.
Libraries with routines that are specialized for I/O with these formats are also available.

9.1 The LALSupport library
This library provides the basic file I/O routines that are used in conjunction with the LAL library. It is always built and
installed along with the LAL library.

9.2 The LALMetaIo library
This library provides I/O routines that are used to read/write the LIGO lightweight data format. These routines use the
METAIO library routines as their engine. This library is conditionally built and installed by LAL if the METAIO library
is available.

9.3 The LALFrame library
This library provides I/O routines that are used to read/write the Frame data format. These routines use the FRAME
library routines as their engine. This library is conditionally built and installed by LAL if the FRAME library is
available.

A Language issues
The C99 standard specifies certain keywords and standard library functions. Only a subset of these are suitable for
LAL functions. However, for maximum portability, one should avoid various extensions to the C99 keywords and
functions. Here are some guidelines on writing portable LAL code.

A.1 Namespace requirements
Here is a list of keywords and reserved names. These should be avoided when choosing names of LAL variables,
functions, etc. The LAL namespace will help avoid namespace collisions. The LAL namespace conventions are also
given.

Keywords

The code should avoid any of the following keywords that are present in C++ as symbol names:

and and_eq asm auto bitand bitor
bool break case catch char class
compl const const_cast continue default delete
do double dynamic_cast else enum explicit
export extern false float for friend
goto if inline int long mutable
namespace new not not_eq operator or
or_eq private protected public register reinterpret_cast
return short signed sizeof static static_cast
struct switch template this throw true
try typedef typeid typename union unsigned
using virtual void volatile wchar_t while
xor xor_eq

page 13 of 26

LIGO-T990030

It is not a good idea to use fortran or entry either as these are sometimes reserved. Of these keywords, the ones
that are C99 keywords are

_Bool _Complex _Imaginary auto
break case char const
continue default do double
else enum extern float
for goto if inline
int long register restrict
return short signed sizeof
static struct switch typedef
union unsigned void volatile
while

Of these there is (almost) no need to use auto, char, double, float, long, register, short, signed, unsigned,
or volatile.

Reserved names

According to the GNU C library, the following names are reserved (or may be reserved in the future) by the C library:

• All global functions or variables that begin with an underscore, e.g., whatever, are reserved.

• All identifiers that begin with two underscores or with an underscore followed by an uppercase letter e.g.,
whatever, Whatever, are reserved.

• Names beginning with the capital E and followed by a digit or uppercase letter are reserved (for error codes).

• Names beginning with is or to and followed by a lowercase letter are reserved.

• Names beginning with LC are reserved.

• Names of all existing mathematical functions but suffixed with either an f or an l are reserved.

• Names of all existing mathematical functions but suffixed with either an f or an l are reserved.

• Names beginning with SIG or SIG and followed by an uppercase letter are reserved.

• Names beginning with str, mem, or wcs and followed by a lowercase letter are reserved.

• Names ending with t are reserved.

Certain headers reserve names too. Since LAL is a library to be used by others, it is important to respect these
when coding the interface.

• Names prefixed with d are reserved in dirent.h.

• Names prefixed with l , F , O and S are reserved in fcntl.h.

• Names prefixed with gr are reserved in grp.h.

• Names suffixed with MAX are reserved in limits.h.

• Names prefixed with pw are reserved in pwd.h.

• Names prefixed with sa and SA are reserved in signal.h.

• Names prefixed with st and S are reserved in sys/stat.h.

• Names prefixed with tms are reserved in sys/times.h.

• Names prefixed with c , V, I, O, TC and names prefixed with B followed by a digit are reserved in termios.h.

page 14 of 26

LIGO-T990030

LAL namespace

The LAL namespace will assist in avoiding namespace conflicts. LAL reserves any name that is prefixed with LAL,
LAL , XLAL, XLAL , lal, or xlal followed by an uppercase letter. In addition LAL reserves names that begin
with CHAR, UCHAR, INT2, INT4, INT8, UINT2, UINT4, UINT8, REAL4, REAL8, COMPLEX8, COMPLEX16, and
LIGO followed by an uppercase letter.

A.2 Allowed functions from standard C
C libraries often have various extensions from the C99 standard C library, but for portability purposes only those func-
tions that are specified by the C99 standard should be used (note: LAL does require a hosted rather than freestanding
environment). Also, many of these should not be used in LAL because they would cause the LAL functions to vio-
late one of the above rules (e.g., would be used for file I/O, would cause a function to not be reenterant, etc.). For
completeness, these are the allowed standard C functions. There are a few others that could be allowed, but are not
recommended (e.g., sprintf, but LALSprintf is provided as a preferred alternative) and are not listed here for that
reason. Also listed here are macros and types that are defined in these headers. If a function or macro or type is not
somewhere on this list, you should probably not use it in a LAL function.

<stdio.h>
sscanf
EOF

<ctype.h>
isalnum isalpha iscntrl isdigit
isgraph islower isprint ispunct
isspace isupper isxdigit
tolower toupper

<string.h>
strcpy strncpy strcat strncat
strcmp strncmp strchr strrchr
strspn strcspn strpbrk strstr
strlen
memcpy memmove memcmp memchr
memset
NULL size_t

<math.h>
sin cos tan
asin acos atan atan2
sinh cosh tanh
exp log log10 pow
sqrt ceil floor fabs
ldexp frexp modf fmod
HUGE_VAL

<stdlib.h>
atof atoi atol
strtod strtol strtoul
bsearch qsort
abs labs div ldiv
NULL size_t div_t ldiv_t

<errno.h>
errno
EDOM ERANGE

<assert.h> NONE

<stdarg.h>

page 15 of 26

LIGO-T990030

va_start va_arg va_end

<setjmp.h> NONE

<signal.h> NONE

<time.h>
difftime mktime strftime
NULL size_t time_t struct tm

<limits.h> NONE

<float.h> NONE

B LAL Datatypes

B.1 Primitive Datatypes
The primitive datatypes are defined in a separate header LALAtomicDatatypes.h, which is included by LALDatatypes.h.
This is done in order to facilitate the interface between LAL and non-LAL modules. By including just LALAtomicDatatypes.h,
a non-LAL module can ensure that it is using the same arithmetic standard as LAL, without being burdened by LAL’s
more specialized structures.

Primitive datatypes are those that conceptually store a single number or quantity. They include both the atomic
datatypes and the complex datatypes.

Atomic Datatypes

Atomic LAL datatypes are platform-independent datatypes corresponding to the basic types in the C/C++ language.
However, since the C/C++ types are not necessarily the same across platforms, the actual mapping between LAL and
C/C++ datatypes may be different on different platforms. The following table lists the LAL atomic datatypes, their
size and range, and the C/C++ datatype to which they usually correspond.

Type Bits Range Usual C/C++ type
CHAR 8 ’\0’ to ’\255’ char
UCHAR 8 ’\0’ to ’\255’ unsigned char
INT2 16 −2−15 to 215 − 1 short
INT4 32 −2−31 to 231 − 1 int or long
INT8 64 −2−63 to 263 − 1 long long
UINT2 16 0 to 216 − 1 unsigned short
UINT4 32 0 to 232 − 1 unsigned int or long
UINT8 64 0 to 264 − 1 unsigned long long
REAL4 32 −3.4× 1038 to 3.4× 1038 float
REAL8 64 −1.8× 10308 to 1.8× 10308 double

The unsigned character and integer datatypes store their values according to the usual binary system. For signed
characters and integers, setting the most-significant bit indicates that the number formed from the remaining bits
should be added to the lower value of the range. The REAL4 and REAL8 datatypes should store values according to
the IEEE Standard 754 for Binary Floating-Point Arithmetic, which gives them the following precisions and dynamic
ranges:

REAL4 REAL8
Minimum positive subnormal 1.4× 10−45 4.9× 10−324

Minimum positive normal 1.2× 10−38 2.2× 10−308

Maximum finite normal 3.4× 1038 1.8× 10308

Minimum fractional difference 6.0× 10−8 1.1× 10−16

Significant decimal digits 6–9 15–17

page 16 of 26

LIGO-T990030

The minimum positive subnormal is the smallest positive representable number. The minimum positive normal is
the smallest positive number that can be represented with full precision; that is, one whose mantissa lies in the range
[0.5,1). The maximum finite normal is the largest representable number other than the reserved code for +∞. The
minimum fractional difference is the smallest fractional difference between consecutive representable numbers, or half
the difference between 1 and the next representable number. Significant decimal digits gives the number of decimal
digits used to represent the binary number in decimal notation: the first is the maximum number of digits that are
guaranteed not to change upon conversion to binary, the second is the number of digits required to represent a unique
binary quantity.

Complex datatypes

LAL represents complex numbers as structures with two floating-point fields, storing the real and imaginary parts.
These are considered primitive datatypes (rather than aggregate or structured datatypes) because they conceptually
represent a single number. Furthermore, atomic and complex datatypes are treated equivalently by LAL aggregate and
structured datatypes.

COMPLEX8: This structure stores a single-precision complex number in 8 bytes of memory. The fields are:

– REAL4 re The real part.

– REAL4 im The imaginary part.

COMPLEX16: This structure stores a double-precision complex number in 16 bytes of memory. The fields are:

– REAL8 re The real part.

– REAL8 im The imaginary part.

B.2 Aggregate datatypes
These datatypes store arbitrarily large sets or collections of primitive datatypes. At this level there is no physical
interpretation assigned to the objects (such as names or units); the aggregate datatypes simply collect and arrange
the primitive datatypes. The following types of aggregate datatypes are defines: vectors, arrays, sequences, vector
sequences, and array sequences.

〈datatype〉Vector: This structure stores an ordered set of n elements of type 〈datatype〉, which can be any primitive
datatype. The data are to be interpreted as being a point in an n-dimensional vector space. The fields are:

– UINT4 length The number of data n.

– 〈datatype〉 *data Pointer to the data array. The data are stored sequentially as data[0, . . . , n− 1].

〈datatype〉Array: This structure stores a set of elements of type 〈datatype〉, which can be any primitive datatype,
arranged as an m-dimensional array. That is, each element can be thought of as having m indices, Ai0···im−1

, where
each index ik runs over its own range 0, . . . , nk − 1. The total number of elements is then N = n0 × · · · × nm−1. In
memory the array is “flattened” so that the elements are stored sequentially in a contiguous block. The fields are:

– UINT4Vector *dimLength Pointer to a vector of length m, storing the index ranges (n0, . . . , nm−1).

– 〈datatype〉 *data Pointer to the data array. The data element Ai0···im−1
is stored as data[im−1+nm−2×(im−2+

nm−3×(· · · (i1 +n0× i0) · · ·))]; that is, the index of data[] runs over the entire range of an index ik+1 before
incrementing ik.

〈datatype〉Sequence: This structure stores an ordered set of l elements of type 〈datatype〉, which can be any
primitive datatype. It is identical to 〈datatype〉Vector and is retained for historical purposes only.

page 17 of 26

LIGO-T990030

〈datatype〉VectorSequence: This structure stores an ordered set of l elements of type 〈datatype〉Vector, where
〈datatype〉 can be any primitive datatype. Mathematically the sequence can be written as {~v(0), . . . , ~v(l−1)}, where
each element ~v(j) = (v

(j)
0 , . . . , v

(i)
n−1) is a vector of length n. In memory the elements are “flattened”; that is, they are

stored sequentially in a contiguous block of memory. The fields are:

– UINT4 length The number of vectors l.

– UINT4 vectorLength The length n of each vector.

– 〈datatype〉 *data Pointer to the data array. The data element v(j)i is stored as data[j × n+ i]; that is, the index
of data[] runs over the internal index of each vector element before incrementing to the next vector element.

〈datatype〉ArraySequence: This structure stores an ordered set of l elements of type 〈datatype〉Array, where
〈datatype〉 can be any primitive datatype. The indexing of an array sequence can get quite complicated; it helps to
read first the documentation for data arrays, above. Mathematically the data can be written as a set {A(j)

i0···im−1
, where

the sequence number j runs from 0 to l − 1, and each array index ik runs over its own range 0, . . . , nk − 1. The total
number of data in a given array element is then N = n0 × · · · × nm−1, and the total number of data in the sequence
is N × l. In memory the array is “flattened” so that the elements are stored sequentially in a contiguous block. The
fields are:

– UINT4 length The number l of array elements in the sequence.

– UINT4 arrayDim The number of data N (not the number of indecies m) in each array element of the sequence.

– UINT4Vector *dimLength Pointer to a vector of length m, storing the index ranges (n0, . . . , nm−1).

– 〈datatype〉 *data Pointer to the data. The element A(j)
i0···im−1

is stored as data[j×N + im−1 +nm−2× (im−2 +

nm−3 × (· · · (i1 + n0 × i0) · · ·))]; that is, the index of data[] runs over the internal indecies of each array
element before incrementing to the next array element.

B.3 Structured datatypes
These datatypes embed primitive and aggregate datatypes inside structures that define their physical meaning. Most of
these structures are wrappers for aggregate datatypes that store a physical quantity as a function of time or frequency.
Other structures store specific physical information, such as the GPS time, or the factored response function of a filter.

LIGOTimeGPS: This structure stores the time, to nanosecond precision, synchronized to the Global Positioning
System time reference. The zero time for the GPS standard is the moment of midnight beginning January 6, 1980,
UTC. The LIGOTimeGPS structure can represent times up to 68 years on either side of this epoch. (Note that this
is better than an equivalently-sized REAL8 representation of time, which can maintain nanosecond precision only for
times within 104 days of its reference point. However, the REAL8 representation does allow one to cover arbitrarily
long timescales at correspondingly lower precision.) The fields are:

– INT4 gpsSeconds The number of seconds since the GPS reference time.

– INT4 gpsNanoSeconds The number of nanoseconds since the last GPS second.

LALUnit: This structure stores units in the mksA system (plus Kelvin, Strain, and ADC Count). It also stores an
overall power-of-ten scaling factor. The fields are:

– INT2 powerOfTen The power p of ten scaling factor.

– INT2 unitNumerator[LALNumUnits] Array of unit numerators, Ni, i = 0 . . .LALNumUnits− 1.

– INT2 unitDenominatorMinusOne[LALNumUnits] Array of unit denominators-minus-one,Di, i = 0 . . .LALNumUnits−
1.

page 18 of 26

LIGO-T990030

Thus, the units are given by

10p×mN0/(1+D0)×kgN1/(1+D1)×sN2/(1+D2)×AN3/(1+D3)×KN4/(1+D4)×strainN5/(1+D5)×countN6/(1+D6) (1)

The indexes of the units can be specified using the constants LALUnitIndexMeter, LALUnitIndexKiloGram,
LALUnitIndexSecond, LALUnitIndexAmpere, LALUnitIndexKelvin, LALUnitIndexStrain, LALUnitIndexADCCount,
while LALNumUnits is the total number of units.

〈datatype〉TimeSeries: This structure represents a sequence of data of type 〈datatype〉 (where 〈datatype〉 can
be any primitive datatype), sampled over uniform time intervals t0, t0 + ∆t, . . . , t0 + l∆t. Essentially this is a
〈datatype〉Sequence with extra fields defining the sample times and the type of data being sampled. The raw data may
also have been heterodyned; that is, multiplied by a sinusoid of some frequency f0, low-pass filtered, and resampled,
in order to extract the behavior in a small bandwidth about f0. The fields are:

– CHAR name[LALNameLength] The name of the data series (i.e. the type of data being sampled).

– LIGOTimeGPS epoch The start time t0 of the data series.

– REAL8 deltaT The sampling interval ∆t, in seconds.

– REAL8 f0 The heterodyning frequency f0, in hertz.

– LALUnit sampleUnits The physical units of the quantity being sampled.

– 〈datatype〉Sequence *data The sequence of sampled data.

〈datatype〉FrequencySeries: This structure represents a frequency spectrum of data of type 〈datatype〉 (where
〈datatype〉 can be any primitive datatype), sampled over uniform frequency intervals f0, f0 + ∆f, . . . , f0 + l∆f .
Essentially this is a 〈datatype〉Sequence with extra fields defining the sample frequencies, the timestamp of the
spectrum, and the type of data being sampled. The fields are:

– CHAR name[LALNameLength] The name of the data series (i.e. the type of data being sampled).

– LIGOTimeGPS epoch The start time of the time series from which the spectrum was calculated.

– REAL8 f0 The lowest frequency f0 being sampled, in hertz.

– REAL8 deltaF The frequency sampling interval ∆f , in hertz.

– LALUnit sampleUnits The physical units of the quantity being sampled.

– 〈datatype〉Sequence *data The sequence of sampled data.

〈datatype〉ZPGFilter: This structure stores the complex frequency response of a filter or transfer function in a
factored form, where 〈datatype〉 can be either COMPLEX8 or COMPLEX16. One defines a (dimensionless) complex
frequency variable ζ(f∆t), where ∆t is the time sampling interval of the data to which the filter will be applied
(in the case of a digital filter), or some other reference timescale (in the case of an analog filter). The complex
response function can then be given (or approximated) as H(f) = g ×

∏
k(ζ − zk)/

∏
l(ζ − pl), where zk are the

complex zeros, pl are the complex poles, and g is the complex gain of the response function. Some common complex
frequency representations are the z-plane representation ζ(f∆t) = exp(2πif∆t), which maps the Nyquist interval
f ∈ [0, 1/2∆t) onto the upper-half unit circle in ζ, and the w-plane representation ζ(f∆t) = tan(πf∆t), which
maps the Nyquist interval onto the positive real axis in ζ. The fields of 〈datatype〉ZPGFilter are:

– CHAR name[LALNameLength] The name of the filter or transfer function. This should also mention its com-
plex frequency representation.

– REAL8 deltaT The sampling time or reference timescale ∆t for the filter, in seconds. If zero, it will be treated
as being equal to the sampling interval of the data being filtered.

– 〈datatype〉Vector *zeros Pointer to a vector storing the zeros zk of the filter.

– 〈datatype〉Vector *poles Pointer to a vector storing the poles pk of the filter.

– 〈datatype〉 gain The gain g of the filter.

page 19 of 26

LIGO-T990030

B.4 The LAL universal status structure LALStatus
This structure is the means by which LAL functions report their success or failure; it provides a useful mechanism for
tracking progress and errors through nested function calls. The error reporting structure is a linked list of LALStatus
structures, with each node corresponding to a given function in the current calling sequence. When a function termi-
nates successfully, its node is dropped from the list. If a function encounters an error, it must still return control to the
calling routine, reporting the error through its LALStatus. The calling routine must either deal with the error (pruning
the linked list if it succeeds), or else return an error itself. A fatal error will thus return a linked list of LALStatus
structures to the top-level routine, where the tail of the list identifies the source of the error, and the intermediate nodes
identify the sequence of nested function calls that led to the error. The fields of the LALStatus are as follows:

– INT4 statusCode A numerical code identifying the type of error, or 0 for nominal status.

– const CHAR *statusDescription A description of the current status or error.

– volatile const CHAR *Id The RCS ID string of the source file of the current function.

– const CHAR *function The name of the current function.

– const CHAR *file The name of the source file of the current function.

– INT4 line The line number in the source file where the current statusCode was set.

– LALStatus *statusPtr Pointer to the next node in the list; NULL if this function is not reporting a subroutine
error.

– INT4 level The current level in the nested calling sequence.

C The LALStatus structure
LAL routines store their current execution status in a linked list of structures of type LALStatus, with each node in
the list representing a subroutine in the current calling sequence. The LALStatus structure is described in Sec. B.4 of
the header LALDatatypes.h, but for completeness, we explain its fields below:

– INT4 statusCode A code indicating the exit status of a function. 0 represents a normal exit. Negative values
are reserved for certain standard error types. The authors of individual functions should assign positive values
to the various ways in which their code can fail.

– const CHAR *statusDescription An explanatory string corresponding to the numerical status code.

– volatile const CHAR *Id A character string identifying the source file and version number of the function
being reported on.

– const CHAR *function The name of the function.

– const CHAR *file The file name of the .c file containing the function code.

– INT4 line The line number in the .c file of the instruction where any error was reported.

– LALStatus *statusPtr A recursive pointer to another status pointer. This structure is used to report an error
in a subroutine of the current function. Thus if an error occurs in a deeply-nested routine, the status structure
returned to the main program will be the head of a linked list of status structures, one for each nested level, with
the tail structure reporting the actual error that caused the overlying routines to fail.

– INT4 level The nested-function level where any error was reported.

In almost all circumstances the programmer will not have to access this structure directly, relying instead on the
macros defined in the header LALStatusMacros.h. The exception is the statusCode field, which the programmer
may want to query directly.

The statusCode field is set to a nonzero value any time an error condition arises that would lead to abnormal
termination of the current function. Programmers can assign positive error codes to the various types of error that
may be encountered in their routines. Additionally, the following following status codes are reserved to report certain
standard conditions:

page 20 of 26

LIGO-T990030

Code Message Explanation
0 Nominal execution; the function returned suc-

cessfully.
-1 Recursive error The function aborted due to failure of a sub-

routine.
-2 INITSTATUS:

non-null status
pointer

The status structure passed to the function had
a non-NULL statusPtr field, which blocks
the function from calling subroutines (it is
symptomatic of something screwy going on in
the calling routine).

-4 ATTATCHSTATUSPTR:
memory
allocation error

The function was unable to allocate a
statusPtr field to pass down to a subroutine.

-8 DETATCHSTATUSPTR:
null status
pointer

The statusPtr field could not be deallocated
at the end of all subroutine calls; one of the
subroutines must have lost it or set it to NULL.

D The lalDebugLevel
The lalDebugLevel is a global variable, set at runtime, that determines how much and what kind of debugging
information will be reported. It is declared as an extern int in the header LALStatusMacros.h, and is therefore
accessible in any standard LAL module that includes this header. Note, however, that it is declared to be of the C type
int, which is usually but not always a 32-bit integer (on some systems it may only be 16 bits).

The value of lalDebugLevel should be thought of not as a number, but as a bit mask, wherein each bit in the
binary representation turns on or off a specific type of status reporting. At present, there are five types of status
reporting, each associated with a bit in lalDebugLevel.

Error messages tell the operator that a computation has terminated abnormally, and has failed to produce an ac-
ceptable result. Normally this is associated with assigning a non-zero statusCode; an error message is printed
automatically whenever a function exits with non-zero statusCode.

Warning messages tell the user that a computation is working, but with unusual behavior that might indicate an
unreliable or meaningless result. Warnings do not normally result in a non-zero statusCode.

Information messages tell the operator that the computation is proceeding as expected, and simply provide addi-
tional information about its progress.

Tracing messages are printed automatically a subroutine is called or returned; they simply track the current sequence
of function calls.

Memory information messages are a special type of information message; they tell the operator when and how
much memory is allocated or freed from the memory heap.

The module LALError.c defines functions for printing each of these types of status message. Each type of message
is turned on by setting the corresponding bit in lalDebugLevel to 1, and is suppressed by setting the bit to 0. This
header file #defines flags with numerical values designed to switch on the appropriate bits. Combinations of bits can
be switched on by combining these flags using the bitwise-or operator, |. The flags are defined as follows:

page 21 of 26

LIGO-T990030

Flag Octal Decimal Meaning
Primitive flags
LALNDEBUG 000000 0 No debugging or status messages
LALERROR 000001 1 Turn on error messages
LALWARNING 000002 2 Turn on warning messages
LALINFO 000004 4 Turn on info messages
LALTRACE 000010 8 Turn on tracing messages
LALMEMINFO 000020 16 Turn on memory messages
LALNMEMDBG 000040 32 Turn off all memory debugging
LALNMEMPAD 000100 64 Turn off memory padding
LALNMEMTRK 000200 128 Turn off memory tracking
LALMEMDBG 040000 16384 Turn on memory debugging without messages
Combination flags
LALMSGLVL1 000001 1 Error messages only
LALMSGLVL2 000003 3 Error and warning messages
LALMSGLVL3 000007 7 Error, warning, and info messages
LALMEMTRACE 000030 24 Memory and tracing messages
LALALLDBG 077437 32543 All messages and debugging

The most significant bit of lalDebugLevel has a special meaning in that it is not associated with any type of
status message. However, certain pieces of debugging or error-tracking code — such as the memory leak detection
code in LALMalloc.c — do not write status messages and are not associated with a lalDebugLevel bit; instead,
these pieces of code are turned on for any nonzero value of lalDebugLevel, unless the LALNMEMDBG bit is set.
Switching on only the most significant bit with LALMEMDBG activates this code without turning on any other error
reporting.

E LAL Constants

E.1 Mathematical Constants
The following constants define the precision and range of floating-point arithmetic in LAL. They are taken from the
IEEE standard 754 for binary arithmetic. All numbers are dimensionless.

Name Value Description
LAL REAL4 MANT 24 Bits in REAL4 mantissa
LAL REAL4 MAX 3.40282347× 1038 Largest REAL4
LAL REAL4 MIN 1.17549435× 10−38 Smallest positive REAL4
LAL REAL4 EPS 1.19209290× 10−7 2−(LAL REAL4 MANT−1)

LAL REAL8 MANT 53 Bits in REAL8 mantissa
LAL REAL8 MAX 1.7976931348623157× 10308 Largest REAL8
LAL REAL8 MIN 2.2250738585072014× 10−308 Smallest positive REAL8
LAL REAL8 EPS 2.2204460492503131× 10−16 2−(LAL REAL8 MANT−1)

LAL_REAL4_EPS and LAL_REAL8_EPS can be thought of as the difference between 1 and the next representable
REAL4 or REAL8 number.

The following are fundamental mathematical constants. They are mostly taken from the GNU C math.h header
(with the exception of LAL_TWOPI, which was computed using Maple). All numbers are dimensionless.

page 22 of 26

LIGO-T990030

Name Value Expression
LAL E 2.7182818284590452353602874713526625 e
LAL LOG2E 1.4426950408889634073599246810018922 log2 e
LAL LOG10E 0.4342944819032518276511289189166051 log10 e
LAL LN2 0.6931471805599453094172321214581766 loge 2
LAL LN10 2.3025850929940456840179914546843642 loge 10

LAL SQRT2 1.4142135623730950488016887242096981
√

2

LAL SQRT1 2 0.7071067811865475244008443621048490 1/
√

2
LAL GAMMA 0.5772156649015328606065120900824024 γ
LAL PI 3.1415926535897932384626433832795029 π
LAL TWOPI 6.2831853071795864769252867665590058 2π
LAL PI 2 1.5707963267948966192313216916397514 π/2
LAL PI 4 0.7853981633974483096156608458198757 π/4
LAL 1 PI 0.3183098861837906715377675267450287 1/π
LAL 2 PI 0.6366197723675813430755350534900574 2/π
LAL 2 SQRTPI 1.1283791670955125738961589031215452 2/

√
π

LAL PI 180 1.7453292519943295769236907684886127×10−2 π/180
LAL 180 PI 57.295779513082320876798154814105170 180/π

E.2 Physical Constants
The following physical constants are defined to have exact values. The values of c and g are taken from [2], patm is
from [3], while ε0 and µ0 are computed from c using exact formulae. They are given in the SI units shown.

Name Value Description
LAL C SI 299 792 458 m s−1 Speed of light c in free space
LAL EPSILON0 SI 8.8541878176203898505365630317107503× 10−12 C2N−1m−2

Permittivity ε0 of free space
LAL MU0 SI 1.2566370614359172953850573533118012× 10−6 N A−2

Permeability µ0 of free space
LAL GEARTH SI 9.80665 m s−2 Standard gravity g
LAL PATM SI 101 325 Pa Standard atmospheric pressure patm

The following are measured fundamental physical constants, with values given in [2]. When not dimensionless,
they are given in the SI units shown.

page 23 of 26

LIGO-T990030

Name Value Description
LAL G SI 6.67259× 10−11 N m2kg−2 Gravitational constant G
LAL H SI 6.6260755× 10−34 J s Planck constant h
LAL HBAR SI 1.05457266× 10−34 J s Reduced Planck constant h̄
LAL MPL SI 2.17671× 10−8 kg Planck mass
LAL LPL SI 1.61605× 10−35 m Planck length
LAL TPL SI 5.39056× 10−44 s Planck time
LAL K SI 1.380658× 10−23 J K−1 Boltzmann constant k
LAL R SI 8.314511 J K−1 Ideal gas constant R
LAL MOL 6.0221367× 1023 Avogadro constant
LAL BWIEN SI 2.897756× 10−3 m K Wien displacement law constant b
LAL SIGMA SI 5.67051× 10−8 W m−2K−4 Stefan-Boltzmann constant σ
LAL AMU SI 1.6605402× 10−27 kg Atomic mass unit
LAL MP SI 1.6726231× 10−27 kg Proton mass
LAL ME SI 9.1093897× 10−31 kg Electron mass
LAL QP SI 1.60217733× 10−19 C Proton charge
LAL ALPHA 7.297354677× 10−3 Fine structure constant
LAL RE SI 2.81794092× 10−15 m Classical electron radius re
LAL LAMBDAE SI 3.86159323× 10−13 m Electron Compton wavelength λe
LAL AB SI 5.29177249× 10−11 m Bohr radius a
LAL MUB SI 9.27401543× 10−24 J T−1 Bohr magneton µB

LAL MUN SI 5.05078658× 10−27 J T−1 Nuclear magneton µN

E.3 Astrophysical Parameters
The following parameters are derived from measured properties of the Earth and Sun. The values are taken from [2],
except for the obliquity of the ecliptic plane and the eccentricity of Earth’s orbit, which are taken from [3]. All values
are given in the SI units shown.

Name Value Description
LAL REARTH SI 6.378140× 106 m Earth equatorial radius
LAL AWGS84 SI 6.378137× 106 m Semimajor axis of WGS-84 Reference Ellipsoid
LAL BWGS84 SI 6.356752314× 106 m Semiminor axis of WGS-84 Reference Ellipsoid
LAL MEARTH SI 5.97370× 1024 kg Earth mass
LAL IEARTH 0.409092804 rad Obliquity of the ecliptic (2000)
LAL EEARTH 0.0167 Earth orbital eccentricity
LAL RSUN SI 6.960× 108 m Solar equatorial radius
LAL MSUN SI 1.98892× 1030 kg Solar mass
LAL MRSUN SI 1.47662504× 103 m Geometrized solar mass (length)
LAL MTSUN SI 4.92549095× 10−6 s Geometrized solar mass (time)
LAL LSUN SI 3.846× 1026 W Solar luminosity
LAL AU SI 1.4959787066× 1011 m Astronomical unit
LAL PC SI 3.0856775807× 1016 m Parsec
LAL YRTROP SI 31 556 925.2 s Tropical year (1994)
LAL YRSID SI 31 558 149.8 s Sidereal year (1994)
LAL DAYSID SI 86 164.09053 s Mean sidereal day
LAL LYR SI 9.46052817× 1015 m c×tropical year (1994)

The following cosmological parameters are derived from measurements of the Hubble expansion rate and of the
cosmic background radiation (CBR). Data are taken from [2]. In what follows, the normalized Hubble constant h0
is equal to the actual Hubble constant H0 divided by 〈H〉 = 100 km s−1Mpc−1. Thus the Hubble constant can be
written as:

H0 = 〈H〉h0 .

Similarly, the critical energy density ρc required for spatial flatness is given by:

ρc = 〈ρ〉h20 .

page 24 of 26

LIGO-T990030

Current estimates give h0 a value of around 0.65, which is what is assumed below. All values are in the SI units shown.

Name Value Description
LAL H0 SI 2× 10−18 s−1 Approx. Hubble constant H0

LAL H0FAC SI 3.2407792903× 10−18 s−1 H0/h0
LAL RHOC SI 7× 10−10 J m−3 Approx. critical energy density ρc
LAL RHOCFAC SI 1.68860× 10−9 J m−3 ρc/h

2
0

LAL TCBR SI 2.726K CBR temperature
LAL VCBR SI 3.695× 105 m s−1 Solar velocity with respect to CBR
LAL RHOCBR SI 4.177× 10−14 J m−3 Energy density of CBR
LAL NCBR SI 4.109× 108 m−3 Number density of CBR photons
LAL SCBR SI 3.993× 10−14 J K−1m−3 Entropy density of CBR

page 25 of 26

LIGO-T990030

References
[1] LAL Software Documentation, http://www.lsc-group.phys.uwm.edu/lal/lsd.pdf

[2] Particle Data Group, R. M. Barnett et al., Phys. Rev. D54, 1 (1996)

[3] K. R. Lang, Astrophysical Data: Planets and Stars. Springer-Verlag, New York (1992)

page 26 of 26

http://www.lsc-group.phys.uwm.edu/lal/lsd.pdf

	Introduction
	The LSC Algorithm Library
	The goal of the LAL software specification
	The elements of the library specification
	The LAL and XLAL interfaces

	Coding style guidelines
	Atomic data types
	Names of functions, variables, etc.
	Header and source file conventions
	Language requirements
	Filename conventions

	Common rules for both the LAL and the XLAL functions
	Function arguments
	Functions should not have any dependence on system environment
	Memory management
	Functions must be reentrant and thread-safe
	Functions should always return control to the calling program

	Rules for LAL functions
	Rules for XLAL functions
	Four kinds of XLAL functions
	XLAL error numbers and error handlers

	Documentation and unit tests
	Other libraries required for LAL
	Notable exceptions
	Beyond LAL... LALSupport, LALMetaIo, LALFrame
	The LALSupport library
	The LALMetaIo library
	The LALFrame library

	Language issues
	Namespace requirements
	Allowed functions from standard C

	LAL Datatypes
	Primitive Datatypes
	Aggregate datatypes
	Structured datatypes
	The LAL universal status structure LALStatus

	The LALStatus structure
	The lalDebugLevel
	LAL Constants
	Mathematical Constants
	Physical Constants
	Astrophysical Parameters

