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1 Introduction 
This note discusses the effect of small size defects on the HR surface in a FP cavity, analyzed using 
SIS. In this revision, (a) the loss round trip loss and (b) resonating field shapes are calculated when, 
in a small area on ETM, (1) the loss is not uniform or (2) the surface has a bump. 

2 Optical system 

 
Figure 1. FP cavity and small anomaly 

The optical system studied is the advanced LIGO arm with an anomaly placed on ETM. The shape 
of the anomaly is of Gaussian shape and is placed at (x=x0, y=0) and the anomaly is 0 out of 2w, 
i.e., 

d(x, y) = h ⋅ exp(− (x − x0 )
2 + y2

w2 ) :  (x − x0 )
2 + y2 < 2w

= 0 :  (x − x0 )
2 + y2 > 2w

 (1) 

A TEM00 mode field, which matches with the clean FP cavity, i.e., without the anomaly, is 
injected to the cavity and the stationary field is calculated.  
The round trip loss without the anomaly is 0.6ppm, due to the finite apertures of ITM and ETM.  

Field shapes shown below are the one on ITM surface coming from ETM, shown by an arrow in 
Fig.1. The effect is very small and fields called “deviation” is defined as 

δ (x, y) ≡ E(x, y)
E(0,0)

−
E0 (x, y)
E0 (0,0)

   (2) 

where E0(x,y) is the stationary state field without the anomaly and E(x,y) is the one with the 
anomaly. E0 is a almost clean TEM00 mode, and δ is the structure added by the anomaly, which is 
normalized by the amplitude at the center. 
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3 Loss anomaly 
The effect of loss due to a point defect is calculated using a localized loss with the Gaussian shape. 
When the loss is of the Gaussian shape, the total loss on one bounce is calculated to be 

Loss ≈ Pcav (
wa

wbeam

)2 2h ⋅ exp(− 2x0
2

wa
2 )   (3) 

when the size of the anomaly, wa, is much smaller than the beam size, wbeam.  
FFT-based simulation cannot simulate effects caused by point structures, which is smaller than the 
FFT grid size, which is a fraction of mm at the smallest.  
In order to see how good the approximation is, the round trip loss was calculated using three sets of 
(wa, h) which give same loss values: (wa, h) = (2mm, 0.0025), (1mm, 0.01), (0.5mm, 0.04). For all 
cases, x0 = 2cm, and wbeam = 6.2cm. The losses calculated using these values were 4.8ppm, 4.7ppm 
and 4.8ppm, which is comparable to the analytic point loss using Eq.(3), 4.2ppm. 

 

Figure 2. Deviation with loss anomaly 

Fig.2 is the deviation field when a loss anomaly with (wa, h) = (2mm, 0.0025) is placed at x0=2cm. 
As is seen from the figure, the effect of a localized anomaly affects the entire beam surface. The 
same effect is observed when there is a localized bump, which is discussed in the following section. 
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Figure 3. Deviations of real and imaginary component (units in ppm) 

Fig.3 shows the real and imaginary components of the deviations. E.g., the top-left plot is real part 
of δ(x,0). The spatial wavelengths of the structure is determined by the location of the anomaly, i.e., 
2cm in the case, both in x and y directions.  
The point scattering loss measured at Caltech lab using a small size laser (200 µm) was mostly less 
than 100ppm. On ETM, this point scattering loss will scatter out < (200 µm/6.2cm)2 x 100ppm ~ 
10-9. This is over 1000 times smaller than the example case used to create plots in Fig.3. So the 
deviation by anomalous loss will change the field amplitude only by 10-7.  
It is necessary to understand when there are many point scatterings how they affect collectively. 
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4 Shape anomaly 

 
Figure 4. Deviation with shape anomaly 

Fig.4 is the deviation when a Gaussian bump with height of 10nm, width of 5mm at location 
(x=6cm, y=0). As is observed above, the bump affects the entire beam, not localized around the 
bump. 

 
Figure 5. Deviations with different widths 
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Fig.5 shows the real and imaginary part of deviations when the dumps are placed at 2cm away from 
the center. Three lines show deviations with different sizes, 1mm, 5mm and 10mm, with same 
height of 10nm. For each width, the round trip loss is 3.5ppm, 68ppm and 210ppm. The round trip 
loss is roughly proportional to the square of the height, and if the height is 1nm, the loss values are 
~1/100 of these values. These loss values and deviation magnitudes are much larger than the case 
of the effect of the loss anomaly. 

 
Figure 6. Deviations with different bump locations 

Fig. 6 shows the deviations when a bump (width 5mm, height of 10nm) is placed at 2cm and at 
6cm. The blue line (x0=2cm) shows shorter spatial wavelength structure than the green line 
(x0=6cm).  

5 Thermal deformation in a small region 
Muzammil calculated thermal surface shape deformation by the absorption in a small region. Small 
beams hearted at (x=2cm,y=0cm) and the total absorption is 0.425W or 0.5ppm at the full aLIGO 
arm power. The beam size chosen are 0.5mm, 1mm and 2mm.  

Fig. 7 and Fig.8 shows the surface deformation when the absorption is 1/100 of 0.5ppm. Fig.7 is 
the 3D plot for the beam size is 1mm, and Fig.8 compares the shapes for the beam size of 1mm and 
2mm. For a larger beam size, the surface deformation is also broader. 
Fig.9 shows the field distortion defined in Eq.(2) when 1mm beam is absorbed at 0.01 x 0.5ppm 
rate. As were discussed in previous sections, the point absorption distorted the field in the entire are, 
not just a limited region. 
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Figure 7 Surface deformation in 3D (beam size 1mm) 

 
Figure 8 Surface deformation in 2D 
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Figure 9 Field on ITM with 1mm heating, 1/100x0.5ppm absorption 

Fig.10 shows the relation between the absorption loss vs round trip loss. As is seen from Fig.8, the 
surface distortion is in a region of a several mm with a height of a few nm when the absorption is 
1/100 of 0.5ppm. This induces round trip loss of a few ppm. This is consistent with the loss 
calculated in the previous section using a Gaussian shape. 

 
Figure 10 Absorption vs round trip loss 
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When this calculation was done, the transmittance and reflectance of ETM was changed in the 
small region to reflect the local loss due to absorption. But the round trip loss is almost unaffected 
by the change of the optical quantities (R and T), but is determined by the surface shape. This is 
also consistent with the generic calculation in Sec. 3. 

6 Point scattering using Huygen’s Integral 
[ The content of this section is a rewrite of Jean-Yves Vinet’s note. ] 
The Huyhen’s integral of the field propagation from z0 to z is expressed as follows. 

E(x, y, z) ≡ i
λ

dx0 dy0E0 (x0 , y0 , z0 )∫∫
exp(−ikρ)

ρ
cosθ

Δx = x − x0 , Δy = y − y0 , L = z − z0 , k = 2π / λ

ρ = Δx2 + Δy2 + L2 ,cosθ =
L
ρ

     (4) 

When a Gaussian field is reflected by a point defect, the reflected field is written as follows: 

E0 (x0 , y0 , z0 ) = TEM 00(z0 ) ⋅ exp(2ikf (x0 , y0 ))

TEM 00(z0 ) =
2
π
1
w0
exp(− x0

2 + y0
2

w0
2 )

     (5) 

For simplicity, the waist position is on the reflection surface and f is the point defect. 
When inserting Eq.(5) to Eq.(4), the reflected field can be written as follows keeping only the first 
order of f: 

E(x, y, z) = F0 (x, y, z) + dF(x, y, z)      (6) 

F0 (x, y, z) =
i
λ

dx0 dy0∫∫ TEM 00(z0 )
exp(−ikρ)

ρ
cosθ      (7) 

dF(x, y, z) = 2
π
1
w0

i
λ

dx0 dy0∫∫ (exp(2ikf ) −1)exp(− x0
2 + y0

2

w0
2 ) exp(−ikρ)

ρ
cosθ

≈
2
π
1
w0

i
λ

dx0 dy0∫∫ 2ikf (x0 , y0 )exp(−
x0
2 + y0

2

w0
2 ) exp(−ikρ)

ρ
cosθ

 (8) 

F0 is the unperturbed components and dF is the perturbed component by the point defect. The 
integral goes over the point defect where f is non-zero in a region O(1µm). For simplify, the defect 
is placed at the center of the reflection point. 
With the Fresnel approximation, the Huyhen’s integral becomes as follows. 

E(x, y, z) = exp(−ikL) ⋅Et (x, y, z)

Et (x, y, z) ≡
i

L ⋅ λ
dx0 dy0E0 (x0 , y0 , z0 )∫∫ exp(−ik Δx

2 + Δy2

2L
)
     (9) 

With this approximation, F0 and dF become as follows: 
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F0 (x, y, z) =
2
π
1
w0

i
L ⋅ λ

dx0 dy0∫∫ exp(−ik Δx
2 + Δy2

2L
)exp(− x0

2 + y0
2

w2 )

=
2
π

1
w(z)

exp(− x
2 + y2

w(z)2
)exp(iη(z) − i r2

2R(z)
)

= TEM 00(z)

  (10) 

dF(x, y, z) = 2
π
1
w0

i
L ⋅ λ

dx0 dy0∫∫ (exp(2ikf ) −1)exp(−ik Δx
2 + Δy2

2L
)exp(− x0

2 + y0
2

w0
2 )

≈
2
π
1
w0

i
L ⋅ λ

dx0 dy0∫∫ 2ikf (x0 , y0 )exp(−ik
Δx2 + Δy2

2L
)exp(− x0

2 + y0
2

w0
2 )

 (11) 

For the typical propagation distance (~km) and the beam size (~several cm), the expression of dF 
can be simplified as follows, which is the Fraunhofer approximation. 

dF(x, y, z) = 2
π
1
w0

i
L ⋅ λ

exp(−ik x
2 + y2

2L
)2ik dx0 dy0∫∫ f (x0 , y0 )exp(ik

x ⋅ x0 + y ⋅ y0
L

)  (12) 

The point loss is calculated by integrating the power of this perturbed field: 

po int Loss = dxdy dF(x, y, z) 2∫∫
=

32π
w0
2L2λ 4

dxdy∫∫ dx1 dy1 dx2 dy2 f (x1, y1)∫∫∫∫ f (x2 , y2 ) ×

exp(i2π x(x1 − x2 ) + y(y1 − y2 )
Lλ

)

=
32π

w0
2L2λ 4

dx1 dy1 dx2 dy2 f (x1, y1)∫∫∫∫ f (x2 , y2 )(Lλ)
2δ (x1 − x2 )δ (y1 − y2 )

=
32π
w0
2λ2

dx0 dy0∫∫ f (x0 , y0 )
2

= 32π ( a
w0
)2 (h

λ
)2

 (13) 

which comes out to be 3.9 x10-5 ppm with a = 2µm, w0=6cm, h=20nm and λ=1.064µm. 

The loss is proportional to the power hitting the point defect, and PL is the value estimated using 
the power at the origin. For N defects per mm2 region, the total loss is estimated to be the following. 
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totalLoss = dxdyPL∫∫ ⋅ exp(− 2(x
2 + y2 )
w0
2 ) × N(1 / m2 )

= PL ⋅ π
2
w0
2N(1 / m2 )

= 16π 2 h
λ

⎛
⎝⎜

⎞
⎠⎟
2

a2N(1 / m2 )

= (4πh
λ
)2a2N(1 / m2 )

= 0.22 × N(1 / mm2 )ppm

   (17) 

7 Scattering loss using near field calculation 
When a field is reflected by a surface with surface aberration f(x,y), the reflected field can be 
approximated by 

Eref = Eref
0 exp(iωt − ikz)exp(2ikf (x, y))       (18) 

where Eref
0 exp(iωt − ikz) is the reflected field without the aberration. When the aberration is small, 

i.e, kf <<1, this can be expanded keeping up to the second order of kf: 

Eref = Eref
0 exp(iωt − ikz)(1+ i2kf − 2(kf )2 )

= Eref
0 exp(iωt − ikz)(1− 2(kf )2 ) + Eref

0 exp(iωt − ikz)i2kf
   (19) 

The first term is the amplitude modulation and the second term, dF, is the phase modulation. The 
power of the second term is 

dP = dxdy∫∫ Eref
0 2

4k2 f 2

≈ Pref
0 4k2 dxdy∫∫ f 2

= Pref
0 4k2σ 2S

= Pref
0 4πσ

λ
⎛
⎝⎜

⎞
⎠⎟
2

S

       (20) 

where the variation of the field is assumed to be small compared to the variation of f, S is the area 
of the integration and σ2 is defined as follows: 

σ 2 =
dxdyf 2∫∫
S

        (21) 

The mean value of f is assumed to be 0, which corresponds to a displacement of the reflection 
plane. 

When you use Eq.(5) for the power (i.e., 2/πw2), σ=h and S=a2, this is the same result as Eq.(13), 
the result using a far field calculation based on Fraunhofer approximation. 

When the aberration f is expressed using Fourier expansion as 
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f (x, y) = anx,ny sin(nxω xx + nyω yy +ϕnx,ny )
nx,ny
∑      (22) 

the phase modulation term, dF, can be written as follows: 

dF = Eref
0 exp(iωt − ikz)i2kf

= Eref
0 k anx,ny

nx,ny
∑ (exp(iΦnxny

+ ) − exp(iΦnxny
− ))

Φ0 =ωt − kz
Φnxny

± ≡ Φ0 ± (nxω xx + nyω yy +ϕnx,ny )

     (23) 

The time evolution of the field wave front can be trace by requiring the phase to be constant. The 
phase of the amplitude modulated component is Φ0, and the field is moving along the z direction. 
The phase modulated part has two phases, Φ±, and each component of the field is going with an 
opening angle of  

 
ω x
2 +ω y

2 / k  n ⋅ λ / a         (24) 

where λ is the wavelength of the field, a is a typical spatial wavelength characterize the structure an 
n is a number larger than 1. 
After a propagation of distance L, the scattered light will be away from the beam axis by 

L ⋅ λ / a           (25) 

For an aberration whose size is less than 1mm, the phase modulated components miss the target 
mass more than L/1000 m, much larger than the test mass size. So it will be good assumption that 
the energy of the phase modulated term is the loss due to the aberration. 

8 Summary 
Effects caused by localized anomalies in a FP cavity are studied using SIS. Localized anomalies 
can disturb the entire field. The effect of shape anomaly seems to be more problematic than the 
effect of the loss anomaly. 

The surface deformation due to local heating was calculated using the surface deformation map by 
Muzzamil. If the point absorption rate is more than 1% of the nominal absorption rate, the round 
trip loss may become too large to affect the arm performance. 
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