
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T020205-v2 ADVANCED LIGO 28 April 2014

Models of the
Advanced LIGO Suspensions

in Mathematica™

Mark Barton

Distribution of this document:

DCC

This is an internal working note
of the LIGO Project.

California Institute of Technology

LIGO Project – MS 18-34
1200 E. California Blvd.

Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project – NW17-161

175 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

LIGO Hanford Observatory
P.O. Box 1970

Mail Stop S9-02
Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

LIGO Livingston Observatory

P.O. Box 940
Livingston, LA 70754

Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

Advanced LIGO LIGO-T020205-v2

 2

Table of Contents
1	
 Introduction .. 5	

1.1	
 Purpose and Scope ... 5	

1.2	
 References ... 5	

1.3	
 Version history ... 5	

2	
 Overview ... 5	

3	
 Theory ... 6	

3.1	
 Method of calculation .. 6	

3.1.1	
 Basic Normal Mode Calculation ... 6	

3.1.2	
 Categories of Coordinates and the Master Potential Matrix ... 7	

3.1.3	
 The Effective Potential Matrix ... 8	

3.1.4	
 The Equation Of Motion Matrix and the Coupling Matrix .. 8	

3.1.5	
 The Coupling Matrix .. 9	

3.1.6	
 Damping .. 9	

3.1.7	
 Dissipation dilution ... 10	

3.2	
 Potential terms for standard elements ... 11	

3.2.1	
 Wires ... 11	

3.2.2	
 Springs .. 12	

3.3	
 Dynamics ... 13	

3.4	
 Dynamics via frequency dependent matrices .. 13	

3.5	
 Dynamics via state-space formalism .. 13	

4	
 Illustration of concepts with a toy model .. 15	

4.1	
 Stiffness and coupling matrices .. 15	

4.2	
 The mass matrix ... 16	

4.3	
 Basic transfer functions ... 17	

4.4	
 The state-space matrices ... 17	

5	
 Implementation in software ... 18	

5.1	
 Directory structure .. 18	

5.2	
 Phases of the calculation .. 19	

5.3	
 Utility functions .. 19	

5.4	
 Model specific utilities ... 20	

6	
 Models of Particular Interest ... 20	

6.1	
 Triple Model ... 20	

6.2	
 Quad Model .. 21	

6.3	
 “Lite” and “Xtra-Lite” Versions of the Triple and Quad Models 21	

Advanced LIGO LIGO-T020205-v2

 3

6.4	
 “Lateral” Versions ... 22	

6.5	
 “V5” Violin Mode Versions .. 22	

7	
 Exploring the supplied cases ... 22	

7.1	
 Computing cases from scratch versus using precomputed results 22	

7.2	
 Stages of the calculation .. 22	

7.3	
 Available listing and plotting commands ... 24	

7.3.1	
 Frequencies ... 24	

7.3.2	
 Mode shape tables ... 24	

7.3.3	
 Mode shape plots .. 25	

7.3.4	
 Force transfer function plots ... 26	

7.3.5	
 Displacement transfer function plots .. 26	

7.3.6	
 Thermal noise plots ... 26	

7.4	
 Default numerical values ... 26	

7.5	
 Creating new cases of the existing models ... 27	

7.6	
 Using overrides ... 28	

8	
 The definition of the model .. 28	

8.1	
 Name, Description and Version .. 29	

8.2	
 Preliminaries .. 29	

8.3	
 The model definition proper ... 29	

8.3.1	
 The master variable list: allvars .. 29	

8.3.2	
 The list of “floats” ... 30	

8.3.3	
 The parameter list: allparams .. 30	

8.3.4	
 Coordinate lists for rigid bodies and points on them .. 30	

8.3.5	
 Items with gravitational potential energy: gravlist .. 31	

8.3.6	
 Wires: wirelist .. 31	

8.3.7	
 Springs: springlist .. 33	

8.3.8	
 The kinetic energy: kinetic .. 34	

8.3.9	
 Values of constants: defaultvalues .. 34	

8.3.10	
 Approximation to equilibrium position: startpos ... 35	

8.3.11	
 Extra potential terms for debugging: preeqtermlist and posteqtermlist 36	

8.4	
 Model dependent diagnostic utilities .. 36	

8.4.1	
 Angular velocity transformation matrices: e2s, e2b and e2ni 36	

8.4.2	
 Plotting routines: eigenplot[] ... 37	

8.4.3	
 Listing routines: pretty[] .. 38	

8.4.4	
 Input and output vectors ... 38	

9	
 The calculation of the model ... 38	

9.1	
 The Calculate[] function .. 38	

9.2	
 Stage 0A – normal modes without wire bending elasticity .. 39	

9.2.1	
 Numerical Substitutions: constval .. 39	

Advanced LIGO LIGO-T020205-v2

 4

9.2.2	
 Numerical start position for minimization of the potential: startval 39	

9.2.3	
 Coordinates that don’t participate in the minimization: nonoptcoords and
nonoptval ... 39	

9.2.4	
 Variables that participate in the minimization: optcoords 39	

9.2.5	
 The base list of potential terms for the minimization: potentialtermlist 39	

9.2.6	
 Additional wire terms for the minimization: potentialtermlistWBnr,
potentialtermlistWTnr, potentialtermlistWEnr .. 40	

9.2.7	
 The full expression for the potential: potential ... 40	

9.2.8	
 The numeric potential: potentialNN ... 40	

9.2.9	
 The minimization: potential0 and optval .. 40	

9.2.10	
 Velocity variables: velocities ... 40	

9.2.11	
 The kinetic energy matrix: kineticN and kineticmatrix 40	

9.2.12	
 The potential used for the normal mode calculation: potentialtermlist0 40	

9.2.13	
 The Stage 0A damping-specific potential matrices: potentialmatrices0T 41	

9.2.14	
 The Stage 0 potential matrix: potentialmatrix0 .. 41	

9.2.15	
 The Stage 0 normal modes: eigenvalues0, eigenvectors0 and Hz0 41	

9.3	
 Stage 0B – damping without wire bending elasticity .. 41	

9.3.1	
 Potential matrices without tension: potentialmatrices0NT 41	

9.3.2	
 The equations of motion function and the coupling function: eom0 and coupling0
 41	

9.4	
 Preparation for Stages 1 and 2 ... 41	

9.4.1	
 Wire angles: relaxval .. 41	

9.4.2	
 Additional potential term lists: potentialtermlistWB and
potentialtermlistWE ... 42	

9.5	
 Stage 1A – normal modes and damping with wire bending elasticity 42	

9.6	
 Stage 1B – normal modes and damping with wire torsional elasticity 42	

9.7	
 Stage 2 – normal modes and damping with additional wire stretch due to bending ... 43	

9.8	
 Exporting state-space matrices ... 43	

9.8.1	
 Building state-space matrices with model results ... 43	

9.8.2	
 Exporting state-space matrices ... 43	

10	
 Appendix ... 43	

10.1	
 Download locations .. 43	

10.2	
 Directory structure .. 44	

10.2.1	
 Toolkit Directory .. 44	

10.2.2	
 Model/Case/Calculation Directories ... 45	

10.2.3	
 Detail of directory structure for typical model ... 45	

10.2.4	
 Directory structure differences from older versions ... 47	

10.2.5	
 Flow of control between code in toolkit models, cases and calculations 48	

Advanced LIGO LIGO-T020205-v2

 5

1 Introduction

1.1 Purpose and Scope
This document explains the physical assumptions, internal structure and usage of the models of the
Advanced LIGO suspensions written in Mathematica by Mark Barton (“the Mathematica model” as
opposed to “the Matlab model” of Calum Torrie, Ken Strain et al.).

1.2 References
Ultralow frequency oscillator using a pendulum with crossed suspension wires. M.A. Barton and
K. Kuroda, Rev. Sci. Instrum. 65(12): 3775, 1994.
A low-frequency vibration isolation table using multiple crossed-wire suspensions. M.A. Barton et
al., Rev. Sci. Instrum. 67(11): 3994, November 1996
P000039-00: Matthew Husman, PhD Thesis, 1999, University of Glasgow.

T050255-07: Investigation into blade torsion, blade lateral flexibility, and the effect they have on
blade and wire performance, I. Wilmut et al.

T050172-00: Modifications to Quad Controls Prototype to fix the “d’s”, C.I. Torrie.
T050257-01: Quad Pendulum Controls Prototype - Identification of Modes, M.A. Barton

T020011-00: Suspension model comparisons, M.A. Barton.
T070101-00: Dissipation dilution, M.A. Barton.

T080188-v1: Models of the Advanced LIGO Suspensions in MATLAB

1.3 Version history
1/15/03: Pre-rev-00 draft. Discusses quad model v 2.0.3.

2/9/03: Rev. 00.
3/2/2005: Rev. 01. Discusses quad and triple models 3.3 and toolkit version 2.0.

9/13/2006: Rev. 02 draft. Added theory of transfer functions and state-space matrix export. Added
illustration of concepts using a toy model.

6/4/08: Rev. 02 final. Added References section. Mentioned quad lateral model, violin mode
models, Mathematica v.6 changes. Added diagram for toy model section. Later added to new DCC
as T020205-v1.
7/8/12ff: -v2 draft. Major rearrangement. Stuff on SVN-compatibile directory structure.

2 Overview
This document describes a toolkit of utilities in Mathematica for setting up models of mass-wire-
spring systems, plus triple, quad and other pendulum models based on it. Throughout this
document and the toolkit code, a “model” is a specification of particular arrangement of toolkit
elements (i.e., masses, wires, and springs). A model definition will include a default set of

Advanced LIGO LIGO-T020205-v2

 6

numerical values mostly for debugging, but these are intended to be overridden in whole or part. A
“case” of a model goes on to specify a particular set of numeric values of actual interest.

The toolkit evolved out of a calculation of the properties of a device called the X-pendulum
developed as a possible low-frequency vibration isolator for the Japanese TAMA project (Barton et
al., 1994, 1996). At the time of version -00 of this document, the toolkit was merely a set of
Mathematica functions that had to be copied into each model description file. As the number of
models increased, the task of keeping the various copies synchronized became onerous, so the
functions from v2.5 of the quad model were encapsulated as a Mathematica package,
PendUtil.nb. The version of the toolkit described in this document is v5.9.

The basic physical objects which the toolkit allows for are:
(i) Rigid bodies with up to 6 degrees of freedom

(ii) Massless wires with longitudinal, transverse and torsional elasticity
(iii) Springs described by a 6x6 matrix of elastic constants and a 6x1 vector of preload forces

All sources of elasticity can have arbitrary frequency dependent damping.
A number of models of interest to LIGO have been created, including one for a generic GEO-style
triple suspension (as for the HLTS, HSTS and BSFM suspensions) and one for a quad suspension.
Additional models can be defined fairly easily by using existing ones as templates.

The toolkit and a selection of models have been published on the SUS group SVN repository.

3 Theory

3.1 Method of calculation

3.1.1 Basic Normal Mode Calculation
The primary calculation is based on the method of normal modes as described in Goldstein,
“Classical Mechanics”. Conceptually such a calculation has the following steps:

(i) Express the potential energy of the system in terms of the coordinates:

�

EP = EP x1,...xn() = EP x()

(ii) Express the kinetic energy of the system in terms of the coordinates and coordinate
velocities:

�

EK = EK x1,...xn, ˙ x 1,...˙ x n()

(iii) Minimize the potential energy to find the equilibrium values of the coordinates.

�

x eq = x1 eq(),...xn eq()()T

(iv) Differentiate the potential energy of the system w.r.t. pairs of coordinates at equilibrium to
create a matrix of second derivatives, a.k.a., the potential energy matrix or the stiffness
matrix.

Advanced LIGO LIGO-T020205-v2

 7

�

K : Kij = ∂EP

∂xi∂x j x= x eq

�

EP = EP x eq() + 1
2 x − x eq()TK x − x eq()

(v) Differentiate the kinetic energy of the system w.r.t. pairs of coordinate velocities at
equilibrium to create a matrix of second derivatives, a.k.a., the kinetic energy matrix or the
mass matrix.

�

M : Mij = ∂EK

∂˙ x i∂˙ x j ˙ x = 0
x= x eq

�

EK = 1
2 ˙ x TM˙ x

(vi) Assume a sinusoidal solution, putting the equation of motion in the form

�

Ke i = ω i
2Me i

(vii) Do a simultaneous diagonalization of the stiffness and mass matrices to obtain the
eigenfrequencies

�

fi = ω i 2π and eigenmodes

�

e i:

�

x i t() = x eq + e ie
ω i t

However for a practical calculation step (iv) needs to be considerably elaborated, partly for
efficiency and partly to support additional calculations such as transfer functions and thermal noise
estimates.

3.1.2 Categories of Coordinates and the Master Potential Matrix
The coordinates used in the normal mode analysis need to be independent and to describe the
position and orientation of all the masses that move during a normal mode oscillation. However
two other classes of coordinates are of interest.

First there are the position/orientation coordinates of any junctions directly between elastic
elements with no associated mass. For the purposes of the toolkit, these have been named floats,
because they float between mass positions under the influence of the adjacent elastic elements.

�

q = q1,...qm()T

It is convenient to use such junctions and such coordinates in the specification of some problems,
but the coordinates are not independent for the purposes of the normal mode analysis and must be
suppressed by solving the equations for force equilibrium at the junction in terms of the true normal
mode coordinates.
Second, there are the position/orientation coordinates of the structure and any other points linked to
the pendulum proper by elastic elements.

�

s = s1,...sl()T

These are fixed at nominal positions

Advanced LIGO LIGO-T020205-v2

 8

�

snom = s1(nom),...sl(nom)()T

for the purposes of the normal mode analysis but are taken as movable for the purposes of
calculating a transfer function from displacement.

To cope with these complications it is convenient to consider a master potential matrix P with
second derivatives with respect to all three classes of coordinates:

EP = EP xeq ,qeq ,snom() + 1
2 xT − xeq

T qT − qeq
T sT − snom

T()P
x − xeq
q− qeq
s − snom

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

The master potential matrix has a block structure with many useful submatrices:

P =

K CXQ CXS

CQX Q CQS

CSX CSQ S

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

 (

�

CXQ =CQX
T etc)

K , Q and S specify the interactions among a class of coordinates with the other two types held
fixed. CXQ and the like specify the cross-coupling from one class to another.

3.1.3 The Effective Potential Matrix
If there are a non-zero number of float coordinates, then the

�

K submatrix of

�

P is no longer the
appropriate one to use in the normal mode analysis, because it contains partial derivatives taken
with

�

q constant. Rather, we need an effective value,

�

K eff , evaluated with the

�

qi at their dynamic
equilibrium positions at all time. With the structure at its nominal position,

�

s = snom , the equilibrium
positions are

�

q = qeq −Q
−1CQX x − x eq()

so that

�

K eff =K −CXQQ
−1CQX

3.1.4 The Equation Of Motion Matrix and the Coupling Matrix
To calculate a transfer function from displacement input of the structure, we need the matrix that
gives the coupling of displacements of the

�

s coordinates to generalized force inputs at the

�

x
coordinates. If there are no floating coordinates, this is simply the submatrix

�

CXS . However as with
the normal mode analysis, there are additional terms due to the variation in

�

q:

�

fxs =CXS(eff) s− snom() = CXS −CXQQ
−1CQS() s− snom()

If we also allow for other generalized forces

�

fx acting directly on

�

x , the equation of motion during
a transfer function test is

�

K eff x − x eq() + M˙ x = fx + CXS(eff) s− snom()

Advanced LIGO LIGO-T020205-v2

 9

In the frequency domain this becomes

�

K eff x − x eq() − 2πf()2M x − x eq() = fx +CXS(eff) s− snom()

where

�

f is frequency in Hz. Numerically, this can be solved for

�

x for a sequence of different
values of

�

f to give force-input or displacement-input transfer functions as a function of frequency.
The left hand side of the above equation can be conveniently rewritten in terms of an equation of
motion matrix

E = Keff − (2π f)
2M

3.1.5 The Coupling Matrix
When models are put in state-space form for use in Simulink or E2E, it may be useful to couple one
model to another, such as and in particular a SUS pendulum model to a model of the corresponding
SEI platform. This requires calculating the forces on the support, which are given by a sum of two
terms. The component generated as the pendulum moves but the structure remains constant is given
by the transpose of the coupling matrix:

fsx = CSX (eff) x − xeq() = CSX −CSQQ
−1CQX() x − xeq() = CXS(eff)

T x − xeq()

This would be incorporated in the state-space C matrix. The component generated as the pendulum
remains constant but the structure moves is

fss = S(eff) s − snom() = S −CSQQ
−1CQS() s − snom()

This would be incorporated in the state-space D matrix. Together the two terms give the total force
for arbitrary relative motion of the support and pendulum.

3.1.6 Damping
Lossiness in elastic components can be represented by a complex elastic constant:

�

k→ k0 ′ ε ω() + i ′ ′ ε ω()() (where

�

ω = 2πf)

where the real and imaginary multipliers

�

′ ε and

�

′ ′ ε are related by the Kramers-Krönig relations:

�

′ ε ω() −1= 2
π
PV

′ ′ ε x()
x −ω−∞

∞

∫ dx

�

′ ′ ε ω() = − 2
π
PV

′ ε x() −1
x −ω−∞

∞

∫ dx

Provided the losses are small, the frequency dependence of the real part can be neglected and the
imaginary part can be identified as a frequency dependent loss angle:

�

k→ k0 1+ iφ f()()

Two issues need to be handled to apply this in a general way in the context of the toolkit. First,
different elastic components will have damping multipliers of different magnitude and frequency
dependence. This is handled by breaking up the total potential into individual terms and processing
them independently. If dissipation dilution is not applicable (but see next section):

Advanced LIGO LIGO-T020205-v2

 10

�

P = Pi∑ ′ ε i f() + i ′ ′ ε i f()() ………(

�

i=1…number of terms; no dissipation dilution)

This has a number of advantages:

• It is efficient to generate the

�

Pi because each typically depends on only a few variables.
(This permits an optimization in which the variables used in a particular term are
determined by a preliminary test, with only those variables then iterated over. This turns out
to be much quicker than letting Mathematica discover for itself in the course of doing the
partial derivatives that most terms are independent of most variables.)

• It is efficient to organize the

�

Pi (which are numeric) separately from the

�

′ ε i and

�

′ ′ ε i (which
are symbolic) and combine them as late as possible in the calculation. This also allows
different values of

�

′ ε i and

�

′ ′ ε i to be tried without a costly recomputation of the

�

Pi .

• It is easy to allow the potential terms for wire bending and torsion to be optional. This is
important because they are very costly to compute, but typically small in magnitude and
significant only for the calculation of thermal noise.

• It also facilitates the handling of dissipation dilution (see below).

3.1.7 Dissipation dilution
Naively implementing the calculation for

�

P as a sum over the

�

Pi with damping multipliers will
typically overestimate the damping (and the thermal noise) because it does not allow for dissipation
dilution. Dissipation dilution arises because there are two quite different ways of creating a
restoring force on an object using a lossy spring (T070101-00). The first is to harness the spring
directly to the object. This produces first-order changes in the length of the spring when the object
undergoes an oscillation. Thus the dissipated energy is also first-order in the amplitude. The second
method is to use the spring to generate a static force and to use some mechanical device to change
the mechanical advantage between the static force and the force on the object. A violin string with
longitudinal but not bending loss is the canonical example of this case. Longitudinal tension is used
to create a lateral restoring force. First-order lateral excursions of the string produce only a second-
order change in length and thus only a second-order loss in energy, which for small amplitudes is
negligible.

A pendulum, of the sort the toolkit is intended to simulate, is an interesting variation on the second
case. As a matter of physical reality, there are two independent reasons why a pendulum with a
lossy fibre should have low net loss. The first is often remarked on: that the potential energy
generated during lateral excursions of the bob is stored not in extension of the fibre but
gravitationally. The second is that the restoring force on the bob is the lateral component of the
tension in the fibre. A pendulum would still be low-loss even if the tension were provided not by
gravity but by a second wire connecting the bob to a mechanical ground below, creating a system
similar to a violin string, just with a mass in the middle.

For more on this point, and dissipation dilution more generally, see T070101-00. The upshot is that
since the low-loss component of the restoring force is produced by a static force coupled through a
variable mechanical advantage, the easy way to isolate it is to evaluate the second derivatives
twice, once with the full potential and once with all the tensions and static forces arbitrarily set to
zero:

Advanced LIGO LIGO-T020205-v2

 11

�

P = Pi tension _ off ′ ε i f() + i ′ ′ ε i f()()()∑ + Pi tension _ on −Pi tension _ off()∑

Any restoring force that persists with the tension off involves length changes of the associated
spring that are first-order in oscillation amplitude, and so produces an energy loss that is first-order
in the stored energy.
Because the wire bending potential terms are small and costly to compute (see Section 3.2.1), they
are not computed twice. However since the contribution to static tension due to wire bending is
typically trivial, this is normally a satisfactory approximation.

3.2 Potential terms for standard elements

3.2.1 Wires
The treatment of the wires was based on the conceptual framework used by Matthew Husman in
P000039-00. However the Maple code written by Matt was not adapted - rather, the calculation
was reimplemented from scratch in Mathematica.

A wire is considered to join a point given in local coordinates on one object to a similar point on a
second object. Optionally the user can specify the attachment angles at which the wire emerges
from the objects as two three-component vectors. If a single dummy symbol is given instead of an
vector, an angle which makes the wire straight at equilibrium is automatically calculated and
substituted. Alternatively, if “0” is specified, the wire is treated as if freely hinged at the attachment
point.

The potential energy of each wire is broken up into a number of separate terms, each with its own
damping function. The first reflects increase of the straight-line distance between the end-points:

 EP(wire _ longitudinal) =
1
2
kw l t() − l0()2

The user is responsible for supplying a value for the net elastic constant of the wire kw , either
directly or in terms of other quantities such as the Young’s modulus of the wire. To implement the
tension-off condition required for calculation of dissipation dilution, the unstretched length l0 is set
to equal the equilibrium length.

The torsional energy is a single term for the purposes of the damping but has two sub-terms, one
proportional to the unloaded torsional rigidity and one proportional to the tension:

 EP(wire _ torsional) =
1
2

TJ
A

+GJe
⎛
⎝⎜

⎞
⎠⎟
ΔθT

2

where T is the tension, J is the polar moment of area, G is the torsional elastic modulus, Je is a
torsional stiffness geometric factor of the same dimensions as J , and ΔθT is the net twist.

The energy of lateral bending is calculated by assuming the wire is a massless beam under tension.

 EP wire_bending() =
YM1

2
d 2y
dl2

⎛
⎝⎜

⎞
⎠⎟

2

dl + YM 2

2
d 2z
dl2

⎛
⎝⎜

⎞
⎠⎟

2

dl
0

L

∫0

L

∫

Advanced LIGO LIGO-T020205-v2

 12

where Y is the Young’s modulus, Mi are the axial moments of area along the principal axes of the
wire, and y l() and z l() are the deviations from a straight line in the respective principal axis
directions as a function of distance l along the wire. The shape of the beam can be calculated
analytically and has been integrated to give a closed form expression for the energy, which is too
complicated to reproduce here but depends on the tension, and the amount of bending along these
axes at the end-points relative to the straight line between them.
Finally there is a term representing the energy due to the small additional amount of longitudinal
stretch relative to the straight line between the endpoints) due to lateral bending.

 EP wire_ extra_ stretch() =
T
2

dy
dl

⎛
⎝⎜

⎞
⎠⎟
2

dl
0

L

∫

where T is the tension. This has similarly been integrated to give a (very long) closed-form
expression for the energy.
Some straightforward but lengthy geometry is required to relate the above energy terms to the
positions and orientations of the masses. To avoid errors, all of this geometry was derived
symbolically in Mathematica. For efficiency in later calculating the partial derivatives, the
geometry is linearized about the equilibrium position. By default, to avoid circularity, the
equilibrium position is computed from a version of the potential that omits the wire bending and
extra-extension terms. In the common case where the pendulum is stable without the extra wire
terms, and the user is happy to accept the automatically calculated attachment angles that conform
to this preliminary equilibrium position (i.e., the way wire clamps are normally designed), the true
equilibrium position is the same, so that no additional approximation has been introduced.

However if the pendulum is not stable without the wire bending and extra-extension terms, or the
user wants to explore the effect of wire clamps that don’t attempt to match the natural angle of the
wire, the wire terms can be including from the beginning. In this case, again to avoid circularity,
any unspecified wire attachment angles are calculated to conform to the starting position used for
numerically finding the equilibrium position, rather than the equilibrium position itself.

3.2.2 Springs
A spring is similar to a wire in that it connects two points on two masses via two attachment angles.
However a spring is taken to be a zero-length element, so the reference state is with the two points
superimposed (and the attachment vectors aligned). The spring then exerts restoring forces and
torques on the masses in 6 DOFs according to a tensor of elastic constants and a vector of pre-load
forces:

 EP(spring) =
1
2

Δx Δy Δz ΔθY ΔθP ΔθR()KS

Δx
Δy
Δz
ΔθY
ΔθP

ΔθR

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ fS
T

Δx
Δy
Δz
ΔθY
ΔθP

ΔθR

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Advanced LIGO LIGO-T020205-v2

 13

where Δx etc are the differences in x, y, z, yaw, pitch and roll in the local coordinate system of the
spring, relative to the reference state.

3.3 Dynamics
Two different ways of representing the dynamics of the system are useful. For use within
Mathematica, it is convenient to use frequency-dependent matrices. These allow the full complex-
multiplier description of the damping to be retained. For export to Matlab and E2E, the state-space
formalism is more convenient, although.

3.4 Dynamics via frequency dependent matrices
The dynamics of the pendulum proper can be represented by a frequency-dependent equation of
motion matrix

 E = Keff − (2π f)
2M

This is implemented as a matrix-valued pure function of a single nameless variable which
represents frequency. The frequency domain transfer function from force/torque on the pendulum
to displacements of the pendulum is

 x = E−1fx

This can be solved numerically for a series of values of frequency f. For purposes of actual
computation, taking the inverse and multiplying is best avoided in favour of an equivalent special
purpose routine such as Mathematica’s LinearSolve[] .)

The transfer function from structure displacement is then derived by transforming to a force first:

 x = E−1CXS(eff)s

3.5 Dynamics via state-space formalism
For time domain simulation, the state-space formalism is more convenient. The toolkit doesn’t
attempt to do such simulation itself but it does allow for export of state-space matrices in formats
suitable for use in either Matlab/Simulink or E2E. The form of state-space formalism convenient
for mechanical problems takes the state of the pendulum to consist of both the
positions/orientations and the linear/angular velocities in a double-length vector:

x − xeq
x

⎛
⎝⎜

⎞
⎠⎟

 We assume a standard set of inputs and outputs convenient for E2E:

 inputs =
s − snom
fx

⎛
⎝⎜

⎞
⎠⎟

i.e., displacement of the structure and force on the mass, and

Advanced LIGO LIGO-T020205-v2

 14

 outputs =
x − xeq
fs

⎛
⎝⎜

⎞
⎠⎟

i.e., the position of the mass and force back on the structure. Then the state-space matrices are

 A =
0 I

Re −M−1Keff() Im −M−1Keff()
2π f

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

0 1
−k1k1

m k1 + k1() 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 B =
0 0

Re −M−1CXS(eff)() M−1

⎛

⎝
⎜

⎞

⎠
⎟ =

0 0
−k1k1

m k1 + k1()
1
m

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 C =
I 0

Re −CSX (eff)() 0
⎛

⎝
⎜

⎞

⎠
⎟ =

1 0
k1k2
k1 + k2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 D =
0 0

−Seff 0
⎛
⎝⎜

⎞
⎠⎟
=

0 0
−k1k2
k1 + k2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

and the state space equations are

x
x

⎛
⎝⎜

⎞
⎠⎟
=

0 I

Re −M−1Keff() Im −M−1Keff()
2π f

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x − xeq
x

⎛
⎝⎜

⎞
⎠⎟

+
0 0

Re −M−1CXS(eff)() M−1

⎛

⎝
⎜

⎞

⎠
⎟
s − snom
fx

⎛
⎝⎜

⎞
⎠⎟

and

x − xeq
fs

⎛
⎝⎜

⎞
⎠⎟
=

I 0

Re −CSX (eff)() 0
⎛

⎝
⎜

⎞

⎠
⎟
x − xeq
x

⎛
⎝⎜

⎞
⎠⎟

+
0 0

−Seff 0
⎛
⎝⎜

⎞
⎠⎟
s − snom
fx

⎛
⎝⎜

⎞
⎠⎟

The transfer function in Laplace transform format is

x − xeq
fs

⎛
⎝⎜

⎞
⎠⎟
= C(sI − A)−1B + D() s − snomfx

⎛
⎝⎜

⎞
⎠⎟

where s = iω = 2πif .

Advanced LIGO LIGO-T020205-v2

 15

Note that for numerical time domain simulation, the matrix coefficients need to be real and
frequency-independent. The above matrices are real, but not necessarily frequency independent.
The real parts of the stiffness matrices are typically only weakly dependent on frequency, so it is
normally a good approximation to substitute the values at DC or some arbitrary frequency near the
eigenfrequencies of most interest. However the submatrix

Im −M−1Keff()

2π f

in the lower right of the A matrix is only frequency independent if all sources of damping are
proportional to velocity, in which case the imaginary part of the matrix in the numerator will be
proportional to f . This will cancel with the f in the denominator leaving a fully numeric matrix.
Structural damping, on the other hand will have a frequency independent numerator but a
frequency dependent quotient and thus cannot be represented in this format.

4 Illustration of concepts with a toy model
Consider a mass m free to move in the x direction, connected to mechanical ground by two
massless springs, k1 and k2 , in series. Let the x-coordinate of the mass be x, the coordinate of the
junction between the two springs be q, and the coordinate of the ground be s. In the terminology of
the toolkit, x is a variable, q is a float, and s is a parameter.

4.1 Stiffness and coupling matrices
The potential energy is

 EP = 1
2 k1 q − s()2 + 1

2 k2 x − q()2

The master stiffness matrix is

 P =
K CXQ CXS

CQX Q CQS

CSX CSQ S

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

k2 −k2 0
−k2 k1 + k2 −k1
0 −k1 k1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Advanced LIGO LIGO-T020205-v2

 16

The float stiffness matrix Q gives the elasticity on the junction with both the structure and mass
fixed:

 Q = k1 + k2()

As might be hoped, the magnitude is the sum of the individual stiffnesses, as for springs added in
parallel. The positive sign here says that when junction is displaced a small amount in the +x
direction, it encounters a potential with a positive gradient, i.e., there is a restoring force on it in the
-x direction.

This sign convention is prototypical for all the stiffness and coupling matrices: multiplying a
stiffness matrix by a displacement vector gives a potential gradient vector, and adding a negative
sign gives a force/torque vector.

The raw (mass) stiffness matrix K is equal to the spring constant of the nearest spring only (k2),
because the partial derivatives are taken with q constant. The effective stiffness matrix that applies
when q is allowed to “float” to its time-dependent neutral position between s and x is

 Keff = K −CXQQ
−1CQX = k2() − k2

2

k1 + k2

⎛
⎝⎜

⎞
⎠⎟
=

k1k2
k1 + k2

⎛
⎝⎜

⎞
⎠⎟

As might be hoped, this is the usual formula for the stiffness of two springs added in series.
The raw coupling matrix from the structure to the mass (CXS) is zero, because the two points are
not connected directly. However the effective value incorporates the action of the two springs:

 CXS(eff) = CXS −CXQQ
−1CQS = 0() − −k2() −k1()

k1 + k2

⎛
⎝⎜

⎞
⎠⎟
=

−k1k2
k1 + k2

⎛
⎝⎜

⎞
⎠⎟

The negative sign here says that when the structure moves in the +x direction, the mass encounters
a potential with a negative gradient, i.e., there is a force on it in the +x direction.
The structure stiffness matrix is similar to the (mass) stiffness matrix and gives the restoring force
on the structure with the mass fixed but the spring junction floating. The raw value reflects only the
nearest spring (k1), but the effective value reflects the series sum of the two stiffnesses.

 Seff = S −CSQQ
−1CQS = k1() − k1

2

k1 + k2

⎛
⎝⎜

⎞
⎠⎟
=

k1k2
k1 + k2

⎛
⎝⎜

⎞
⎠⎟

4.2 The mass matrix
The kinetic energy is

EK = 1
2 mv

2

 so the mass matrix is just

 M = m()

Advanced LIGO LIGO-T020205-v2

 17

4.3 Basic transfer functions
The dynamics of the pendulum proper can be represented by a frequency-dependent equation of
motion matrix

 E = Keff − (2π f)
2M =

k1k2
k1 + k2

− (2π f)2m
⎛
⎝⎜

⎞
⎠⎟

4.4 The state-space matrices
We assume the standard set of inputs and outputs convenient for time domain simulation using the
LIGO E2E simulation package:

 inputs =
s − snom
fx

⎛
⎝⎜

⎞
⎠⎟
=

s
fx

⎛
⎝⎜

⎞
⎠⎟

i.e., displacement of the structure and force on the mass, and

 outputs =
x − xeq
fs

⎛
⎝⎜

⎞
⎠⎟
=

x
fs

⎛
⎝⎜

⎞
⎠⎟

i.e., the position of the mass and force back on the structure. Then the state-space matrices are

 A =

0 I

Re −M−1Keff() Im −M−1Keff()
2π f

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

0 1
−k1k1

m k1 + k1() 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 B =
0 0

Re −M−1CXS(eff)() M−1

⎛

⎝
⎜

⎞

⎠
⎟ =

0 0
−k1k1

m k1 + k1()
1
m

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 C =
I 0

Re −CSX (eff)() 0
⎛

⎝
⎜

⎞

⎠
⎟ =

1 0
k1k2
k1 + k2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 D =
0 0

−Seff 0
⎛
⎝⎜

⎞
⎠⎟
=

0 0
−k1k2
k1 + k2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

and the state space equations are

Advanced LIGO LIGO-T020205-v2

 18

x
x

⎛
⎝⎜

⎞
⎠⎟
=

0 1
−k1k1

m k1 + k1() 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
x
x

⎛
⎝⎜

⎞
⎠⎟

+
0 0

−k1k1
m k1 + k1()

1
m

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

s
fx

⎛
⎝⎜

⎞
⎠⎟

and

x
fs

⎛
⎝⎜

⎞
⎠⎟
=

1 0
k1k2
k1 + k2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
x
x

⎛
⎝⎜

⎞
⎠⎟

+
0 0

−k1k2
k1 + k2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

s
fx

⎛
⎝⎜

⎞
⎠⎟

5 Implementation in software
The following sections will be easier to follow with reference to a local installation of the toolkit
and at least one model. See Section 10.1ff for more detail on downloading and installing the
software.

5.1 Directory structure
To minimize code duplication, the Mathematica code has been divided up logically and by
directory structure into four classes: (i) the toolkit, (ii) models, (iii) cases, (iv) calculations.
The toolkit comprises the most generic code and is structured as a number of Mathematica
“packages” in a toolkit directory, which needs to be on the Mathematica search path ($Path). See
Section 10.2.1 for more on how these packages are installed and added to $Path.

A model is a specification of a particular type of suspension as a particular combination of
elements supported by the toolkit. For example, the QuadLite2Lateral model has the
structure of an aLIGO quad suspension, with 4 masses, 6 blades (each with lateral as well as
vertical compliance), and 14 wires. A model definition notebook has a default set of numerical
parameters, but the focus is on the generic structure. The directory where the model definition
notebook lives is called the model directory.
A case is subordinate to a model. It is defined by a set of numerical parameters, which can be
specified from scratch, or as overrides to the default set. The numerical parameters are specified in
a case definition notebook, which lives in a case directory one or more levels below the model
directory.
A calculation is subordinate to a case. It was separated out from the idea of a case because when
sharing models and cases via an SVN, different users will want different versions of the
calculation, with, for example, different plots or other analysis. A calculation is defined by a
calculation notebook, which lives in a calculation directory within the case directory.

Advanced LIGO LIGO-T020205-v2

 19

Execution starts in the calculation notebook, and a search is made upward in the directory structure
to find first the case definition and then the model definition. See Section 10.2.5 for more detail on
the flow of control.

5.2 Phases of the calculation
Because the calculation for the wire bending potential terms referred to in Section 3.2.1 above is
time consuming, the calculation is divided into five stages, 0A, 0B, 1A, 1B, and 2, adding in extra
terms gradually. Stage0A is quick to calculate and the results may be a usable approximation for
some purposes.

Stage0A first compiles a list of the potential terms for gravity, springs, and the basic longitudinal
stretching of wires. Each list element is a pair consisting of a totally symbolic expression for the
potential term plus a damping tag symbol that represents the appropriate type of damping for that
term. The damping tag allows the correct complex damping function to be applied later. By default,
Stage 0A does not include potential terms for bending of wires, or the additional longitudinal
stretch from bending, but these can be turned on if desired.

The individual terms are then combined into a single expression relevant at zero frequency by
multiplying by the real part of the respective complex damping functions at DC, summing, and
then substituting numerical values for all quantities except the “variables” (i.e., x) and the “floats”
(i.e., q).

The equilibrium position is found by numerically minimizing the potential function, starting from a
user-supplied approximation that is a required part of the specification of the model.

Each term separately then has numerical values substituted for all quantities except the “variables”
(i.e., x), the “floats” (i.e., q) and (this time) the parameters (i.e., s). Partial derivatives are taken
with respect to all the variables, floats and parameters that appear in the term, at the equilibrium
point previously found. This gives a matrix with the same structure as P , but sparse, with
contributions only for a single term with a single damping type. These per-term stiffness matrices
are collected in a list, tagged with their damping types.

Stage 1A adds terms for torsion of wires. Stage 1B adds terms for bending of the wires near the
attachment points. Stage 2 adds terms for the slight additional longitudinal stretching of the wires
due to bending away from the straight line assumed in Stage 0.

5.3 Utility functions
To support the above calculations the toolkit provides a large number of utility functions which are
common to both the triple and quad models:

(i) geometry of points on rigid bodies subject to translations and rotations

(ii) geometry of angular velocity and infinitesimal rotations
(iii) manipulating variables, parameters and velocities

(iv) manipulating lists of substitutions
(v) properties of wires (length, stretching and bending potential energy etc)

(vi) properties of springs

Advanced LIGO LIGO-T020205-v2

 20

(vii) creating the total potential for the system
(viii) creating matrices of elastic constants (a.k.a., potential energy matrices)

(ix) creating matrices of mass/MOI coefficients
(x) processing and pretty-printing eigenvectors

(xi) outputting useful intermediate results
(xii) converting to state-space matrix format

(xiii) computing transfer functions
(xiv) computing thermal noise

5.4 Model specific utilities
As well as the specification of the model proper, the user needs to supply some utility functions
that depend on the model in ways that are too indirect to allow them to take the model specification
as a parameter or to be automatically generated. These include:

(i) routines for drawing 3D pictures of the mode shapes
(ii) vectors that specify force and displacement inputs of interest (e.g., “unit x-direction

displacement input at the structure”)
(iii) vectors that specify outputs of interest (e.g., “unit x-direction displacement output at the

upper left OSEM position”)

6 Models of Particular Interest

6.1 Triple Model
The triple model is a three-stage pendulum with the structure of the usual GEO triple. From the
ground it consists of

(i) A support structure (taken to be immovable except for the purpose of transfer functions).

(ii) Two “upper” blade springs.
(iii) Two “upper” wires, one per upper blade spring.

(iv) The “upper” mass, a.k.a., mass 1.
(v) Two “lower” blade springs.

(vi) Four “intermediate” wires, one per lower blade spring.
(vii) The “intermediate” mass, a.k.a., mass 2.

(viii) Four “lower” wires (or fibres).
(ix) The optic, a.k.a., mass 3.

There have been three different versions of the triple model with slightly different modeling of the
blade springs. See the discussion of the “lite” and “xtra-lite” families of models below. These were
removed in two stages.

Advanced LIGO LIGO-T020205-v2

 21

6.2 Quad Model
The quad model is a four stage pendulum with the structure of the conceptual design for the test
mass suspension in Advanced LIGO. From the ground it consists of

(i) A support structure (not modelled as movable except for the purpose of transfer functions).

(ii) Two “upper” blade springs.
(iii) Two “upper” wires, one per upper blade spring.

(iv) The “top” mass, a.k.a. mass 0 or mass N (“N” = new, relative to the triple masses)
(v) Two “intermediate” blade springs.

(vi) Four wires, two per intermediate blade spring.
(vii) The “upper” mass, a.k.a., mass 1.

(viii) Two “lower” blade springs.
(ix) Four “intermediate” wires, two per lower blade spring.

(x) The “intermediate” mass, a.k.a., mass 2.
(xi) Four “lower” wires (or fibres).

(xii) The optic, a.k.a., mass 3.
Note a key difference in the quad relative to the triple: the quad has only two blades at levels below
the top (intermediate and lower), with two wires attached to the tip of each blade spring, whereas
with the triple there are four blades at the lower level, with one wire per spring throughout.

6.3 “Lite” and “Xtra-Lite” Versions of the Triple and Quad Models
In the earliest versions of both the triple and quad models, each blade spring was represented by a
6-DOF mass element connected to its base (the structure or one of the hanging masses) by a 6-DOF
spring. This was purely for ease of implementation – particularly with early versions of the toolkit
it was simpler to represent approximate one-dimensional motion with stiff potentials than
geometric constraints. This increased the size of the matrices that had to be handled, but was not a
problem as long as only frequency domain results were of interest. However when output from the
models came to be used for time domain simulation, the calculation would bog down because high-
frequency eigenmodes involving the blade tips required very fine time steps to resolve. Thus for
each model (triple and quad) two simplified versions were created.
The “lite” version of each model invokes the appropriate geometry to constrain each blade tip to
move with the object it was mounted to in five DOFs, leaving one independent DOF. This reduces
the number of DOFs (and the size of the matrices) to 24 for the triple and 30 for the quad. However
the frequency of the eigenmode of a blade tip in its working direction is still quite high (because the
blade is compliant but the wire attached to it is not). Thus the lite models are still marginal for time
domain simulations.
The “xtra-lite” versions go one step further and eliminate the blade tip objects entirely. The
junction between the spring and the wire still has a coordinate associated with it, but it is a float
coordinate with no associated mass or MOI. Since it has no inertia, it can be assumed to track the

Advanced LIGO LIGO-T020205-v2

 22

point of force/torque equilibirum between the blade and wire as the other objects move, which
allows it to be suppressed from the normal mode analysis.

6.4 “Lateral” Versions
In the course of hanging the controls prototype build of the quad suspension, it was discovered that
lateral compliance of the blades in the upper masses has a significant effect on the fundamental
pitch frequency, and can easily push it unstable. See T050255-07, T050172-00, and T050257-01.
To allow for this, extra DOFs representing the lateral positions of the blades were added. The quad
xtra-lite lateral model is now the preferred model for the quad suspension. It turns out that for the
triple suspensions in aLIGO, the lateral compliance effect is not significant, so for a long time the
plain xtra-lite version was used. However at the urging of Jeff Kissel a TripleLite2Lateral model
was prepared and brought into service.

6.5 “V5” Violin Mode Versions
Several quad and triple versions have been extended by dividing the lowest wires into six segments
and adding mass beads between the segments to approximate the distributed mass. This creates 5
violin modes in each wire and each direction of wire displacement (longitudinal/transverse to the
optic axis). The first 3 of these are tolerably harmonic and can be used to study violin mode
thermal noise and coupling effects. It would be a fairly simple matter of cut and paste to create
models with additional beads (V10 or V20 etc),

7 Exploring the supplied cases
Each model comes with a number of predefined cases, and a good way to start becoming familiar
with the software is to load one of them and try the plotting and analysis functions. Look in the
case subdirectory (e.g., subdirectory default for the case with default values) and open the
calculation notebook, which will have a name like ASUS3ModelCalcDefault.nb.

7.1 Computing cases from scratch versus using precomputed results
Because the calculation time can be quite long, the calculation notebook for each case is set up to
save intermediate results in the corresponding precomputed subdirectory. If the switch
useprecomputed defined at the beginning of the calculation notebook is set to True, the
archived results are read back in instead of being recomputed from scratch. Each of the supplied
cases comes with such a set of results. To load them, first check that the precomputed switch is
indeed set to True in the Switches section and evaluate the whole notebook. All the key results are
then in the workspace and various additional plots and analyses can be performed, following the
existing examples.

7.2 Stages of the calculation
Because some parts of the calculation are time consuming and not always of interest, the
calculation is divided up into stages as follows.

• Stage 0A: The potential terms for gravity, spring elements, and longitudinal wire-stretching are
generated and a minimization is done to find the equilibrium position. (As of v2.5 of the toolkit,
the terms for wire bending can be included in the equilibrium as well.) The kinetic energy is
processed to produce the mass matrix, the potential terms are processed to produce stiffness

Advanced LIGO LIGO-T020205-v2

 23

matrices and a preliminary normal mode calculation is done. The key results are
eigenvalues0A (a list of eigenvalues in descending order of magnitude),
eigenvectors0A. (a list of eigenvectors in the corresponding order), and Hz0A (the
eigenvalues converted to frequencies in Hz). This stage takes only a few minutes and gives a
good approximation to the mode shapes and frequencies. However the stiffness matrices
generated in this step do not correctly take into account dissipation dilution. Thus no damping,
transfer function or thermal noise information is calculated as it would be invalid. Also the
mode shapes and frequencies may be slightly inaccurate if one of the damping functions has a
real part that is not 1 at zero frequency.

• Stage 0B: The potential terms for spring elements and longitudinal wire-stretching are
reprocessed with the static forces arbitrarily set to zero. For wires, the unstretched length is
temporarily set to the stretched length implied by the equilibrium position, and for springs, the
preload is set to zero. The stiffness that is still present under these conditions is due to first
order length changes in the wires and springs, and so contributes to damping and thermal noise.
The stiffness that disappears relative to Stage 0A was due to the static force acting through a
variable mechanical advantage1. It is added to the gravity stiffness matrix (which then acquires
a new interpretation as the stiffness matrix for lossless restoring forces). The resulting damping
calculations are of limited interest because they don’t include the wire bending elasticity but at
least they validly reflect the losses from the sources of elasticity they do include. Key results
for this stage are:
(i) eom0: the equation of motion function, which describes the dynamics of the pendulum. It is

a function which accepts a numerical value of frequency and returns a complex matrix
which converts a vector of generalized force inputs to a vector of generalized displacement
outputs.

(ii) coupling0: the coupling function, which describes the coupling between the support and
the pendulum. It accepts a numerical value of frequency and returns a complex matrix

1 The canonical example of a restoring force due to a variable mechanical advantage is a simple
one-wire pendulum. It is commonly said that a pendulum exhibits dissipation dilution because the
restoring force is gravitational, but this is wrong. The gravitational force is always directly
downwards and can’t push anything sideways – the restoring force is actually the sideways
component of the tension in the wire. Another way of describing this is to say that there is a
mechanical advantage through which the tension is coupled to sideways force on the mass, and that
this changes with the angle of the wire. Since there are no first order changes in tension and thus
length, the wire can be quite lossy as a longitudinal spring without degrading the performance of
the pendulum for small amplitude oscillations. The only way the wire can contribute to loss is
through the damping associated with the small restoring force the wire contributes directly by
resisting bending at the flexure point.
The fact that gravity is indeed lossless turns out to be a red herring. Any other method of putting a
static tension on the wire that doesn’t involve first order length changes will give comparable
dissipation dilution. For example, a bead on the middle of a taut wire is effectively a pendulum in
which gravity has been replaced by a second wire, and will also have good dissipation dilution.
And in the same way, violin modes of taut wires show dissipation dilution because the restoring
force is the sideways component of a tension.

Advanced LIGO LIGO-T020205-v2

 24

which converts a vector of displacement inputs at the support to a vector of generalized
forces at the pendulum.

• Stage 1A: The potential terms for torsion of the wires are processed and added in. The results
are as for Stage 0, except that the symbol names end in “1”: eigenvalues1A,
eigenvectors1A, Hz1A, eom1A, etc.

• Stage 1B: The potential terms for bending of the wires are processed and added in. This stage
typically takes a few hours (hence the desirability of precomputed results!). The results are as
for Stage 0, except that the symbol names end in “1”: eigenvalues1, eigenvectors1,
Hz1, eom1, etc. Thermal noise plots from these results are good approximations.

• Stage 2: The potential terms for the slight additional longitudinal stretch due to bending of the
wires are added in. The results are as for Stage 0, except that the symbols end in “2”:
eigenvalues2, eigenvectors2, etc. This stage takes another few hours and is rarely
worth doing because it is such a small effect.

The preceding order of calculation is enforced using the Calculate[] function. The function
call Calculate[symbol] will compute (or recall from the precomputed directory) all
results on which symbol depends and then symbol itself. The function call
Calculate[stage] where stage is one of Stage0A, Stage0B, Stage1 or Stage2 will
compute all the results for the given stage. Such calls have been placed strategically through the
sample case notebooks to ensure that the necessary results are loaded before the example analysis
commands are evaluated. More detail about the Calculate[] function is given in the section on
the calculation of the model below.

7.3 Available listing and plotting commands

7.3.1 Frequencies
The frequencies are available in the variable Hz0A (or Hz0 or Hz1 or Hz2). Since the interesting
low-frequency modes are last, it is convenient to use Mathematica’s syntax for counting from the
end of an array: Hz0A[[-2]] is the second lowest frequency.

7.3.2 Mode shape tables
Eigenvectors can be found in eigenvectors0A (or …0 or …1 or …2). The order corresponds to
that in Hz0A, so eigenvectors0A[[-2]] is the second lowest frequency eigenvector. Within
each vector the order of the coefficients corresponds to that in allvars - allvars[[-6]] is
x3 (the x-coordinate of the optic) so eigenvectors0A[[-2]][[-6]] is the amplitude of x3.

Eigenvectors can also be printed in a neat table format using the function pretty[]. It is
commonly helpful to use Chop[] to throw away insignificant values and to premultiply by the
matrix e2ni to convert the eigenvector into laboratory yaw, pitch and roll coordinates:

pretty[Chop[e2ni.eigenvectors0A[[-2]], 10^-4]]

gives something like

Advanced LIGO LIGO-T020205-v2

 25

7.3.3 Mode shape plots
You can get a 3D rendering of a normal mode with the eigenplot[eigenvector,
amplitude, {viewpoint}] function. (The xtra-lite triple and quad models and any other
models that define a non-zero number of float coordinates will have an extra floatmatrix
argument in the final position. The amplitude parameter needs to be chosen by trial and error so
that the mode shape is obvious but not distorted – values between 0.1 and 0.5 are commonly good.
The viewpoint should be chosen to For example,

eigenplot[eigenvectors0A[[-2]], .5, {0, -2, 0}]

gives something like the following

Advanced LIGO LIGO-T020205-v2

 26

7.3.4 Force transfer function plots
To calculate and plot transfer functions from generalized force on the pendulum to displacement,
the following functions can be used:

calcTFf[eom, ivec, ovec, f]

plotTFf[eom, ivec, ovec, f1, f2]

where eom is eom0 or the like, ivec is a vector of generalized force inputs, ovec is a vector of
displacement outputs, and f, f1 and f2 are numeric frequencies. Force input basis vectors can be
constructed conveniently using makefinputvector[symbol], which returns a vector
representing unit force or torque applied to the pendulum coordinate specified by symbol. (For
example, makefinputvector[yaw3] is unit torque in yaw on the optic.) Similarly output
basis vectors can be constructed using makeoutputvector[symbol].

7.3.5 Displacement transfer function plots
To calculate and plot transfer functions from displacement of the support to displacement of the
pendulum the following functions can be used:

calcTF[eom, ivec, ovec, f]

plotTF[eom, ivec, ovec, f1, f2]

where eom is one of the equation-of-motion functions (eom0A or the like), cfn is one of the
coupling functions (coupling0A etc) ivec is a vector of generalized displacement inputs, ovec
is a vector of displacement outputs, and f, f1 and f2 are numeric frequencies. Displacement input
basis vectors can be constructed conveniently using makeinputvector[symbol], which
returns a vector representing unit force or torque applied to the support coordinate specified by
symbol. (For example, makeinputvector[x00] is unit x displacement of the support.)

7.3.6 Thermal noise plots
To calculate and plot thermal noise the following functions can be used:

noise2[eomfn, iovec, f]

plotTN[eomfn, iovec, f1, f2, scale]

where eomfn is an equation-of-motion function, iovec is an input/output vector, f, f1 and f2
are numeric frequencies and scale is a scale factor. The input/output vector can be made with
either makefinputvector[] or makeoutputvector[] (which actually do exactly the
same thing). Its interpretation is a little bit subtle: it can be thought of as representing a ideal
frictionless mechanism which causes a point to move as the specified linear combination of the
coordinates. The thermal noise reported is the thermal noise of that notional output point of the
mechanism. The temperature assumed accords with whatever substitution is given for the symbol
temperature in defaultvalues or overrides.

7.4 Default numerical values
Each model comes with a set of default values for the properties of the various elements. These are
given as Mathematica substitution rules in a list called defaultvalues, which for the triple
model looks like this:

defaultvalues = {

Advanced LIGO LIGO-T020205-v2

 27

 g -> 9.8

 ux -> 0.1,

 uy -> 0.3,

 uz -> 0.07,

 den1 -> 2700,

 m1 -> den1*ux*uy*uz,

 …

};

The full, commented version of this list can be inspected in the model definition file. The
calculation of the model using the default values can be found in the subdirectory default.

Often however the user will want to try variations on the default parameters. To promote good
version control, the calculation of the model is done in a separate file from the definition. The
recommended procedure is to leave the model definition notebook alone and specify variations in
the calculation notebook by supplying a list of additional substitutions which override those from
defaultvalues. The new substitutions should simply be added to the list overrides which
is defined near the front of the calculation notebook. The next sections describe the mechanics of
the process.

7.5 Creating new cases of the existing models
To create a new case with new numeric values for the properties of the pendulum, proceed as
follows:

(i) Duplicate one of the existing case subdirectories, such as default. Give the new
subdirectory a name reflecting the combination of properties to be tried, such as
heavieroptic.

(ii) Rename the calculation notebook in the new subdirectory to end with some fragment of the
subdirectory name, e.g., ASUS3ModelCalcHO.nb. (The exact name doesn’t matter, but
making it unique is helpful if you ever have several different notebooks open.)

(iii) Delete all the files in the precomputed subdirectory within the new case directory.

(iv) Find the assignment to modelcase in the Switches section of the calculation notebook
and edit the RHS to be a string exactly the same as the case subdirectory name, e.g.,
“heavieroptic”.

(v) Find the assignment to overrides in the Switches section and edit it so that it contains
whatever overriding substitutions are required to implement the new case, e.g., m3-> 50
will change the optic mass to 50 kg. (More detailed instructions are given below.) Add
conspicuous comments there and at the top of the file explaining the change.

(vi) Find the assignment to precomputed in the Switches section and edit the RHS to
False.

(vii) Evaluate the whole notebook.

(viii) Edit the RHS of the assignment to precomputed back to True.

Advanced LIGO LIGO-T020205-v2

 28

7.6 Using overrides
Note that although the ultimate goal is to give numeric values for all properties, you are not
constrained to use only substitutions with numeric right-hand sides in overrides. After the old
substitutions in defaultvalues and the new ones you provide in overrides are combined,
they are put through a recursive process where substitutions are applied to the right-hand sides of
each other until everything is (hopefully) numeric. (The resulting numeric substitution list is called
constval.) All you need ensure is that any symbols that occur on the RHS of your substitutions
also have substitutions defined for them in overrides or defaultvalues, and that any such
recursive chains of substitutions end in numeric values after a finite number of steps. Thus

a->b, b->1

is good, but
a->b, b->a

will cause an infinite loop, and
a->b, b->c

will cause a failure when a numeric value for a, b or c is first required. Order is not important, so
b->1, a->b

is also good.
Note that the dependence is only one-way. Thus for example, by default, the upper mass mass (m1)
and MOIs (I1x, I1y and I1z) are calculated in terms of the density (den1) and the length
breadth and height (ux, uy and uz) using the usual expressions for a block. The formulae for mass
and MOI can be overridden with specific numbers, say from a CAD program, and these new values
will take effect in the normal mode calculation. However the connection with the density and size
symbols is then broken so unless you give additional overrides they will retain their original,
possibly inconsistent values.

You can also give overrides of the form
symbol -> scale[factor]

or
symbol -> increment[difference]

and instead of the substitution from defaultvalues being entirely replaced it will be scaled or
incremented by factor or difference respectively. For example,

m3->scale[2.0]

will double the mass of the optic.

8 The definition of the model
To make more ambitious changes that can’t be implemented with overrides (such asymmetric
models) or to make entirely new models requires a more detailed knowledge of the definition and
calculation code. This section gives a walkthrough of the code in the definition notebook, with
particular emphasis on the items that the model writer needs to supply to define a new model.

Advanced LIGO LIGO-T020205-v2

 29

8.1 Name, Description and Version
The model is identified by assigning appropriate values to the following:
modelname Official name of model, e.g., “QuadLite2Lateral”

modelcomment Description, e.g., “GEO-style quad pendulum with massless
blades with z and x DOFs”

modelversion Numeric version, e.g., 5.9.

Code in the calculation notebooks uses these values in captions and headings. Code in the case
definition notebooks checks the values of these symbols to ensure that the correct model has been
loaded. For each new version, a list of changes since the last version should be added as a text cell.

8.2 Preliminaries
The Preliminaries section loads the toolkit package and any other packages that may be necessary.
Most models will require all of the following:

• PendUtil` (the pendulum toolkit utilities)

• RotationsXYZ` (custom package for rotations in yaw, pitch and roll)

• StatusWindow` (custom package to display text messages in a status window)

• IFOModel` (parameters from Bench)

Most existing models also load the following additional packages if the version of Mathematica is
5 or before, but this is such ancient history that new models need not:

• MyShapes` (custom package similar to Graphics`Shapes` but with rotation bug fixed)

• Graphics`Graphics` (standard package for general graphics)

• Graphics`Polyhedra` (standard package for drawing polyhedra)

• LinearAlgebra`MatrixManipulation` (standard package for matrix manipulation)

•

8.3 The model definition proper
To define a model, a user needs to supply definitions for the symbols outlined in the next sections.
Examples are from the triple model, ASUS3ModelDefn.nb but the quad model is very similar.

8.3.1 The master variable list: allvars
The symbol allvars corresponds to the vector

�

x in the theory section above. It should be a list
of all the “variables” in the special sense of the coordinates defining the state of the pendulum for
the purpose of the normal mode calculation. That order of the variables is arbitrary but should be
logical and easy to remember. The variable list for the triple model is

allvars = {

 xul,yul,zul,yawul,pitchul,rollul,

 xur,yur,zur,yawur,pitchur,rollur,

Advanced LIGO LIGO-T020205-v2

 30

 x1,y1,z1,yaw1,pitch1,roll1,

 xllf,yllf,zllf,yawllf,pitchllf,rollllf

 xllb,yllb,zllb,yawllb,pitchllb,rollllb,

 xlrf,ylrf,zlrf,yawlrf,pitchlrf,rolllrf,

 xlrb,ylrb,zlrb,yawlrb,pitchlrb,rolllrb,

 x2,y2,z2,yaw2,pitch2,roll2,

 x3,y3,z3,yaw3,pitch3,roll3

};

8.3.2 The list of “floats”
The symbol allfloats corresponds to the vector

�

q in the theory section above. It should be list
of the coordinates of any junctions between elastic elements that have no mass or MOI associated
with them. If it is not defined it defaults to the empty list. There are no floats defined in the full
triple or quad models – to see an example, look at one of the “xtralite” models.

8.3.3 The parameter list: allparams
The symbol allparams corresponds to the vector

�

s in the theory section above, i.e., a list of all
the “parameters”, in the special sense of the coordinates that do not vary for the purposes of the
normal mode calculation, but do vary for the purposes of displacement-input transfer functions. For
the current models these are the 6 coordinates of the structure, but you can add the coordinates of
any other object in the environment the effect of whose displacement on the pendulum you might
conceivably want to calculate. The parameter list for the triple model is

allparams = {

 x00, y00, z00, yaw00, pitch00, roll00

};

8.3.4 Coordinate lists for rigid bodies and points on them
To make things more readable later on, it is convenient to define names for the lists of coordinates
that define each rigid body. These need to conform to the format expected by the geometry
functions: six coordinates in x/y/z/yaw/pitch/roll order. For example, the optic in the triple model is

optic = {x3, y3, z3, yaw3, pitch3, roll3};

The items in the list don’t need to be single symbols from allvars, they just need to be in terms
of such symbols plus constants from defaultvalues. For example,

constrainedbody = {l Sin[theta], l Cos[theta], 0, 0, 0, 0};

could represent a rigid body constrained to move without rotation along a line at a constant angle
theta to the x-axis. (The coordinate l would have to appear in allvars, and the constant theta
in defaultvalues.)

Typically the user will also want to define coordinate lists for static objects. For example, in the
triple model the support structure is

support = {x00, y00, z00, yaw00, pitch00, roll00};

Advanced LIGO LIGO-T020205-v2

 31

(This happens to be the same list as allparams, but is conceptually different in that the order and
interpretation of items in allparams is not important, whereas here it must be
x/y/z/yaw/pitch/roll.)
Similarly, points of interest on rigid bodies should be specified as lists of x, y and z local
coordinates. For example in the triple pendulum, the left wire-attachment point on the upper mass
is

massUl={0,-n1,d0};

8.3.5 Items with gravitational potential energy: gravlist
All the potential terms due to gravity should be grouped in a list called gravlist. The following
fragment from the triple model initializes the list and adds a term for the potential energy of the
optic to it:

gravlist = {};

AppendTo[gravlist, m3 g z3];

(Building up a list with AppendTo[] is overkill for something so simple but it’s good practice for
the more complicated structures to come. There it makes things rather more readable.)

8.3.6 Wires: wirelist
The various wires in the model are specified in a list called wirelist. Each entry in wirelist
describes a single wire and has the following format:

{

 6-coordinate list defining first mass,

 3-coordinate attachment point for first mass (local coordinates),

 3-coordinate attachment vector for first mass,

 6-coordinate list defining second mass,

 3-coordinate attachment point for second mass (local coordinates),

 3-coordinate attachment vector for second mass,

 Young's modulus,

 unstretched length,

 longitudinal elasticity,

 vector defining principal axis 1,

 moment of area along principal axis 1,

 moment of area along principal axis 2,

 linear elasticity type,

 angular elasticity type,

 torsional elasticity type,

 shear modulus,

 cross sectional area for torsional calculations,

 torsional stiffness geometric factor

}

Advanced LIGO LIGO-T020205-v2

 32

Each wire is presumed to be strung between two rigid bodies, and items 1 and 4 are the coordinate
lists specifying the bodies. (Each body can be either massive and have a coordinate list of variables
drawn from allvars or massless and have a coordinate list drawn from allfloats.) Items 2
and 5 are the attachment points in body coordinates. Items 3 and 6 are vectors in local coordinates
that specify the angle at which the wires are attached. For example, for the wire in a simple
pendulum, the vectors would be {0,0,-1} (i.e., down) at the top and {0,0,1} (i.e., up) at the
bottom. However as a convenience, if you put anything but a three-item list in either of those
positions, the later calculation ignores it, and instead works out what the vector would have to be
for the wire not to be bent at the end when the pendulum comes to equilibrium.
Items 7 and 8 are the Young’s modulus for the wire and the unstretched length.

Item 9 is the elasticity of the wire considered as a longitudinal spring. The reason for having the
user work this out manually, rather than taking the cross-sectional area as a parameter, is to allow
for the case where the area varies along the length of a fibre.
Items 10-12 relate to the bending of the wire near the endpoints. The wire is allowed to have an
oblong cross-section with different rigidities along different axes. Item 10 is a vector in local
coordinates specifying the axis along which the rigidity is maximum, Item 11 is the moment of area
along that axis, and Item 12 is the moment of area along the axis at right angles.
Items 13, 14 and 15 are identifying symbols that specify which damping functions are to be
attributed to the longitudinal, bending and torsional elasticities respectively. (The damping function
for each tag should specified as a substitution in defaultvalues – see below. If none is given it
defaults to 1 for the real part and 0 for the imaginary part.)

Items 16, 17 and 18 are the shear modulus, the cross-sectional area (for the purposes of the torsion
calculation only) and the torsional stiffness geometric factor. For backward compatibility for
models defined before torsion was supported, the four torsion-related items (15, 16-18) are optional
on a per-wire basis.

In the triple model, initializing wirelist and adding a definition for the wire from the top left
blade spring to the upper mass looks like this:

wirelist = {};

AppendTo[wirelist,{

 bladeUL,

 bladeULa,

 bladeULavec,

 massU,

 massUl,

 massUlvec,

 Y1,

 ul1,

 kw1,

 {1,0,0},

 M11,

 M12,

Advanced LIGO LIGO-T020205-v2

 33

 wireUtype,

 wireUatype

}];

8.3.7 Springs: springlist
The elastic elements in the model other than wires are specified in springlist. Note that a
“spring” element only models elasticity. To model the mass of a physical spring as well requires a
separate rigid body element.)

Each entry in springlist describes a single spring element and has the following format:
{

 coordinate list defining first mass,

 attachment point for first mass (local coordinates),

 attachment angles for first mass (yaw, pitch, roll),

 coordinate list defining second mass,

 attachment point for second mass (local coordinates),

 attachment angles for second mass (yaw, pitch, roll),

 damping type,

 6x6 elasticity matrix,

 1*6 pre-load force/torque vector

}

Items 1–6 are similar to Items 1-6 in the list of wire properties and specify the two objects that the
spring is attached to. There is one important difference however: for wires, the attachment angle is
specified as a vector, whereas for a spring it is specified as a triple of angles: yaw, pitch and roll.
(The three-angle formulation is more general and elegant but it turned out to make the
computations for the wire-bending elasticity intractable.) The spring is considered to have its own
x/y/z coordinate system, and the attachment angles are the amount that one would have to rotate the
spring to reach its working position, relative to an initial state with its coordinate system aligned
with that of the mass.
Item 7 is a symbol specifying a damping function, as for the wires.

Item 8 is a 6x6 elasticity matrix giving elastic constants with respect to differential displacements
in the spring local coordinate system.

Item 9 is a vector giving the amount of preload force or torque in the spring x, y, z, yaw, pitch and
roll directions when the attachment points on the two masses are coincident and aligned according
to the attachment angles.
The following fragment from the triple model shows the entry for the upper left blade spring being
added to the list:

springlist = {};

AppendTo[springlist, {

 support,

Advanced LIGO LIGO-T020205-v2

 34

 bladeULnom,

 {0,pitchbul,rollbul},

 bladeUL,

 COM,

 {0,pitchbul,rollbul},

 bladeUtype,

 DiagonalMatrix[{kbux,kbuy,kbuz,kbyawu,kbpitchu,kbrollu}],

 {0,0,bdu*kbuz,0,0,0}

}];

8.3.8 The kinetic energy: kinetic
To make the specification of the kinetic energy more readable it is convenient to group the
moment-of-inertia constants into tensors, like the following for the optic in the triple model:

 IM3 = {{I3x, 0, 0}, {0, I3y, 0}, {0, 0, I3z}};

The kinetic energy should then be given as a expression in terms of Mathematica total derivatives
of the variables (from allvars, not allfloats) with respect to t (time), and assigned to the
symbol kinetic. This is admittedly not very user-friendly and really ought to be automated in
some future version. For the moment, just copy the pattern of the following fragment showing the
term for the kinetic energy of the upper mass (massU) in the triple model:

kinetic = (

 …

 +(1/2) m3 Plus@@(Dt[b2s[optic,COM],t]^2)

 +(1/2) omegaB[yaw3, pitch3, roll3].IM3.omegaB[yaw3, pitch3, roll3]

 …

);

Here, Plus@@(vector)^2 is a Mathematica shortcut for summing over squares,
Dt[coordinate, t] is the total time derivative, b2s[object, point] (a function from
the package RotationsXYZ`) is the coordinates of a local point on an object, COM (defined
previously as {0,0,0}) is the centre of mass in local coordinates, and omegaB[] (also from
RotationsXYZ`) is the angular velocity vector.

8.3.9 Values of constants: defaultvalues
As noted previously, defaultvalues is a list of substitutions for properties of the pendulum.
Specifically, it should contain substitutions for everything that isn’t a “variable” (a coordinate
involved in the normal modes). As well as the properties of the pendulum per se, it should also
contain some or all of the following special items. First it needs to contain substitutions for the
following constants:

• g (local gravitational acceleration)

• temperature (temperature, for the thermal noise calculations)

• boltzmann (Boltzmann’s constant, for the thermal noise calculations)

Advanced LIGO LIGO-T020205-v2

 35

Second, it should contain substitutions for the usual static values of the “parameters” (i.e., the
coordinates of the structure or other objects involved only in transfer functions).

Third, it should contain the function call constraintsubstitutions[], which expands to a
list of substitutions of the form kconvariablename -> 0, one for each variable in allvars.
Each of the generated constants represents an elastic force tying the corresponding DOF to
mechanical ground. Additional potential terms corresponding to these constants are automatically
generated in the calculation notebook, but since the constants are zero by default, they normally
have no effect. However for debugging purposes, you may find it convenient to override particular
constraint elasticities with large values to immobilize particular parts of the pendulum.
Fourth, it may also contain substitutions of the form

damping[real,dampingtype] -> (function&)

and/or
damping[imag,dampingtype] -> (function&)

which define the frequency dependence of the elasticity and damping for potential terms of the
specified dampingtype. The & operator is Mathematica’s syntax for a so-called pure function,
which is a object that represents a function operation but lacks a name. The arguments of a pure
function are represented by #1, #2 etc. The parentheses around the pure function are required here
because & has a lower precedence than ->. The functions you supply should accept a value of
frequency in Hz (not rad/s) and return a multiplier giving the real or imaginary component of the
complex elasticity as a fraction of the purely real elasticity defined by the potential. If you don’t
supply one or both substitutions for a particular damping type they default to

damping[real,dampingtype] -> (1&)

and
damping[imag,dampingtype] -> (0&)

i.e., frequency-independent elasticity with no damping. Unless you’re really paranoid about the
Kramers-Kronig relationship or working with very large loss angles you can normally rely on the
default for the real part and specify only the imaginary one. Structural damping can be specified by

damping[imag,dampingtype] -> (phi&)

and thermoelastic damping would be
damping[imag,dampingtype] ->
(delta*(2*N[Pi]*#1*tau)/(1+(2*N[Pi]*#1*tau)^2)&)

where delta and tau are defined elsewhere in defaultvalues.

8.3.10 Approximation to equilibrium position: startpos
The list startpos should be a list of substitutions for the variables in allvars giving an
approximate equilibrium state for the system. This is used as a starting point for finding the exact
equilibrium by numerical minimization of the potential. The substitutions can have symbols on the
right hand sides provided of course that there are substitutions for those symbols in
defaultvalues.

Advanced LIGO LIGO-T020205-v2

 36

8.3.11 Extra potential terms for debugging: preeqtermlist and posteqtermlist
If desired preeqtermlist can be defined in the model case notebook as a list of
{potentialterm,dampingtype} pairs to modify the default structure of the model. Any
such terms are added to the main potential before the equilibrium position is found. The potential
expressions in preeqtermlist will be evaluated twice, once with tensionoffswitch-
>False and once with tensionoffswitch->True. If a particular term has a component
representing a static tension, it should be zeroed out in the latter case.
If desired posteqtermlist can be defined in the model case notebook as a list of
{potentialterm,dampingtype} pairs to modify the default structure of the model. Any
such terms are added to the main potential after the equilibrium position is found, as with the
constraint forces. Any static forces they represent must cancel for the equilibrium position to be
valid. The equilibrium position may be invoked with expressions like
allvars[[i]]/.optval/.nonoptval. To prevent error messages from optval and
nonoptval being evaluated before they are calculated, posteqtermlist should normally be
defined with the := operator.
The potential expressions in preeqtermlist and posteqtermlist will be evaluated twice,
once with tensionoffswitch->False and once with tensionoffswitch->True. If a
particular term has a component representing a static tension, it should be zeroed out in the latter
case.

8.4 Model dependent diagnostic utilities
The model writer is also responsible for providing custom versions of the utilities described in this
section, which are not necessary for the basic recalculation of the model, but are still highly
desirable for analyzing the resulting data.

8.4.1 Angular velocity transformation matrices: e2s, e2b and e2ni
The coefficients corresponding to the angle variables in the raw eigenvectors are not in a very
convenient basis. In accordance with the normal mode formalism, they represent infinitesimal
amounts by which the yaw, pitch, and roll angles at equilibrium are incremented in normal mode
motion. However because of non-linearity and non-commutativity issues, the incremental rotation
in going from (yaw, pitch, roll) to (yaw+dyaw, pitch+dpitch, roll+droll) is not the same as (dyaw,
dpitch, droll) (except for yaw=pitch=roll=0). Worse, the three individual rotations implied in
(yaw+dyaw, pitch+dpitch, roll+droll) aren’t about mutally orthogonal axes (again, except when
yaw=pitch=roll=0). The toolkit provides transformation matrices to convert the eigenvector
coefficients into a variety of more useful forms. “Space” coordinates use a basis of infinitesimal
rotations about the global or space x, y and z axes (in that order) and are useful if you want to
interpret normal mode motion as an angular velocity. The 3x3 matrix function omegaIS[]
transforms to that basis:

omegaIS[yaw,pitch,roll].{dyaw, dpitch, droll}

“Body” coordinates use a basis of infinitesimal rotations about the body x, y and z axes for the
object and are useful in conjunction with the MOI tensor (which is implicitly in body coordinates).
These can be calculated using omegaIB[]:

omegaIB[yaw,pitch,roll].{dyaw, dpitch, droll}

Advanced LIGO LIGO-T020205-v2

 37

(Finally non-incremental yaw/pitch/roll coordinates use a basis of infinitesimal rotations in yaw,
pitch and roll. Since this amounts to a basis of infinitesimal rotations about the z, y and x axes, for
the object they are effectively just the space coordinates permuted:

omegaSNI.omegaIS[yaw,pitch,roll].{dyaw, dpitch, droll}

where
omegaSNI = {{0,0,1},{0,1,0},{1,0,0}}

However since these provided utilities only apply to the angle variables of one object at a time, and
the toolkit has no way to know to know which variables in allvars are for angles, the user is
responsible for creating matrices (e2b, e2s and e2ni) which process a whole eigenvector at
once, along the following lines:

e2ni := DiagonalBlockMatrix[{

 IdentityMatrix[3],

 omegaSNI.omegaIS[yawul,pitchul,rollul],

 IdentityMatrix[3],

 omegaSNI.omegaIS[yawur,pitchur,rollur],

 IdentityMatrix[3],

 omegaSNI.omegaIS[yaw1,pitch1,roll1],

 IdentityMatrix[3],

 omegaSNI.omegaIS[yawllf,pitchllf,rollllf],

 IdentityMatrix[3],

 omegaSNI.omegaIS[yawllb,pitchllb,rollllb],

 IdentityMatrix[3],

 omegaSNI.omegaIS[yawlrf,pitchlrf,rolllrf],

 IdentityMatrix[3],

 omegaSNI.omegaIS[yawlrb,pitchlrb,rolllrb],

 IdentityMatrix[3],

 omegaSNI.omegaIS[yaw2,pitch2,roll2],

 IdentityMatrix[3],

 omegaSNI.omegaIS[yaw3,pitch3,roll3]

}]/.optval;

8.4.2 Plotting routines: eigenplot[]
To enable drawing 3D pictures of the normal modes there should be a custom version of the routine
eigenplot[eigenvector, amplitude, {viewpoint}]. The versions in the existing
models can be used as a pattern. They use routines from the custom package MyShapes`, which
is similar to the standard package Graphics`Shapes` but with a few refinements for precisely
this application. The toolkit function tosub[eigenvector] is provided to convert the
displacements relative to the equilibrium position given by the eigenvector to absolute values in the
form of a list of substitutions. Since eigenvectors only directly specify the behaviour of variables, if
there are any floats defined and there are objects that need to be ploted that depend on them,
eigenplot[] will need to have an extra argument floatmatrix giving the conversion

Advanced LIGO LIGO-T020205-v2

 38

between variables and floats. A call to tosub[eigenvector,floatmatrix] then generates
substitutions for floats as well as variable.
Note that eigenvectors should not be processed with e2ni before being given to eigenplot[].

8.4.3 Listing routines: pretty[]
To present eigenvectors in a useful manner there should be a custom version of the routine
pretty[eigenvector] to list the coefficients in the eigenvector in a table format with
headings. It is commonly convenient to process eigenvectors with e2ni before listing them, but
this should be left up to the end-user rather than being done automatically in pretty[].

8.4.4 Input and output vectors
To enable basic use of the various transfer function routines there should be a set of input and
output vectors for the coordinates likely to be of interest such as those of the structure and the final
payload. Toolkit functions makeinputvector[parameter],
makefinputvector[variable] and makeoutputvector[variable] are supplied to
make this easy.

9 The calculation of the model

9.1 The Calculate[] function
As explained above, the Calculate[] function is normally used to compute or load results for a
whole stage at once. However it works on any symbol representing one of the standard
intermediate or final results. A typical clause in the definition of Calculate[] looks like this:

Calculate[symbol] := (

 Calculate[dependencies];

 If[!useprecomputed||exceptdamping,

 Status["Computing symbol"];

 code to compute symbol;

 saveprecomputed["symbol.m", symbol];

 Done[],

 (*else*)

 getprecomputed["symbol.m"];

];

)

Note the following features:

• Before attempting to compute or load the requested symbol, Calculate[] calls itself
recursively to compute or load all the symbols on which the requested one depends.

• If the switch useprecomputed is True, Calculate[] attempts to load an archived value
for the symbol from the precomputed subdirectory within the case directory.

• The condition “||exceptdamping” is omitted in the clauses for result symbols that do not
depend on the frequency dependence of elasticity, in particular the potential matrices. Thus by

Advanced LIGO LIGO-T020205-v2

 39

setting both useprecomputed and exceptdamping to True, one can explore the effects
of different magnitudes and frequency dependences of damping without wasteful recalculation.

The effect of the recursion is that intermediate results are computed in the order described in the
next few sections. When debugging a new model it will be helpful to work through the result
symbols in that order, calling Calculate[] manually on each one in turn so that stages with
errors can be identified. Note that Calculate[] has no effect on symbols that have already been
loaded. To recalculate a result after an error has been corrected, call Clear[symbol];
Calculate[symbol]. Alternatively, clear the results for a whole stage at once with
Reset[stage] (where stage is one of Stage0A etc).

9.2 Stage 0A – normal modes without wire bending elasticity

9.2.1 Numerical Substitutions: constval
The seminumeric substitutions in defaultvalues and overrides are merged using
Override[] and then processed using Recurse[] to propagate the numeric values throughout,
producing a list called constval.

9.2.2 Numerical start position for minimization of the potential: startval
The starting position startpos suggested by the model writer is converted to fully numeric form
called startval by processing with constval.

9.2.3 Coordinates that don’t participate in the minimization: nonoptcoords and
nonoptval

The minimization of the potential should normally be done with respect to all the variables and
floats in allvars and allfloats. However as an aid to debugging, all those in the list
nonoptcoords are excluded. This is useful in isolating problems in the specification of the wires
and springs. The variables in it are pegged to the values in startval during the minimization.
The list nonoptval is a subset of startval with substitutions for just the variables in
nonoptcoords.

9.2.4 Variables that participate in the minimization: optcoords
The list optcoords is set to the complement of nonoptcoords with respect to allvars and
allfloats. (For backward compatibility, nonoptvars is also accepted but this is deprecated.)

9.2.5 The base list of potential terms for the minimization: potentialtermlist
The default set of potential terms that are to be considered in the minimization are assembled into a
list together with their damping tags:

potentialtermlist = {{term,tag},{term,tag},…}

This includes all the terms generated from gravlist and springlist, the terms for simple
longitudinal extension of the wire from wirelist, plus any extra terms defined manually in
preeqtermlist. This was the originally the full list, but as of v2.5 of the toolkit, it can be
supplemented with optional extra wire terms as discussed in the next section.

Advanced LIGO LIGO-T020205-v2

 40

9.2.6 Additional wire terms for the minimization: potentialtermlistWBnr,
potentialtermlistWTnr, potentialtermlistWEnr

As of v2.5 of the toolkit, if wiretermsearly is defined to be True or EqOnly, either directly
or as a substitution in constval, then any wire potential terms for bending or torsion that can be
calculated are accumulated in potentialtermlistWBnr, potentialtermlistWTnr or
potentialtermlistWEnr (B = bending, T = torsion, E = extra longitudinal extension).

The reason that some may not be able to be calculated is the feature whereby wire attachment
angles specified as dummy symbols are calculated after the minimization such that the associated
wires are straight at equilibrium (see 9.4.1). Bending terms can only be calculated for endpoints
where the wire attachment angles are given explicitly. Torsion terms can only be calculated for
wires where the wire attachment angles for both endpoints are given explicitly. Any terms not
meeting these requirements are deferred to Stages 1 or 2 as of old.

9.2.7 The full expression for the potential: potential
The terms in potentialtermlist are combined with any in potentialtermlistWBnr,
potentialtermlistWTnr and potentialtermlistWEnr, multiplied by the real part of
the damping multiplier evaluated at f=0 (damping[real,dampingtype][0]) and summed to
produce the total potential as a single expression.

9.2.8 The numeric potential: potentialNN
The symbolic expression for the potential is processed with constval and nonoptval to
produce potentialNN, an expression containing only the coordinates in optcoords.

9.2.9 The minimization: potential0 and optval
The minimization gives potential0, the value of the potential at the minimum, and optvals,
a specification of the minimum as a list of substitutions for the variables in optcoords.

9.2.10 Velocity variables: velocities
A list of velocity names is created by adding “v” to all the variable names in allvars.

9.2.11 The kinetic energy matrix: kineticN and kineticmatrix
The expression kinetic for the kinetic energy is given in terms of symbolic constants, variables and
total time derivatives of variables. The time derivatives are replaced by velocity variables, and
constval, optval and nonoptval are used to remove all other symbols, producing
kineticN. Partial derivatives with respect to all pairs of variables in velocities are then
taken to produce kineticmatrix.

9.2.12 The potential used for the normal mode calculation: potentialtermlist0
Extra items of the form {constraintterm, constrainttype} are added to
potentialtermlist to produce potentialtermlist0. The extra terms represent elastic
forces tying the various DOFs to the equilibrium position determined in the previous step. Terms
defined manually in posteqtermlist are also added at this point.

Advanced LIGO LIGO-T020205-v2

 41

As of toolkit v2.5, if wiretermsearly is defined to be True (but not EqOnly), either directly
or as a substitution in constval, any terms in potentialtermlistWBnr,
potentialtermlistWTnr or potentialtermlistWEnr are appended.

9.2.13 The Stage 0A damping-specific potential matrices: potentialmatrices0T
The potential term parts of all the items in potentialtermlist0 are differentiated with
respect to the variables, floats and parameters to form individual damping-specific potential
matrices corresponding to the

�

Ti . Matrices with the same damping tags are combined. The final list
potentialmatrices0T has the form {{dampingtype, matrix}, {dampingtype,
matrix},…}. (For no particularly good reason the tag comes first here rather than second as
above.) As explained above, the potential matrices at this stage should be treated with caution
because they have not yet been corrected for dissipation dilution.

9.2.14 The Stage 0 potential matrix: potentialmatrix0
The individual potential matrices in potentialmatrices0T are multiplied by the real part of the
complex elasticity multiplier evaluated at f=0 (damping[real, dampingtype][0]) and
summed to produce a net stiffness matrix.

9.2.15 The Stage 0 normal modes: eigenvalues0, eigenvectors0 and Hz0
The potential and kinetic energy matrices are simultaneously diagonalized to produce
eigenvalues0 and eigenvectors0. The eigenvalues, which are in units of (rad/s)2 are then
scaled to units of Hz to produce Hz0.

9.3 Stage 0B – damping without wire bending elasticity

9.3.1 Potential matrices without tension: potentialmatrices0NT
The entire potential matrix calculation from stage 0A is repeated with the wire tension and spring
preload set to zero, producing potentialmatrices0NT. This and potentialmatrices0T
are passed to dissipationdilution[] which correlates them and identifies the components
of elasticity that produce damping to produce a new list potentialmatrices0.

9.3.2 The equations of motion function and the coupling function: eom0 and
coupling0

These are calculated from kineticmatrix and potentialmatrices0. Thus they neglect
wire bending elasticity but correctly incorporate dissipation dilution on the remaining sources of
damping.

9.4 Preparation for Stages 1 and 2

9.4.1 Wire angles: relaxval
As noted above, the wire definitions are allowed to have placeholder symbols for wire attachment
angles. The definitions are scanned for such symbols and the optimum attachment angles are
calculated taking into account the equilibrium position of the pendulum. The values are assembled
into a substitution list relaxval.

Advanced LIGO LIGO-T020205-v2

 42

9.4.2 Additional potential term lists: potentialtermlistWB and
potentialtermlistWE

In preparation for Stages 1 and 2, new potential terms describing the wire bending are generated
and stored in the lists potentialtermlistWB and potentialtermlistWE in the same
{{term,tag},…} format as for potentialtermlist0. The first list, used in Stage 1
describes the potential from pure angular bending of the wire. The second list, used in Stage 2,
describes the potential from the additional longitudinal stretch of the wire due to the fact that it has
been displaced away from the straight line between the endpoints assumed in Stage 0.
The elasticity theory used in the wire bending phase of the calculation was derived by Mark Barton
using Mathematica based on the discussion in Matt Husman’s thesis. The function
wirebendingPE[T,l,EE,I1,I2,alpha1,beta1,alpha2,beta2] computes the
bending part of the potential energy for a wire with tension T, Young's modulus EE, moments of
area I1 and I2 along its principal axes, which is stretched between two points l apart on a line
and makes angles alpha1 and alpha2 with the line at one end and beta1 and beta2 at the
other end.

Similarly, wirebendingdelta[T,l,EE,I1,I2,alpha1,beta1,alpha2,beta2]
computes the extra longitudinal extension of the wire due to the curvature of the wire.
The code for wire torsion was kindly provided by Ben Lee of the UWA Gravity Group.

The functions wirepotential1[], wirepotential1T[] and wirepotential2[] do
the 3D geometry required to apply the above functions to wires at the angles implied by the
equilibrium position of the model.

The tags associated with the new terms are taken from the entries in wirelist. Those in
potentialtermlistWB get the tag specified for bending; those in potentialtermlistWE
get the tag specified for stretching.

9.5 Stage 1A – normal modes and damping with wire bending elasticity
The Stage 1A calculation processes the entries in potentialtermlistWB representing wire
lateral bending to produce potentialmatricesWB. This is then merged with
potentialmatrices0 to produce potentialmatrices1A. In turn, this processed in the
same way as for Stage 0 to produce potentialmatrix1A, eom1A, coupling1A,
eigenvalues1A, eigenvectors1A and Hz1A.

9.6 Stage 1B – normal modes and damping with wire torsional elasticity
The Stage 1B calculation processes the entries in potentialtermlistWT representing torsion,
to produce potentialmatricesWT. This is then merged with potentialmatrices1A to
produce potentialmatrices1. In turn, this processed in the same way as previously to
produce potentialmatrix1, eom1, coupling1, eigenvalues1, eigenvectors1 and
Hz1.

Advanced LIGO LIGO-T020205-v2

 43

9.7 Stage 2 – normal modes and damping with additional wire stretch due to
bending

The Stage 2 calculation processes the entries in potentialtermlistWE to produce
potentialmatricesWE. This is then merged with potentialmatrices1 to produce
potentialmatrices2. In turn, this is processed in the same way as for Stages 0 and 1 to
produce potentialmatrix2, eom2, coupling2, eigenvalues2, eigenvectors2 and
Hz2.

9.8 Exporting state-space matrices

9.8.1 Building state-space matrices with model results
The package PendUtil.nb defines a number of functions for constructing the A, B, C and D
matrices of the state space formalism. There are quite a few variants for different purposes, with
different numbers of inputs and outputs but the names typically start with ssA, ssB, ssC and
ssD.

The usual inputs are a group of displacement inputs corresponding to the structure coordinates in
allparams, followed by a group of force/torque inputs corresponding to the variables in
allvars. The standard minimal set of outputs are displacements corresponding to the variables in
allvars. Variant ssC and ssD matrix functions add (at the end) outputs for the forces/torques on
the structure corresponding to the coordinates in allparams. This expanded set is useful for
coupling the state spaces of two different models and is illustrated in the diagram on the next page.
The block structure of all four matrices is annotated with the physical interpretation of each block
and how it is constructed using the quantities described in Section 3.1.

9.8.2 Exporting state-space matrices
The packages MatlabExport.nb and E2EExport.nb contain utility functions for outputting selected
quantities to text files readable by Matlab and the LIGO E2E group’s simulation environment
modeler/Alfi. The Matlab utilities are somewhat more general purpose and allow scalars, vectors
and matrices to be written, and even provide limited support for symbolic results. The E2E routines
are specifically for state-space matrices.

10 Appendix

10.1 Download locations
Previously, the toolkit and selected models of interest were published at
http://www.ligo.caltech.edu/~e2e/SUSmodels/ . This was time-consuming to maintain and is
somewhat out of date. The explanatory content has been moved to the Advanced LIGO wiki at

https://awiki.ligo-wa.caltech.edu/aLIGO/Suspensions/MathematicaModels ,
and the Mathematica code has been moved to the Advanced LIGO SUS SVN repository. The
repository as a whole can be viewed via the web interface at
http://redoubt.ligo-wa.caltech.edu/websvn/listing.php?repname=sus&

or accessed via an svn client at

Advanced LIGO LIGO-T020205-v2

 44

https://redoubt.ligo-wa.caltech.edu/svn/sus .
LIGO.ORG credentials are needed for viewing both the wiki and the SVN, and write privileges
granted by David Barker are needed for commiting changes to the SVN.
Relative to the repository root, denoted by ^, the toolkit and models are in subdirectories of

^/trunk/Common/MathematicaModels

10.2 Directory structure
As noted above, the Mathematica code has been divided up logically and by directory structure into
four classes: (i) the toolkit, (ii) models, (iii) cases, (iv) calculations.
This directory structure has been revised and elaborated since the last version of this manual, and
the “calculations” class is new, having been separated out from the idea of a case. To manage the
extra complexity, the code to work with it has been encapsulated in two simple functions, which
should in fact greatly reduce the burden on the user.
The older structure was rather unsatisfactory because paths to two key directories needed to be
hard-coded in many different places, but it seemed to be the least bad system achievable under
Mathematica v4, for which the toolkit was first developed.

Unfortunately since the hard-coded paths normally need to be different for different users, this
made collaboration difficult - one couldn't send another user a case of a model and have it be
immediately usable. In aLIGO, the SUS SVN repository became the preferred place to store stuff
like models, and the old structure would have been intolerable, because different users would be
continually overwriting files for non-substantive changes. Fortunately new features introduced in
Mathematica v5 made it possible to do better.

10.2.1 Toolkit Directory
The toolkit comprises the most generic code and is structured as a number of Mathematica
“packages” in a toolkit directory, which needs to be on the Mathematica search path ($Path). As
is standard for packages, each comes as a source notebook (with extension .nb) and an
automatically generated executable file (with the same filename but extension .m). Key packages
used by most models include

• PendUtil` (the main pendulum specific utilities)

• RotationsXYZ` (custom package for rotation matrices in terms of yaw, pitch and roll)

• MyShapes` (custom package similar to Graphics`Shapes` but with rotation bug fixed and a
few extra shapes)

• StatusWindow` (custom package to display progress messages in a status window)

• IFOModel` (parameters from Bench)

• MatlabExport` (export of values, vectors and matrices to Matlab)

• E2EExport` (export of values, vectors and matrices to E2E)

Advanced LIGO LIGO-T020205-v2

 45

Formerly the location of the toolkit could be anywhere, but the path to it had to be hard-coded into
each case. We now insist that the toolkit files are stored in a subdirectory of one of the
Mathematica Autoload directories, either the global $BaseDirectory/Autoload/ or the
user-specific $UserBaseDirectory/Autoload/. (These path specifiers are pseudo-code - a
hybrid of Mathematica ($BaseDirectory) and Unix (.../Autoload/) syntaxes. To find the
actual location, examine the value of the $BaseDirectory or $UserBaseDirectory
symbol in Mathematica, and then complete the path in the appropriate syntax for your OS.)
The significance of these locations is that when the Mathematica kernel is launched, it searches all
subdirectories of Autoload for files called init.m and runs them. The toolkit includes an
init.m file which adds its enclosing directory to the path, making the rest of the toolkit files
available.

The toolkit can be installed by going to the Autoload directory and doing a checkout of the SVN
directory

^/trunk/Common/MathematicaModels/PendulumToolkit

By default this will create a directory .../Autoload/PendulumToolkit but the exact name
PendulumToolkit is not significant to Mathematica. PendulumToolkit can also be a
Unix/Mac/Windows symlink to a directory in a more convenient location (but not a Mac OS X
alias or a Windows shortcut).

For installations of Mathematica prior to v8, a more complicated setup is required - see the wiki for
details.

10.2.2 Model/Case/Calculation Directories
A model is defined by a model definition notebook, which resides in a model directory. All the
cases and calculations for that model reside in subdirectories, so that a model and all its addons can
be single checkout from the SVN.

A case is defined by a case definition notebook, which resides in a case directory. Case directories
can reside in the model directory, or can be grouped into “folders” and “subfolders” below that.
(Intermediate directory levels used to group related cases are called folders.) Since a model and all
its cases will be one big subtree of the SVN, each user is encouraged to have their own user folder,
named with their ligo.org name (albert.einstein or the like) to keep cases of personal
interest separate from reference cases representing production suspensions.

A calculation is defined by a calculation notebook, which must reside in the top level of the case
directory.

Execution starts in the calculation notebook, and a search upwards is made to find first the case
definition and then the model definition. The author of a new case is responsible for creating a
calculation directory called stdcalc. Users are welcome to have their own calculation directory
named with their ligo.org name (albert.einstein or the like). Such calculation directories are
also called user directories (to be distinguished from user folders two or more levels above.)

10.2.3 Detail of directory structure for typical model
The directory structure for the quad model (which is representative) is outlined below:

Advanced LIGO LIGO-T020205-v2

 46

QuadLite2Lateral/ (The quad model directory, checked out from the SVN.)

 ASUS4L2LateralModelDefn.nb (Model definition notebook for the quad model.)

 ASUS4L2LateralModelDefn.m (Autosave version with executable code from above.)

 default/ (The "case directory" for the default case of the quad model)

 ASUS4XLLateralCaseDefn.nb (The case definition notebook for the default case.)

 ASUS4XLLateralCaseDefn.m (Autosave version with executable code from
above.)

 precomputed/ (Precomputed results for the default case.)

 stdcalc/ (Pseudo-user directory with prototype version of calculation.)

 ASUS4XLLateralModelCalcPlots.nb (User calculation notebook for pseudo-
user stdcalc with representative collection of plots.)

 ASUS4XLLateralModelCalcExport.nb (User calculation notebook for
pseudo-user stdcalc that generates standard set of exported result files.)

 quickcalc/ (Pseudo-user directory with prototype version of quick calculation.)

 ASUS4XLLateralModelCalcPlots.nb (User calculation notebook for pseudo-
user quickcalc with representative collection of plots.)

 ASUS4XLLateralModelCalcExport.nb (User calculation notebook for
pseudo-user quickcalc that generates standard set of exported result files.).)

 albert.einstein (User directory for A. Einstein.)

 ASUS4XLLateralModelCalc.nb (Custom calculation for A. Einstein.)

 anothercase/ (Another case, with different numerical parameters.)

 ASUS4XLLateralCaseDefn.nb (The case definition for anothercase.)

 precomputed/

 stdcalc/
 quickcalc/

 SuchAndSuchCases/ (A folder for a particular type of case.)

 asuchandsuchcase/ (A case in a folder.)

 SoAndSoCases/ (A subfolder for a particular subtype of case.)

 asoandsocase/ (A case in a subfolder.)

 ... (And so on to arbitrary depth.)
 ... (Other cases at the top level. Note however that default is the only top-level case allowed
in the SVN.)
... (Other models.)

Advanced LIGO LIGO-T020205-v2

 47

10.2.4 Directory structure differences from older versions
The need to make the toolkit and models SVN-friendly was the impetus to revise the old scheme.
The key changes are as follows:

• The init.m in PendulumToolkit does most of the path set up. It adds
PendulumToolkit to the Mathematica path ($Path) (eliminating the need for the
modelsupportdirectory variable), and defines functions to make it easy to define
modeldirectory relative to the calculation notebook.

• In Mathematica v7 and earlier, there is no function by which the init.m file in
PendulumToolkit can tell the name of the directory it is in, which it needs to set the
path to include itself. Thus we use a supplementary init.m file in
$BaseDirectory/Kernel/ or $UserBaseDirectory/Kernel/ to provide that
information via one hard-coded assignment. Templates for creating one of these files are
provided, but only need be installed by users with older versions.

• The old/current level of the hierarchy is gone. "The" model directory (the one pointed
to by modeldirectory) can now have a name reflecting the model. It's easiest to have it
be the same as on the SVN (e.g., QuadLite2Lateral) but you can check it out under
another name if you prefer. Models can be checked out in arbitrary places - different models
don't have to be siblings.

• Case directories no longer have to live in the top level of the model directory, but can now
be organized into a tree structure of arbitrary depth. (Directories used for the purpose of
grouping cases are called folders in this and other documentation.) The formal name of a
case has been generalized from a single string to a Mathematica list of strings giving the
relative path from the model directory to the case directory, e.g,
{"myfolder","mysubfolder","mycase"}.

• A new "user" level has been added at the bottom of the hierarchy. Each person using a case
of a model from the SVN is strongly encouraged to have their own calculation notebook in
their own user subdirectory, with their preferred set of plots etc. There are two standard
pseudo-users, stdcalc and quickcalc, with template calculations that can be customized.
stdcalc is the full calculation as of old. quickcalc is currently only available for quad
and triple model and uses the package QuickQuadLateral or QuickTriple to do a
slightly approximate but quicker version of the calculation.

• The case calculation notebook has been split into a case definition notebook that contains
only definitional stuff and lives on the case level, and a user calculation notebook that lives
on the user level.

• The case definition notebook now has all cells set to be initialization cells and has an
associated autosave .m file like the model definition notebook.

• The user calculation notebook is responsible for loading the case definition, which in turn is
responsible for loading the model definition. Functions are provided to make this easy.

Advanced LIGO LIGO-T020205-v2

 48

10.2.5 Flow of control between code in toolkit models, cases and calculations
The following sequence illustrates how everything gets loaded for a case
{"myfolder","mysubfolder","mycase"} of the quad model when the toolkit has been
installed in $UserBaseDirectory/Autoload/PendulumToolkit.

When the Mathematica kernel launches, $UserBaseDirectory/Kernel/init.m file is
discovered and run (assuming it has been created as recommended for Mathematica v7 or earlier).
If it is actually Mathematica v7 or earlier that is running, it adds
$UserBaseDirectory/Autoload/PendulumToolkit to the Mathematica $Path.

The $UserBaseDirectory/Autoload/PendulumToolkit/init.m file is discovered
and run, and for Mathematica v8 or later adds
$UserBaseDirectory/Autoload/PendulumToolkit to $Path.

Regardless of version, $UserBaseDirectory/Autoload/PendulumToolkit/init.m
also defines a number of useful functions for managing the hierarchy, all based on
notebookdirectory[] which returns the directory of the notebook from which it is executed
(typically a user calculation notebook). The key ones are loadcasefromuser[] which
attempts to load a case definition, and loadmodelfromuser[] which attempts to load a model
definition.
The user calculation notebook,
QuadLite2Lateral/myfolder/mysubfolder/mycase/stdcalc/ASUS4XLLatera
lModelCalc.nb is responsible for calling
loadcasefromuser["ASUS4XLLateralCaseDefn.m"] to run the .m version of the case
definition notebook in the directory one level above
(QuadLite2Lateral/myfolder/mysubfolder/mycase/ASUS4XLLateralCaseDef
n.m).

The case definition notebook is responsible for setting
modelcase = {"myfolder","mysubfolder","mycase"} and calling
loadmodelfromuser["ASUS4L2LateralModelDefn.m"] to load the model.
loadmodelfromuser[] searches upward from the case directory
(QuadLite2Lateral/myfolder/mysubfolder/mycase) to the model directory
(QuadLite2Lateral).

Notes

The name of the function loadmodelfromuser[] is potentially confusing because it reflects
the anticipated situation at runtime rather than anything about the source code. The call to the
function will normally appear in the case definition notebook, and will be copied to the associated
.m file by the autosave process. The .m file will be run by a call to loadcasefromuser[] in
the user calculation notebook, so the user calculation notebook will be the current notebook for the
execution of both calls. If you evaluate loadmodelfromuser[] directly in the case definition
notebook with Shift-Return or the like, it will fail. Normally this should not be a problem because
there's so little non-trivial code in most case definition files that it can be debugged simply by
saving changes and evaluating the loadcasefromuser[] line in the user calculation notebook.

Advanced LIGO LIGO-T020205-v2

 49

If you do ever have a particularly complicated case definition notebook that you would like to
debug a cell at a time you can change loadmodelfromuser[] to loadmodelfromcase[]
temporarily. In Mathematica v8 there's a variable $InputFileName by which the .m version of
the case definition notebook could know where it is, but this has been avoided for backward
compatibility.

In older versions of the toolkit, some functions like saveprecomputed[] assumed that the
Mathematica working directory was set to the case directory, and the case notebook was
responsible for setting it. That requirement has been eliminated from the toolkit and the setup for it
has been eliminated from the default template cases, but if it matters to your own code you can
always reinstate it with SetDirectory[casedirectory[]] after the model has been
loaded.
The search behaviour of loadmodelfromuser[] is a natural generalization of the old system.
Formerly the standard code for loading a model would search the case directory and the model
directory in that order. That way, a customised model (say with added asymmetry) in the case
directory would be given precedence. Now the search goes from the case directory via all
intermediate levels to the model directory. If you have a group of cases with the same type of
asymmetry, consider taking advantage of this by putting them in a subfolder with a shared custom
model definition.

