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1 Introduction 

1.1 Purpose and Scope 
This document explains the physical assumptions, internal structure and usage of the models of the 
Advanced LIGO suspensions written in Mathematica by Mark Barton (“the Mathematica model” as 
opposed to “the Matlab model” of Calum Torrie, Ken Strain et al.). 

1.2 References 
Ultralow frequency oscillator using a pendulum with crossed suspension wires. M.A. Barton and 
K. Kuroda, Rev. Sci. Instrum. 65(12): 3775, 1994. 
A low-frequency vibration isolation table using multiple crossed-wire suspensions. M.A. Barton et 
al., Rev. Sci. Instrum. 67(11): 3994, November 1996 
P000039-00: Matthew Husman, PhD Thesis, 1999, University of Glasgow. 

T050255-07: Investigation into blade torsion, blade lateral flexibility, and the effect they have on 
blade and wire performance, I. Wilmut et al. 

T050172-00: Modifications to Quad Controls Prototype to fix the “d’s”, C.I. Torrie. 
T050257-01: Quad Pendulum Controls Prototype - Identification of Modes, M.A. Barton 

T020011-00: Suspension model comparisons, M.A. Barton. 
T070101-00: Dissipation dilution, M.A. Barton. 

T080188-v1: Models of the Advanced LIGO Suspensions in MATLAB 

1.3 Version history 
1/15/03: Pre-rev-00 draft. Discusses quad model v 2.0.3. 

2/9/03: Rev. 00. 
3/2/2005: Rev. 01. Discusses quad and triple models 3.3 and toolkit version 2.0. 

9/13/2006: Rev. 02 draft. Added theory of transfer functions and state-space matrix export. Added 
illustration of concepts using a toy model. 

6/4/08: Rev. 02 final. Added References section. Mentioned quad lateral model, violin mode 
models, Mathematica v.6 changes. Added diagram for toy model section. Later added to new DCC 
as T020205-v1. 
7/8/12ff: -v2 draft. Major rearrangement. Stuff on SVN-compatibile directory structure. 

2 Overview 
This document describes a toolkit of utilities in Mathematica for setting up models of mass-wire-
spring systems, plus triple, quad and other pendulum models based on it. Throughout this 
document and the toolkit code, a “model” is a specification of particular arrangement of toolkit 
elements (i.e., masses, wires, and springs). A model definition will include a default set of 



Advanced LIGO LIGO-T020205-v2 

 6 

numerical values mostly for debugging, but these are intended to be overridden in whole or part. A 
“case” of a model goes on to specify a particular set of numeric values of actual interest.  

The toolkit evolved out of a calculation of the properties of a device called the X-pendulum 
developed as a possible low-frequency vibration isolator for the Japanese TAMA project (Barton et 
al., 1994, 1996). At the time of version -00 of this document, the toolkit was merely a set of 
Mathematica functions that had to be copied into each model description file. As the number of 
models increased, the task of keeping the various copies synchronized became onerous, so the 
functions from v2.5 of the quad model were encapsulated as a Mathematica package, 
PendUtil.nb. The version of the toolkit described in this document is v5.9. 

The basic physical objects which the toolkit allows for are: 
(i) Rigid bodies with up to 6 degrees of freedom 

(ii) Massless wires with longitudinal, transverse and torsional elasticity 
(iii) Springs described by a 6x6 matrix of elastic constants and a 6x1 vector of preload forces 

All sources of elasticity can have arbitrary frequency dependent damping. 
A number of models of interest to LIGO have been created, including one for a generic GEO-style 
triple suspension (as for the HLTS, HSTS and BSFM suspensions) and one for a quad suspension. 
Additional models can be defined fairly easily by using existing ones as templates. 

The toolkit and a selection of models have been published on the SUS group SVN repository. 

3 Theory 

3.1 Method of calculation 

3.1.1 Basic Normal Mode Calculation 
The primary calculation is based on the method of normal modes as described in Goldstein, 
“Classical Mechanics”. Conceptually such a calculation has the following steps: 

(i) Express the potential energy of the system in terms of the coordinates: 

� 

EP = EP x1,...xn( ) = EP x( )  

(ii) Express the kinetic energy of the system in terms of the coordinates and coordinate 
velocities: 

� 

EK = EK x1,...xn, ˙ x 1,...˙ x n( ) 

(iii) Minimize the potential energy to find the equilibrium values of the coordinates. 

� 

x eq = x1 eq( ),...xn eq( )( )T  

(iv) Differentiate the potential energy of the system w.r.t. pairs of coordinates at equilibrium to 
create a matrix of second derivatives, a.k.a., the potential energy matrix or the stiffness 
matrix. 
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� 

K :  Kij = ∂EP

∂xi∂x j x= x eq

 

� 

EP = EP x eq( ) + 1
2 x − x eq( )TK x − x eq( )  

(v) Differentiate the kinetic energy of the system w.r.t. pairs of coordinate velocities at 
equilibrium to create a matrix of second derivatives, a.k.a., the kinetic energy matrix or the 
mass matrix. 

� 

M :  Mij = ∂EK

∂˙ x i∂˙ x j ˙ x = 0
x= x eq

 

� 

EK = 1
2 ˙ x TM˙ x  

(vi) Assume a sinusoidal solution, putting the equation of motion in the form 

� 

Ke i = ω i
2Me i 

(vii) Do a simultaneous diagonalization of the stiffness and mass matrices to obtain the 
eigenfrequencies 

� 

fi = ω i 2π  and eigenmodes 

� 

e i: 

� 

x i t( ) = x eq + e ie
ω i t  

However for a practical calculation step (iv) needs to be considerably elaborated, partly for 
efficiency and partly to support additional calculations such as transfer functions and thermal noise 
estimates. 

3.1.2 Categories of Coordinates and the Master Potential Matrix 
The coordinates used in the normal mode analysis need to be independent and to describe the 
position and orientation of all the masses that move during a normal mode oscillation. However 
two other classes of coordinates are of interest. 

First there are the position/orientation coordinates of any junctions directly between elastic 
elements with no associated mass. For the purposes of the toolkit, these have been named floats, 
because they float between mass positions under the influence of the adjacent elastic elements. 

� 

q = q1,...qm( )T  

It is convenient to use such junctions and such coordinates in the specification of some problems, 
but the coordinates are not independent for the purposes of the normal mode analysis and must be 
suppressed by solving the equations for force equilibrium at the junction in terms of the true normal 
mode coordinates. 
Second, there are the position/orientation coordinates of the structure and any other points linked to 
the pendulum proper by elastic elements.  

� 

s = s1,...sl( )T  

These are fixed at nominal positions 
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� 

snom = s1(nom ),...sl(nom )( )T  

for the purposes of the normal mode analysis but are taken as movable for the purposes of 
calculating a transfer function from displacement. 

To cope with these complications it is convenient to consider a master potential matrix P  with 
second derivatives with respect to all three classes of coordinates: 

EP = EP xeq ,qeq ,snom( ) + 1
2 xT − xeq

T qT − qeq
T sT − snom

T( )P
x − xeq
q− qeq
s − snom

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

The master potential matrix has a block structure with many useful submatrices: 

P =

K CXQ CXS

CQX Q CQS

CSX CSQ S

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

         (

� 

CXQ =CQX
T etc) 

K , Q  and S specify the interactions among a class of coordinates with the other two types held 
fixed. CXQ  and the like specify the cross-coupling from one class to another. 

3.1.3 The Effective Potential Matrix 
If there are a non-zero number of float coordinates, then the 

� 

K  submatrix of 

� 

P  is no longer the 
appropriate one to use in the normal mode analysis, because it contains partial derivatives taken 
with 

� 

q constant. Rather, we need an effective value, 

� 

K eff , evaluated with the 

� 

qi at their dynamic 
equilibrium positions at all time. With the structure at its nominal position, 

� 

s = snom , the equilibrium 
positions are 

� 

q = qeq −Q
−1CQX x − x eq( ) 

so that 

� 

K eff =K −CXQQ
−1CQX  

3.1.4 The Equation Of Motion Matrix and the Coupling Matrix 
To calculate a transfer function from displacement input of the structure, we need the matrix that 
gives the coupling of displacements of the 

� 

s coordinates to generalized force inputs at the 

� 

x  
coordinates. If there are no floating coordinates, this is simply the submatrix 

� 

CXS . However as with 
the normal mode analysis, there are additional terms due to the variation in 

� 

q: 

� 

fxs =CXS(eff ) s− snom( ) = CXS −CXQQ
−1CQS( ) s− snom( )  

If we also allow for other generalized forces 

� 

fx  acting directly on 

� 

x , the equation of motion during 
a transfer function test is 

� 

K eff x − x eq( ) + M˙ x = fx + CXS(eff ) s− snom( )  
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In the frequency domain this becomes 

� 

K eff x − x eq( ) − 2πf( )2M x − x eq( ) = fx +CXS(eff ) s− snom( )  

where 

� 

f  is frequency in Hz. Numerically, this can be solved for 

� 

x  for a sequence of different 
values of 

� 

f  to give force-input or displacement-input transfer functions as a function of frequency. 
The left hand side of the above equation can be conveniently rewritten in terms of an equation of 
motion matrix 

E = Keff − (2π f )
2M  

3.1.5 The Coupling Matrix 
When models are put in state-space form for use in Simulink or E2E, it may be useful to couple one 
model to another, such as and in particular a SUS pendulum model to a model of the corresponding 
SEI platform. This requires calculating the forces on the support, which are given by a sum of two 
terms. The component generated as the pendulum moves but the structure remains constant is given 
by the transpose of the coupling matrix: 

fsx = CSX (eff ) x − xeq( ) = CSX −CSQQ
−1CQX( ) x − xeq( ) = CXS(eff )

T x − xeq( )  

This would be incorporated in the state-space C matrix. The component generated as the pendulum 
remains constant but the structure moves is 

fss = S(eff ) s − snom( ) = S −CSQQ
−1CQS( ) s − snom( )  

This would be incorporated in the state-space D  matrix. Together the two terms give the total force 
for arbitrary relative motion of the support and pendulum. 

3.1.6 Damping 
Lossiness in elastic components can be represented by a complex elastic constant: 

� 

k→ k0 ′ ε ω( ) + i ′ ′ ε ω( )( )        (where 

� 

ω = 2πf ) 

where the real and imaginary multipliers 

� 

′ ε  and 

� 

′ ′ ε  are related by the Kramers-Krönig relations: 

� 

′ ε ω( ) −1= 2
π
PV

′ ′ ε x( )
x −ω−∞

∞

∫ dx  

� 

′ ′ ε ω( ) = − 2
π
PV

′ ε x( ) −1
x −ω−∞

∞

∫ dx  

Provided the losses are small, the frequency dependence of the real part can be neglected and the 
imaginary part can be identified as a frequency dependent loss angle: 

� 

k→ k0 1+ iφ f( )( )  

Two issues need to be handled to apply this in a general way in the context of the toolkit. First, 
different elastic components will have damping multipliers of different magnitude and frequency 
dependence. This is handled by breaking up the total potential into individual terms and processing 
them independently. If dissipation dilution is not applicable (but see next section): 
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� 

P = Pi∑ ′ ε i f( ) + i ′ ′ ε i f( )( ) ………(

� 

i=1…number of terms; no dissipation dilution) 

This has a number of advantages: 

• It is efficient to generate the 

� 

Pi  because each typically depends on only a few variables. 
(This permits an optimization in which the variables used in a particular term are 
determined by a preliminary test, with only those variables then iterated over. This turns out 
to be much quicker than letting Mathematica discover for itself in the course of doing the 
partial derivatives that most terms are independent of most variables.) 

• It is efficient to organize the 

� 

Pi  (which are numeric) separately from the 

� 

′ ε i  and 

� 

′ ′ ε i  (which 
are symbolic) and combine them as late as possible in the calculation. This also allows 
different values of 

� 

′ ε i  and 

� 

′ ′ ε i  to be tried without a costly recomputation of the 

� 

Pi . 

• It is easy to allow the potential terms for wire bending and torsion to be optional. This is 
important because they are very costly to compute, but typically small in magnitude and 
significant only for the calculation of thermal noise. 

• It also facilitates the handling of dissipation dilution (see below). 

3.1.7 Dissipation dilution 
Naively implementing the calculation for 

� 

P  as a sum over the 

� 

Pi  with damping multipliers will 
typically overestimate the damping (and the thermal noise) because it does not allow for dissipation 
dilution. Dissipation dilution arises because there are two quite different ways of creating a 
restoring force on an object using a lossy spring (T070101-00). The first is to harness the spring 
directly to the object. This produces first-order changes in the length of the spring when the object 
undergoes an oscillation. Thus the dissipated energy is also first-order in the amplitude. The second 
method is to use the spring to generate a static force and to use some mechanical device to change 
the mechanical advantage between the static force and the force on the object. A violin string with 
longitudinal but not bending loss is the canonical example of this case. Longitudinal tension is used 
to create a lateral restoring force. First-order lateral excursions of the string produce only a second-
order change in length and thus only a second-order loss in energy, which for small amplitudes is 
negligible. 

A pendulum, of the sort the toolkit is intended to simulate, is an interesting variation on the second 
case. As a matter of physical reality, there are two independent reasons why a pendulum with a 
lossy fibre should have low net loss. The first is often remarked on: that the potential energy 
generated during lateral excursions of the bob is stored not in extension of the fibre but 
gravitationally. The second is that the restoring force on the bob is the lateral component of the 
tension in the fibre. A pendulum would still be low-loss even if the tension were provided not by 
gravity but by a second wire connecting the bob to a mechanical ground below, creating a system 
similar to a violin string, just with a mass in the middle.  

For more on this point, and dissipation dilution more generally, see T070101-00. The upshot is that 
since the low-loss component of the restoring force is produced by a static force coupled through a 
variable mechanical advantage, the easy way to isolate it is to evaluate the second derivatives 
twice, once with the full potential and once with all the tensions and static forces arbitrarily set to 
zero: 
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� 

P = Pi tension _ off ′ ε i f( ) + i ′ ′ ε i f( )( )( )∑ + Pi tension _ on −Pi tension _ off( )∑  

Any restoring force that persists with the tension off involves length changes of the associated 
spring that are first-order in oscillation amplitude, and so produces an energy loss that is first-order 
in the stored energy. 
Because the wire bending potential terms are small and costly to compute (see Section 3.2.1), they 
are not computed twice. However since the contribution to static tension due to wire bending is 
typically trivial, this is normally a satisfactory approximation. 

3.2 Potential terms for standard elements 

3.2.1 Wires 
The treatment of the wires was based on the conceptual framework used by Matthew Husman in 
P000039-00. However the Maple code written by Matt was not adapted - rather, the calculation 
was reimplemented from scratch in Mathematica. 

A wire is considered to join a point given in local coordinates on one object to a similar point on a 
second object. Optionally the user can specify the attachment angles at which the wire emerges 
from the objects as two three-component vectors. If a single dummy symbol is given instead of an 
vector, an angle which makes the wire straight at equilibrium is automatically calculated and 
substituted. Alternatively, if “0” is specified, the wire is treated as if freely hinged at the attachment 
point. 

The potential energy of each wire is broken up into a number of separate terms, each with its own 
damping function. The first reflects increase of the straight-line distance between the end-points: 

 EP(wire _ longitudinal ) =
1
2
kw l t( ) − l0( )2  

The user is responsible for supplying a value for the net elastic constant of the wire kw , either 
directly or in terms of other quantities such as the Young’s modulus of the wire. To implement the 
tension-off condition required for calculation of dissipation dilution, the unstretched length l0  is set 
to equal the equilibrium length. 

The torsional energy is a single term for the purposes of the damping but has two sub-terms, one 
proportional to the unloaded torsional rigidity and one proportional to the tension: 

 EP(wire _ torsional ) =
1
2

TJ
A

+GJe
⎛
⎝⎜

⎞
⎠⎟
ΔθT

2  

where T  is the tension, J is the polar moment of area, G is the torsional elastic modulus, Je  is a 
torsional stiffness geometric factor of the same dimensions as J , and ΔθT is the net twist.  

The energy of lateral bending is calculated by assuming the wire is a massless beam under tension.  

 EP wire_bending( ) =
YM1

2
d 2y
dl2

⎛
⎝⎜

⎞
⎠⎟

2

dl + YM 2

2
d 2z
dl2

⎛
⎝⎜

⎞
⎠⎟

2

dl
0

L

∫0

L

∫  
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where Y  is the Young’s modulus, Mi  are the axial moments of area along the principal axes of the 
wire, and y l( )  and z l( )  are the deviations from a straight line in the respective principal axis 
directions as a function of distance l  along the wire. The shape of the beam can be calculated 
analytically and has been integrated to give a closed form expression for the energy, which is too 
complicated to reproduce here but depends on the tension, and the amount of bending along these 
axes at the end-points relative to the straight line between them.  
Finally there is a term representing the energy due to the small additional amount of longitudinal 
stretch relative to the straight line between the endpoints) due to lateral bending.  

 EP wire_ extra_ stretch( ) =
T
2

dy
dl

⎛
⎝⎜

⎞
⎠⎟
2

dl
0

L

∫   

where T  is the tension. This has similarly been integrated to give a (very long) closed-form 
expression for the energy. 
Some straightforward but lengthy geometry is required to relate the above energy terms to the 
positions and orientations of the masses. To avoid errors, all of this geometry was derived 
symbolically in Mathematica. For efficiency in later calculating the partial derivatives, the 
geometry is linearized about the equilibrium position. By default, to avoid circularity, the 
equilibrium position is computed from a version of the potential that omits the wire bending and 
extra-extension terms. In the common case where the pendulum is stable without the extra wire 
terms, and the user is happy to accept the automatically calculated attachment angles that conform 
to this preliminary equilibrium position (i.e., the way wire clamps are normally designed), the true 
equilibrium position is the same, so that no additional approximation has been introduced. 

However if the pendulum is not stable without the wire bending and extra-extension terms, or the 
user wants to explore the effect of wire clamps that don’t attempt to match the natural angle of the 
wire, the wire terms can be including from the beginning. In this case, again to avoid circularity, 
any unspecified wire attachment angles are calculated to conform to the starting position used for 
numerically finding the equilibrium position, rather than the equilibrium position itself. 

3.2.2 Springs 
A spring is similar to a wire in that it connects two points on two masses via two attachment angles. 
However a spring is taken to be a zero-length element, so the reference state is with the two points 
superimposed (and the attachment vectors aligned). The spring then exerts restoring forces and 
torques on the masses in 6 DOFs according to a tensor of elastic constants and a vector of pre-load 
forces: 

 EP(spring) =
1
2

Δx Δy Δz ΔθY ΔθP ΔθR( )KS

Δx
Δy
Δz
ΔθY
ΔθP

ΔθR

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ fS
T

Δx
Δy
Δz
ΔθY
ΔθP

ΔθR

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
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where Δx  etc are the differences in x, y, z, yaw, pitch and roll in the local coordinate system of the 
spring, relative to the reference state. 

3.3 Dynamics 
Two different ways of representing the dynamics of the system are useful. For use within 
Mathematica, it is convenient to use frequency-dependent matrices. These allow the full complex-
multiplier description of the damping to be retained. For export to Matlab and E2E, the state-space 
formalism is more convenient, although. 

3.4 Dynamics via frequency dependent matrices 
The dynamics of the pendulum proper can be represented by a frequency-dependent equation of 
motion matrix 

 E = Keff − (2π f )
2M  

This is implemented as a matrix-valued pure function of a single nameless variable which 
represents frequency. The frequency domain transfer function from force/torque on the pendulum 
to displacements of the pendulum is 

 x = E−1fx  

This can be solved numerically for a series of values of frequency f. For purposes of actual 
computation, taking the inverse and multiplying is best avoided in favour of an equivalent special 
purpose routine such as Mathematica’s LinearSolve[] .) 

The transfer function from structure displacement is then derived by transforming to a force first: 

 x = E−1CXS(eff )s  

 

3.5 Dynamics via state-space formalism 
For time domain simulation, the state-space formalism is more convenient. The toolkit doesn’t 
attempt to do such simulation itself but it does allow for export of state-space matrices in formats 
suitable for use in either Matlab/Simulink or E2E. The form of state-space formalism convenient 
for mechanical problems takes the state of the pendulum to consist of both the 
positions/orientations and the linear/angular velocities in a double-length vector: 

 
 

x − xeq
x

⎛
⎝⎜

⎞
⎠⎟

 

 We assume a standard set of inputs and outputs convenient for E2E: 

 inputs =
s − snom
fx

⎛
⎝⎜

⎞
⎠⎟

 

i.e., displacement of the structure and force on the mass, and 
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 outputs =
x − xeq
fs

⎛
⎝⎜

⎞
⎠⎟

 

i.e., the position of the mass and force back on the structure. Then the state-space matrices are 

 A =
0 I

Re −M−1Keff( ) Im −M−1Keff( )
2π f

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

0 1
−k1k1

m k1 + k1( ) 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

 B =
0 0

Re −M−1CXS(eff )( ) M−1

⎛

⎝
⎜

⎞

⎠
⎟ =

0 0
−k1k1

m k1 + k1( )
1
m

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  

 C =
I 0

Re −CSX (eff )( ) 0
⎛

⎝
⎜

⎞

⎠
⎟ =

1 0
k1k2
k1 + k2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

 D =
0 0

−Seff 0
⎛
⎝⎜

⎞
⎠⎟
=

0 0
−k1k2
k1 + k2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

and the state space equations are 

 

 

x
x

⎛
⎝⎜

⎞
⎠⎟
=

0 I

Re −M−1Keff( ) Im −M−1Keff( )
2π f

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x − xeq
x

⎛
⎝⎜

⎞
⎠⎟

+
0 0

Re −M−1CXS(eff )( ) M−1

⎛

⎝
⎜

⎞

⎠
⎟
s − snom
fx

⎛
⎝⎜

⎞
⎠⎟

 

and 

 

 

x − xeq
fs

⎛
⎝⎜

⎞
⎠⎟
=

I 0

Re −CSX (eff )( ) 0
⎛

⎝
⎜

⎞

⎠
⎟
x − xeq
x

⎛
⎝⎜

⎞
⎠⎟

+
0 0

−Seff 0
⎛
⎝⎜

⎞
⎠⎟
s − snom
fx

⎛
⎝⎜

⎞
⎠⎟

 

The transfer function in Laplace transform format is  

 
x − xeq
fs

⎛
⎝⎜

⎞
⎠⎟
= C(sI − A)−1B + D( ) s − snomfx

⎛
⎝⎜

⎞
⎠⎟

 

where s = iω = 2πif . 
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Note that for numerical time domain simulation, the matrix coefficients need to be real and 
frequency-independent. The above matrices are real, but not necessarily frequency independent. 
The real parts of the stiffness matrices are typically only weakly dependent on frequency, so it is 
normally a good approximation to substitute the values at DC or some arbitrary frequency near the 
eigenfrequencies of most interest. However the submatrix 

 
Im −M−1Keff( )

2π f
 

 
in the lower right of the A matrix is only frequency independent if all sources of damping are 
proportional to velocity, in which case the imaginary part of the matrix in the numerator will be 
proportional to f . This will cancel with the f  in the denominator leaving a fully numeric matrix. 
Structural damping, on the other hand will have a frequency independent numerator but a 
frequency dependent quotient and thus cannot be represented in this format. 

4 Illustration of concepts with a toy model 
Consider a mass m free to move in the x direction, connected to mechanical ground by two 
massless springs, k1  and k2 , in series. Let the x-coordinate of the mass be x, the coordinate of the 
junction between the two springs be q, and the coordinate of the ground be s. In the terminology of 
the toolkit, x is a variable, q is a float, and s is a parameter. 

 

4.1 Stiffness and coupling matrices 
The potential energy is 

 EP = 1
2 k1 q − s( )2 + 1

2 k2 x − q( )2  

The master stiffness matrix is 

 P =
K CXQ CXS

CQX Q CQS

CSX CSQ S

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

k2 −k2 0
−k2 k1 + k2 −k1
0 −k1 k1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  
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The float stiffness matrix Q gives the elasticity on the junction with both the structure and mass 
fixed: 

 Q = k1 + k2( )  

 

As might be hoped, the magnitude is the sum of the individual stiffnesses, as for springs added in 
parallel. The positive sign here says that when junction is displaced a small amount in the +x 
direction, it encounters a potential with a positive gradient, i.e., there is a restoring force on it in the 
-x direction.  

This sign convention is prototypical for all the stiffness and coupling matrices: multiplying a 
stiffness matrix by a displacement vector gives a potential gradient vector, and adding a negative 
sign gives a force/torque vector. 

The raw (mass) stiffness matrix K is equal to the spring constant of the nearest spring only ( k2 ), 
because the partial derivatives are taken with q constant. The effective stiffness matrix that applies 
when q is allowed to “float” to its time-dependent neutral position between s and x is   

 Keff = K −CXQQ
−1CQX = k2( ) − k2

2

k1 + k2

⎛
⎝⎜

⎞
⎠⎟
=

k1k2
k1 + k2

⎛
⎝⎜

⎞
⎠⎟

 

As might be hoped, this is the usual formula for the stiffness of two springs added in series. 
The raw coupling matrix from the structure to the mass (CXS ) is zero, because the two points are 
not connected directly. However the effective value incorporates the action of the two springs: 

 CXS(eff ) = CXS −CXQQ
−1CQS = 0( ) − −k2( ) −k1( )

k1 + k2

⎛
⎝⎜

⎞
⎠⎟
=

−k1k2
k1 + k2

⎛
⎝⎜

⎞
⎠⎟

 

The negative sign here says that when the structure moves in the +x direction, the mass encounters 
a potential with a negative gradient, i.e., there is a force on it in the +x direction. 
The structure stiffness matrix is similar to the (mass) stiffness matrix and gives the restoring force 
on the structure with the mass fixed but the spring junction floating. The raw value reflects only the 
nearest spring ( k1 ), but the effective value reflects the series sum of the two stiffnesses. 

 Seff = S −CSQQ
−1CQS = k1( ) − k1

2

k1 + k2

⎛
⎝⎜

⎞
⎠⎟
=

k1k2
k1 + k2

⎛
⎝⎜

⎞
⎠⎟

 

4.2 The mass matrix 
The kinetic energy is 

EK = 1
2 mv

2  

 so the mass matrix is just 

 M = m( )  
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4.3 Basic transfer functions 
The dynamics of the pendulum proper can be represented by a frequency-dependent equation of 
motion matrix 

 E = Keff − (2π f )
2M =

k1k2
k1 + k2

− (2π f )2m
⎛
⎝⎜

⎞
⎠⎟

 

 

4.4 The state-space matrices 
We assume the standard set of inputs and outputs convenient for time domain simulation using the 
LIGO E2E simulation package: 

 inputs =
s − snom
fx

⎛
⎝⎜

⎞
⎠⎟
=

s
fx

⎛
⎝⎜

⎞
⎠⎟

 

i.e., displacement of the structure and force on the mass, and 

 outputs =
x − xeq
fs

⎛
⎝⎜

⎞
⎠⎟
=

x
fs

⎛
⎝⎜

⎞
⎠⎟

 

i.e., the position of the mass and force back on the structure. Then the state-space matrices are 

 A =

0 I

Re −M−1Keff( ) Im −M−1Keff( )
2π f

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

0 1
−k1k1

m k1 + k1( ) 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  

 B =
0 0

Re −M−1CXS(eff )( ) M−1

⎛

⎝
⎜

⎞

⎠
⎟ =

0 0
−k1k1

m k1 + k1( )
1
m

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  

 C =
I 0

Re −CSX (eff )( ) 0
⎛

⎝
⎜

⎞

⎠
⎟ =

1 0
k1k2
k1 + k2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

 D =
0 0

−Seff 0
⎛
⎝⎜

⎞
⎠⎟
=

0 0
−k1k2
k1 + k2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

 

and the state space equations are 



Advanced LIGO LIGO-T020205-v2 

 18 

 

 

x
x

⎛
⎝⎜

⎞
⎠⎟
=

0 1
−k1k1

m k1 + k1( ) 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
x
x

⎛
⎝⎜

⎞
⎠⎟

+
0 0

−k1k1
m k1 + k1( )

1
m

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

s
fx

⎛
⎝⎜

⎞
⎠⎟

 

and 

 

 

x
fs

⎛
⎝⎜

⎞
⎠⎟
=

1 0
k1k2
k1 + k2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
x
x

⎛
⎝⎜

⎞
⎠⎟

+
0 0

−k1k2
k1 + k2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

s
fx

⎛
⎝⎜

⎞
⎠⎟

 

5 Implementation in software 
The following sections will be easier to follow with reference to a local installation of the toolkit 
and at least one model. See Section 10.1ff for more detail on downloading and installing the 
software. 

5.1 Directory structure 
To minimize code duplication, the Mathematica code has been divided up logically and by 
directory structure into four classes: (i) the toolkit, (ii) models, (iii) cases, (iv) calculations. 
The toolkit comprises the most generic code and is structured as a number of Mathematica 
“packages” in a toolkit directory, which needs to be on the Mathematica search path ($Path). See 
Section 10.2.1 for more on how these packages are installed and added to $Path. 

A model is a specification of a particular type of suspension as a particular combination of 
elements supported by the toolkit. For example, the QuadLite2Lateral model has the 
structure of an aLIGO quad suspension, with 4 masses, 6 blades (each with lateral as well as 
vertical compliance), and 14 wires. A model definition notebook has a default set of numerical 
parameters, but the focus is on the generic structure. The directory where the model definition 
notebook lives is called the model directory. 
A case is subordinate to a model. It is defined by a set of numerical parameters, which can be 
specified from scratch, or as overrides to the default set. The numerical parameters are specified in 
a case definition notebook, which lives in a case directory one or more levels below the model 
directory.  
A calculation is subordinate to a case. It was separated out from the idea of a case because when 
sharing models and cases via an SVN, different users will want different versions of the 
calculation, with, for example, different plots or other analysis. A calculation is defined by a 
calculation notebook, which lives in a calculation directory within the case directory.  
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Execution starts in the calculation notebook, and a search is made upward in the directory structure 
to find first the case definition and then the model definition. See Section 10.2.5 for more detail on 
the flow of control. 

5.2 Phases of the calculation 
Because the calculation for the wire bending potential terms referred to in Section 3.2.1 above is 
time consuming, the calculation is divided into five stages, 0A, 0B, 1A, 1B, and 2, adding in extra 
terms gradually. Stage0A is quick to calculate and the results may be a usable approximation for 
some purposes. 

Stage0A first compiles a list of the potential terms for gravity, springs, and the basic longitudinal 
stretching of wires. Each list element is a pair consisting of a totally symbolic expression for the 
potential term plus a damping tag symbol that represents the appropriate type of damping for that 
term. The damping tag allows the correct complex damping function to be applied later. By default, 
Stage 0A does not include potential terms for bending of wires, or the additional longitudinal 
stretch from bending, but these can be turned on if desired.  

The individual terms are then combined into a single expression relevant at zero frequency by 
multiplying by the real part of the respective complex damping functions at DC, summing, and 
then substituting numerical values for all quantities except the “variables” (i.e., x ) and the “floats” 
(i.e., q  ). 

The equilibrium position is found by numerically minimizing the potential function, starting from a 
user-supplied approximation that is a required part of the specification of the model. 

Each term separately then has numerical values substituted for all quantities except the “variables” 
(i.e., x ), the “floats” (i.e., q  ) and (this time) the parameters (i.e., s ). Partial derivatives are taken 
with respect to all the variables, floats and parameters that appear in the term, at the equilibrium 
point previously found. This gives a matrix with the same structure as P , but sparse, with 
contributions only for a single term with a single damping type. These per-term stiffness matrices 
are collected in a list, tagged with their damping types. 

Stage 1A adds terms for torsion of wires. Stage 1B adds terms for bending of the wires near the 
attachment points. Stage 2 adds terms for the slight additional longitudinal stretching of the wires 
due to bending away from the straight line assumed in Stage 0. 

5.3 Utility functions 
To support the above calculations the toolkit provides a large number of utility functions which are 
common to both the triple and quad models: 

(i) geometry of points on rigid bodies subject to translations and rotations 

(ii) geometry of angular velocity and infinitesimal rotations 
(iii) manipulating variables, parameters and velocities 

(iv) manipulating lists of substitutions 
(v) properties of wires (length, stretching and bending potential energy etc) 

(vi) properties of springs 
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(vii) creating the total potential for the system 
(viii) creating matrices of elastic constants (a.k.a., potential energy matrices) 

(ix) creating matrices of mass/MOI coefficients 
(x) processing and pretty-printing eigenvectors 

(xi) outputting useful intermediate results 
(xii) converting to state-space matrix format 

(xiii) computing transfer functions 
(xiv) computing thermal noise 

5.4 Model specific utilities 
As well as the specification of the model proper, the user needs to supply some utility functions 
that depend on the model in ways that are too indirect to allow them to take the model specification 
as a parameter or to be automatically generated. These include: 

(i) routines for drawing 3D pictures of the mode shapes 
(ii) vectors that specify force and displacement inputs of interest (e.g., “unit x-direction 

displacement input at the structure”) 
(iii) vectors that specify outputs of interest (e.g., “unit x-direction displacement output at the 

upper left OSEM position”) 
 

6 Models of Particular Interest 

6.1 Triple Model 
The triple model is a three-stage pendulum with the structure of the usual GEO triple. From the 
ground it consists of 

(i) A support structure (taken to be immovable except for the purpose of transfer functions). 

(ii) Two “upper” blade springs. 
(iii) Two “upper” wires, one per upper blade spring. 

(iv) The “upper” mass, a.k.a., mass 1. 
(v) Two “lower” blade springs. 

(vi) Four “intermediate” wires, one per lower blade spring. 
(vii) The “intermediate” mass, a.k.a., mass 2. 

(viii) Four “lower” wires (or fibres). 
(ix) The optic, a.k.a., mass 3. 

There have been three different versions of the triple model with slightly different modeling of the 
blade springs. See the discussion of the “lite” and “xtra-lite” families of models below. These were 
removed in two stages. 
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6.2 Quad Model 
The quad model is a four stage pendulum with the structure of the conceptual design for the test 
mass suspension in Advanced LIGO. From the ground it consists of 

(i) A support structure (not modelled as movable except for the purpose of transfer functions). 

(ii) Two “upper” blade springs. 
(iii) Two “upper” wires, one per upper blade spring. 

(iv) The “top” mass, a.k.a. mass 0 or mass N (“N” = new, relative to the triple masses) 
(v) Two “intermediate” blade springs. 

(vi) Four wires, two per intermediate blade spring. 
(vii) The “upper” mass, a.k.a., mass 1. 

(viii) Two “lower” blade springs. 
(ix) Four “intermediate” wires, two per lower blade spring. 

(x) The “intermediate” mass, a.k.a., mass 2. 
(xi) Four “lower” wires (or fibres). 

(xii) The optic, a.k.a., mass 3. 
Note a key difference in the quad relative to the triple: the quad has only two blades at levels below 
the top (intermediate and lower), with two wires attached to the tip of each blade spring, whereas 
with the triple there are four blades at the lower level, with one wire per spring throughout. 

6.3 “Lite” and “Xtra-Lite” Versions of the Triple and Quad Models 
In the earliest versions of both the triple and quad models, each blade spring was represented by a 
6-DOF mass element connected to its base (the structure or one of the hanging masses) by a 6-DOF 
spring. This was purely for ease of implementation – particularly with early versions of the toolkit 
it was simpler to represent approximate one-dimensional motion with stiff potentials than 
geometric constraints. This increased the size of the matrices that had to be handled, but was not a 
problem as long as only frequency domain results were of interest. However when output from the 
models came to be used for time domain simulation, the calculation would bog down because high-
frequency eigenmodes involving the blade tips required very fine time steps to resolve. Thus for 
each model (triple and quad) two simplified versions were created.  
The “lite” version of each model invokes the appropriate geometry to constrain each blade tip to 
move with the object it was mounted to in five DOFs, leaving one independent DOF. This reduces 
the number of DOFs (and the size of the matrices) to 24 for the triple and 30 for the quad. However 
the frequency of the eigenmode of a blade tip in its working direction is still quite high (because the 
blade is compliant but the wire attached to it is not). Thus the lite models are still marginal for time 
domain simulations. 
The “xtra-lite” versions go one step further and eliminate the blade tip objects entirely. The 
junction between the spring and the wire still has a coordinate associated with it, but it is a float 
coordinate with no associated mass or MOI. Since it has no inertia, it can be assumed to track the 
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point of force/torque equilibirum between the blade and wire as the other objects move, which 
allows it to be suppressed from the normal mode analysis.  

6.4 “Lateral” Versions 
In the course of hanging the controls prototype build of the quad suspension, it was discovered that 
lateral compliance of the blades in the upper masses has a significant effect on the fundamental 
pitch frequency, and can easily push it unstable. See T050255-07, T050172-00, and T050257-01. 
To allow for this, extra DOFs representing the lateral positions of the blades were added. The quad 
xtra-lite lateral model is now the preferred model for the quad suspension. It turns out that for the 
triple suspensions in aLIGO, the lateral compliance effect is not significant, so for a long time the 
plain xtra-lite version was used. However at the urging of Jeff Kissel a TripleLite2Lateral model 
was prepared and brought into service. 

6.5 “V5” Violin Mode Versions 
Several quad and triple versions have been extended by dividing the lowest wires into six segments 
and adding mass beads between the segments to approximate the distributed mass. This creates 5 
violin modes in each wire and each direction of wire displacement (longitudinal/transverse to the 
optic axis). The first 3 of these are tolerably harmonic and can be used to study violin mode 
thermal noise and coupling effects. It would be a fairly simple matter of cut and paste to create 
models with additional beads (V10 or V20 etc),  

7 Exploring the supplied cases 
Each model comes with a number of predefined cases, and a good way to start becoming familiar 
with the software is to load one of them and try the plotting and analysis functions. Look in the 
case subdirectory (e.g., subdirectory default for the case with default values) and open the 
calculation notebook, which will have a name like ASUS3ModelCalcDefault.nb. 

7.1 Computing cases from scratch versus using precomputed results 
Because the calculation time can be quite long, the calculation notebook for each case is set up to 
save intermediate results in the corresponding precomputed subdirectory. If the switch 
useprecomputed defined at the beginning of the calculation notebook is set to True, the 
archived results are read back in instead of being recomputed from scratch. Each of the supplied 
cases comes with such a set of results. To load them, first check that the precomputed switch is 
indeed set to True in the Switches section and evaluate the whole notebook. All the key results are 
then in the workspace and various additional plots and analyses can be performed, following the 
existing examples. 

7.2 Stages of the calculation 
Because some parts of the calculation are time consuming and not always of interest, the 
calculation is divided up into stages as follows.  

• Stage 0A: The potential terms for gravity, spring elements, and longitudinal wire-stretching are 
generated and a minimization is done to find the equilibrium position. (As of v2.5 of the toolkit, 
the terms for wire bending can be included in the equilibrium as well.) The kinetic energy is 
processed to produce the mass matrix, the potential terms are processed to produce stiffness 
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matrices and a preliminary normal mode calculation is done. The key results are 
eigenvalues0A (a list of eigenvalues in descending order of magnitude), 
eigenvectors0A. (a list of eigenvectors in the corresponding order), and Hz0A (the 
eigenvalues converted to frequencies in Hz). This stage takes only a few minutes and gives a 
good approximation to the mode shapes and frequencies. However the stiffness matrices 
generated in this step do not correctly take into account dissipation dilution. Thus no damping, 
transfer function or thermal noise information is calculated as it would be invalid. Also the 
mode shapes and frequencies may be slightly inaccurate if one of the damping functions has a 
real part that is not 1 at zero frequency. 

• Stage 0B: The potential terms for spring elements and longitudinal wire-stretching are 
reprocessed with the static forces arbitrarily set to zero. For wires, the unstretched length is 
temporarily set to the stretched length implied by the equilibrium position, and for springs, the 
preload is set to zero. The stiffness that is still present under these conditions is due to first 
order length changes in the wires and springs, and so contributes to damping and thermal noise. 
The stiffness that disappears relative to Stage 0A was due to the static force acting through a 
variable mechanical advantage1. It is added to the gravity stiffness matrix (which then acquires 
a new interpretation as the stiffness matrix for lossless restoring forces). The resulting damping 
calculations are of limited interest because they don’t include the wire bending elasticity but at 
least they validly reflect the losses from the sources of elasticity they do include. Key results 
for this stage are: 
(i) eom0: the equation of motion function, which describes the dynamics of the pendulum. It is 

a function which accepts a numerical value of frequency and returns a complex matrix 
which converts a vector of generalized force inputs to a vector of generalized displacement 
outputs. 

(ii) coupling0: the coupling function, which describes the coupling between the support and 
the pendulum. It accepts a numerical value of frequency and returns a complex matrix 

                                                
1 The canonical example of a restoring force due to a variable mechanical advantage is a simple 
one-wire pendulum. It is commonly said that a pendulum exhibits dissipation dilution because the 
restoring force is gravitational, but this is wrong. The gravitational force is always directly 
downwards and can’t push anything sideways – the restoring force is actually the sideways 
component of the tension in the wire. Another way of describing this is to say that there is a 
mechanical advantage through which the tension is coupled to sideways force on the mass, and that 
this changes with the angle of the wire. Since there are no first order changes in tension and thus 
length, the wire can be quite lossy as a longitudinal spring without degrading the performance of 
the pendulum for small amplitude oscillations. The only way the wire can contribute to loss is 
through the damping associated with the small restoring force the wire contributes directly by 
resisting bending at the flexure point.  
The fact that gravity is indeed lossless turns out to be a red herring. Any other method of putting a 
static tension on the wire that doesn’t involve first order length changes will give comparable 
dissipation dilution. For example, a bead on the middle of a taut wire is effectively a pendulum in 
which gravity has been replaced by a second wire, and will also have good dissipation dilution. 
And in the same way, violin modes of taut wires show dissipation dilution because the restoring 
force is the sideways component of a tension. 
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which converts a vector of displacement inputs at the support to a vector of generalized 
forces at the pendulum. 

• Stage 1A: The potential terms for torsion of the wires are processed and added in. The results 
are as for Stage 0, except that the symbol names end in “1”: eigenvalues1A, 
eigenvectors1A, Hz1A, eom1A, etc. 

• Stage 1B: The potential terms for bending of the wires are processed and added in. This stage 
typically takes a few hours (hence the desirability of precomputed results!). The results are as 
for Stage 0, except that the symbol names end in “1”: eigenvalues1, eigenvectors1, 
Hz1, eom1, etc. Thermal noise plots from these results are good approximations. 

• Stage 2: The potential terms for the slight additional longitudinal stretch due to bending of the 
wires are added in. The results are as for Stage 0, except that the symbols end in “2”: 
eigenvalues2, eigenvectors2, etc. This stage takes another few hours and is rarely 
worth doing because it is such a small effect. 

The preceding order of calculation is enforced using the Calculate[] function. The function 
call Calculate[symbol] will compute (or recall from the precomputed directory) all 
results on which symbol depends and then symbol itself. The function call 
Calculate[stage] where stage is one of Stage0A, Stage0B, Stage1 or Stage2 will 
compute  all the results for the given stage. Such calls have been placed strategically through the 
sample case notebooks to ensure that the necessary results are loaded before the example analysis 
commands are evaluated. More detail about the Calculate[] function is given in the section on 
the calculation of the model below. 

7.3 Available listing and plotting commands 

7.3.1 Frequencies 
The frequencies are available in the variable Hz0A (or Hz0 or Hz1 or Hz2). Since the interesting 
low-frequency modes are last, it is convenient to use Mathematica’s syntax for counting from the 
end of an array: Hz0A[[-2]] is the second lowest frequency. 

7.3.2 Mode shape tables 
Eigenvectors can be found in eigenvectors0A (or …0 or …1 or …2). The order corresponds to 
that in Hz0A, so eigenvectors0A[[-2]] is the second lowest frequency eigenvector. Within 
each vector the order of the coefficients corresponds to that in allvars - allvars[[-6]] is 
x3 (the x-coordinate of the optic) so eigenvectors0A[[-2]][[-6]] is the amplitude of x3. 

Eigenvectors can also be printed in a neat table format using the function pretty[]. It is 
commonly helpful to use Chop[] to throw away insignificant values and to premultiply by the 
matrix e2ni to convert the eigenvector into laboratory yaw, pitch and roll coordinates: 

pretty[Chop[e2ni.eigenvectors0A[[-2]], 10^-4]] 

gives something like 
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7.3.3 Mode shape plots 
You can get a 3D rendering of a normal mode with the eigenplot[eigenvector, 
amplitude, {viewpoint}] function. (The xtra-lite triple and quad models and any other 
models that define a non-zero number of float coordinates will have an extra floatmatrix 
argument in the final position. The amplitude parameter needs to be chosen by trial and error so 
that the mode shape is obvious but not distorted – values between 0.1 and 0.5 are commonly good. 
The viewpoint should be chosen to For example, 

eigenplot[eigenvectors0A[[-2]], .5, {0, -2, 0}] 

gives something like the following 

 

  



Advanced LIGO LIGO-T020205-v2 

 26 

7.3.4 Force transfer function plots 
To calculate and plot transfer functions from generalized force on the pendulum to displacement, 
the following functions can be used: 

calcTFf[eom, ivec, ovec, f] 

plotTFf[eom, ivec, ovec, f1, f2] 

where eom is eom0 or the like, ivec is a vector of generalized force inputs, ovec is a vector of 
displacement outputs, and f, f1 and f2 are numeric frequencies. Force input basis vectors can be 
constructed conveniently using makefinputvector[symbol], which returns a vector 
representing unit force or torque applied to the pendulum coordinate specified by symbol. (For 
example, makefinputvector[yaw3] is unit torque in yaw on the optic.) Similarly output 
basis vectors can be constructed using makeoutputvector[symbol]. 

7.3.5 Displacement transfer function plots 
To calculate and plot transfer functions from displacement of the support to displacement of the 
pendulum the following functions can be used: 

calcTF[eom, ivec, ovec, f] 

plotTF[eom, ivec, ovec, f1, f2] 

where eom is one of the equation-of-motion functions (eom0A or the like), cfn is one of the 
coupling functions (coupling0A etc) ivec is a vector of generalized displacement inputs, ovec 
is a vector of displacement outputs, and f, f1 and f2 are numeric frequencies. Displacement input 
basis vectors can be constructed conveniently using makeinputvector[symbol], which 
returns a vector representing unit force or torque applied to the support coordinate specified by 
symbol. (For example, makeinputvector[x00] is unit x displacement of the support.) 

7.3.6 Thermal noise plots 
To calculate and plot thermal noise the following functions can be used: 

noise2[eomfn, iovec, f] 

plotTN[eomfn, iovec, f1, f2, scale] 

where eomfn is an equation-of-motion function, iovec is an input/output vector, f, f1 and f2 
are numeric frequencies and scale is a scale factor. The input/output vector can be made with 
either makefinputvector[] or makeoutputvector[] (which actually do exactly the 
same thing). Its interpretation is a little bit subtle: it can be thought of as representing a ideal 
frictionless mechanism which causes a point to move as the specified linear combination of the 
coordinates. The thermal noise reported is the thermal noise of that notional output point of the 
mechanism. The temperature assumed accords with whatever substitution is given for the symbol 
temperature in defaultvalues or overrides. 

7.4 Default numerical values 
Each model comes with a set of default values for the properties of the various elements. These are 
given as Mathematica substitution rules in a list called defaultvalues, which for the triple 
model looks like this: 

defaultvalues = { 
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 g -> 9.8 

 ux -> 0.1, 

 uy -> 0.3, 

 uz -> 0.07, 

 den1 -> 2700, 

 m1 -> den1*ux*uy*uz, 

 … 

}; 

The full, commented version of this list can be inspected in the model definition file. The 
calculation of the model using the default values can be found in the subdirectory default.  

Often however the user will want to try variations on the default parameters. To promote good 
version control, the calculation of the model is done in a separate file from the definition. The 
recommended procedure is to leave the model definition notebook alone and specify variations in 
the calculation notebook by supplying a list of additional substitutions which override those from 
defaultvalues. The new substitutions should simply be added to the list overrides which 
is defined near the front of the calculation notebook. The next sections describe the mechanics of 
the process. 

7.5 Creating new cases of the existing models 
To create a new case with new numeric values for the properties of the pendulum, proceed as 
follows: 

(i) Duplicate one of the existing case subdirectories, such as default. Give the new 
subdirectory a name reflecting the combination of properties to be tried, such as 
heavieroptic. 

(ii) Rename the calculation notebook in the new subdirectory to end with some fragment of the 
subdirectory name, e.g., ASUS3ModelCalcHO.nb. (The exact name doesn’t matter, but 
making it unique is helpful if you ever have several different notebooks open.) 

(iii) Delete all the files in the precomputed subdirectory within the new case directory. 

(iv) Find the assignment to modelcase in the Switches section of the calculation notebook 
and edit the RHS to be a string exactly the same as the case subdirectory name, e.g., 
“heavieroptic”. 

(v) Find the assignment to overrides in the Switches section and edit it so that it contains 
whatever overriding substitutions are required to implement the new case, e.g., m3-> 50 
will change the optic mass to 50 kg. (More detailed instructions are given below.) Add 
conspicuous comments there and at the top of the file explaining the change. 

(vi) Find the assignment to precomputed in the Switches section and edit the RHS to 
False. 

(vii) Evaluate the whole notebook. 

(viii) Edit the RHS of the assignment to precomputed back to True. 
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7.6 Using overrides 
Note that although the ultimate goal is to give numeric values for all properties, you are not 
constrained to use only substitutions with numeric right-hand sides in overrides. After the old 
substitutions in defaultvalues and the new ones you provide in overrides are combined, 
they are put through a recursive process where substitutions are applied to the right-hand sides of 
each other until everything is (hopefully) numeric. (The resulting numeric substitution list is called 
constval.) All you need ensure is that any symbols that occur on the RHS of your substitutions 
also have substitutions defined for them in overrides or defaultvalues, and that any such 
recursive chains of substitutions end in numeric values after a finite number of steps. Thus 

a->b, b->1 

is good, but 
a->b, b->a 

will cause an infinite loop, and 
a->b, b->c 

will cause a failure when a numeric value for a, b or c is first required. Order is not important, so 
b->1, a->b 

is also good.  
Note that the dependence is only one-way. Thus for example, by default, the upper mass mass (m1) 
and MOIs (I1x, I1y and I1z) are calculated in terms of the density (den1) and the length 
breadth and height (ux, uy and uz) using the usual expressions for a block. The formulae for mass 
and MOI can be overridden with specific numbers, say from a CAD program, and these new values 
will take effect in the normal mode calculation. However the connection with the density and size 
symbols is then broken so unless you give additional overrides they will retain their original, 
possibly inconsistent values. 

You can also give overrides of the form 
symbol -> scale[factor] 

or 
symbol -> increment[difference] 

and instead of the substitution from defaultvalues being entirely replaced it will be scaled or 
incremented by factor or difference respectively. For example, 

m3->scale[2.0] 

will double the mass of the optic. 

8 The definition of the model 
To make more ambitious changes that can’t be implemented with overrides (such asymmetric 
models) or to make entirely new models requires a more detailed knowledge of the definition and 
calculation code. This section gives a walkthrough of the code in the definition notebook, with 
particular emphasis on the items that the model writer needs to supply to define a new model. 
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8.1 Name, Description and Version 
The model is identified by assigning appropriate values to the following: 
modelname Official name of model, e.g., “QuadLite2Lateral” 

modelcomment Description, e.g., “GEO-style quad pendulum with massless 
blades with z and x DOFs” 

modelversion Numeric version, e.g., 5.9. 

Code in the calculation notebooks uses these values in captions and headings. Code in the case 
definition notebooks checks the values of these symbols to ensure that the correct model has been 
loaded. For each new version, a list of changes since the last version should be added as a text cell. 

8.2 Preliminaries 
The Preliminaries section loads the toolkit package and any other packages that may be necessary. 
Most models will require all of the following: 

• PendUtil` (the pendulum toolkit utilities) 

• RotationsXYZ` (custom package for rotations in yaw, pitch and roll) 

• StatusWindow` (custom package to display text messages in a status window) 

• IFOModel` (parameters from Bench) 

Most existing models also load the following additional packages if the version of Mathematica is 
5 or before, but this is such ancient history that new models need not: 

• MyShapes` (custom package similar to Graphics`Shapes` but with rotation bug fixed) 

• Graphics`Graphics` (standard package for general graphics) 

• Graphics`Polyhedra` (standard package for drawing polyhedra) 

• LinearAlgebra`MatrixManipulation` (standard package for matrix manipulation) 

•  

8.3 The model definition proper 
To define a model, a user needs to supply definitions for the symbols outlined in the next sections. 
Examples are from the triple model, ASUS3ModelDefn.nb but the quad model is very similar. 

8.3.1 The master variable list: allvars 
The symbol allvars corresponds to the vector 

� 

x  in the theory section above. It should be a list 
of all the “variables” in the special sense of the coordinates defining the state of the pendulum for 
the purpose of the normal mode calculation. That order of the variables is arbitrary but should be 
logical and  easy to remember. The variable list for the triple model is 

allvars = { 

 xul,yul,zul,yawul,pitchul,rollul, 

 xur,yur,zur,yawur,pitchur,rollur, 
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 x1,y1,z1,yaw1,pitch1,roll1, 

 xllf,yllf,zllf,yawllf,pitchllf,rollllf 

 xllb,yllb,zllb,yawllb,pitchllb,rollllb, 

 xlrf,ylrf,zlrf,yawlrf,pitchlrf,rolllrf, 

 xlrb,ylrb,zlrb,yawlrb,pitchlrb,rolllrb, 

 x2,y2,z2,yaw2,pitch2,roll2, 

 x3,y3,z3,yaw3,pitch3,roll3 

}; 

8.3.2 The list of “floats” 
The symbol allfloats corresponds to the vector 

� 

q in the theory section above. It should be list 
of the coordinates of any junctions between elastic elements that have no mass or MOI associated 
with them. If it is not defined it defaults to the empty list. There are no floats defined in the full 
triple or quad models – to see an example, look at one of the “xtralite” models. 

8.3.3 The parameter list: allparams 
The symbol allparams corresponds to the vector 

� 

s  in the theory section above, i.e., a list of all 
the “parameters”, in the special sense of the coordinates that do not vary for the purposes of the 
normal mode calculation, but do vary for the purposes of displacement-input transfer functions. For 
the current models these are the 6 coordinates of the structure, but you can add the coordinates of 
any other object in the environment the effect of whose displacement on the pendulum you might 
conceivably want to calculate. The parameter list for the triple model is 

allparams = { 

 x00, y00, z00, yaw00, pitch00, roll00 

}; 

8.3.4 Coordinate lists for rigid bodies and points on them 
To make things more readable later on, it is convenient to define names for the lists of coordinates 
that define each rigid body. These need to conform to the format expected by the geometry 
functions: six coordinates in x/y/z/yaw/pitch/roll order. For example, the optic in the triple model is 

optic = {x3, y3, z3, yaw3, pitch3, roll3}; 

The items in the list don’t need to be single symbols from allvars, they just need to be in terms 
of such symbols plus constants from defaultvalues. For example, 

constrainedbody = {l Sin[theta], l Cos[theta], 0, 0, 0, 0}; 

could represent a rigid body constrained to move without rotation along a line at a constant angle 
theta to the x-axis. (The coordinate l would have to appear in allvars, and the constant theta 
in defaultvalues.) 

Typically the user will also want to define coordinate lists for static objects. For example, in the 
triple model the support structure is 

support = {x00, y00, z00, yaw00, pitch00, roll00}; 
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(This happens to be the same list as allparams, but is conceptually different in that the order and 
interpretation of items in allparams is not important, whereas here it must be 
x/y/z/yaw/pitch/roll.) 
Similarly, points of interest on rigid bodies should be specified as lists of x, y and z local 
coordinates. For example in the triple pendulum, the left wire-attachment point on the upper mass 
is 

massUl={0,-n1,d0}; 

8.3.5 Items with gravitational potential energy: gravlist 
All the potential terms due to gravity should be grouped in a list called gravlist. The following 
fragment from the triple model initializes the list and adds a term for the potential energy of the 
optic to it: 

gravlist = {}; 

AppendTo[gravlist, m3 g z3]; 

(Building up a list with AppendTo[] is overkill for something so simple but it’s good practice for 
the more complicated structures to come. There it makes things rather more readable.) 

8.3.6 Wires: wirelist 
The various wires in the model are specified in a list called wirelist. Each entry in wirelist 
describes a single wire and has the following format: 

{ 

 6-coordinate list defining first mass, 

 3-coordinate attachment point for first mass (local coordinates), 

 3-coordinate attachment vector for first mass, 

 6-coordinate list defining second mass, 

 3-coordinate attachment point for second mass (local coordinates), 

 3-coordinate attachment vector for second mass, 

 Young's modulus, 

 unstretched length, 

 longitudinal elasticity, 

 vector defining principal axis 1, 

 moment of area along principal axis 1, 

 moment of area along principal axis 2, 

 linear elasticity type, 

 angular elasticity type, 

 torsional elasticity type, 

  shear modulus, 

  cross sectional area for torsional calculations, 

  torsional stiffness geometric factor  

} 
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Each wire is presumed to be strung between two rigid bodies, and items 1 and 4 are the coordinate 
lists specifying the bodies. (Each body can be either massive and have a coordinate list of variables 
drawn from allvars or massless and have a coordinate list drawn from allfloats.) Items 2 
and 5 are the attachment points in body coordinates. Items 3 and 6 are vectors in local coordinates 
that specify the angle at which the wires are attached. For example, for the wire in a simple 
pendulum, the vectors would be {0,0,-1} (i.e., down) at the top and {0,0,1} (i.e., up) at the 
bottom. However as a convenience, if you put anything but a three-item list in either of those 
positions, the later calculation ignores it, and instead works out what the vector would have to be 
for the wire not to be bent at the end when the pendulum comes to equilibrium. 
Items 7 and 8 are the Young’s modulus for the wire and the unstretched length. 

Item 9 is the elasticity of the wire considered as a longitudinal spring. The reason for having the 
user work this out manually, rather than taking the cross-sectional area as a parameter, is to allow 
for the case where the area varies along the length of a fibre. 
Items 10-12 relate to the bending of the wire near the endpoints. The wire is allowed to have an 
oblong cross-section with different rigidities along different axes. Item 10 is a vector in local 
coordinates specifying the axis along which the rigidity is maximum, Item 11 is the moment of area 
along that axis, and Item 12 is the moment of area along the axis at right angles. 
Items 13, 14 and 15 are identifying symbols that specify which damping functions are to be 
attributed to the longitudinal, bending and torsional elasticities respectively. (The damping function 
for each tag should specified as a substitution in defaultvalues – see below. If none is given it 
defaults to 1 for the real part and 0 for the imaginary part.) 

Items 16, 17 and 18 are the shear modulus, the cross-sectional area (for the purposes of the torsion 
calculation only) and the torsional stiffness geometric factor. For backward compatibility for 
models defined before torsion was supported, the four torsion-related items (15, 16-18) are optional 
on a per-wire basis. 

In the triple model, initializing wirelist and adding a definition for the wire from the top left 
blade spring to the upper mass looks like this: 

wirelist = {}; 

AppendTo[wirelist,{ 

 bladeUL, 

 bladeULa, 

 bladeULavec, 

 massU, 

 massUl, 

 massUlvec, 

 Y1, 

 ul1, 

 kw1, 

 {1,0,0}, 

 M11, 

 M12, 
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 wireUtype, 

 wireUatype 

}]; 

8.3.7 Springs: springlist 
The elastic elements in the model other than wires are specified in springlist. Note that a 
“spring” element only models elasticity. To model the mass of a physical spring as well requires a 
separate rigid body element.)  

Each entry in springlist describes a single spring element and has the following format: 
{ 

 coordinate list defining first mass, 

 attachment point for first mass (local coordinates), 

 attachment angles for first mass (yaw, pitch, roll), 

 coordinate list defining second mass, 

 attachment point for second mass (local coordinates), 

 attachment angles for second mass (yaw, pitch, roll), 

 damping type, 

 6x6 elasticity matrix, 

 1*6 pre-load force/torque vector 

} 

 
Items 1–6 are similar to Items 1-6 in the list of wire properties and specify the two objects that the 
spring is attached to. There is one important difference however: for wires, the attachment angle is 
specified as a vector, whereas for a spring it is specified as a triple of angles: yaw, pitch and roll. 
(The three-angle formulation is more general and elegant but it turned out to make the 
computations for the wire-bending elasticity intractable.) The spring is considered to have its own 
x/y/z coordinate system, and the attachment angles are the amount that one would have to rotate the 
spring to reach its working position, relative to an initial state with its coordinate system aligned 
with that of the mass. 
Item 7 is a symbol specifying a damping function, as for the wires. 

Item 8 is a 6x6 elasticity matrix giving elastic constants with respect to differential displacements 
in the spring local coordinate system. 

Item 9 is a vector  giving the amount of preload force or torque in the spring x, y, z, yaw, pitch and 
roll directions when the attachment points on the two masses are coincident and aligned according 
to the attachment angles. 
The following fragment from the triple model shows the entry for the upper left blade spring being 
added to the list: 

springlist = {}; 

AppendTo[springlist, { 

 support, 
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 bladeULnom, 

 {0,pitchbul,rollbul}, 

 bladeUL, 

 COM, 

 {0,pitchbul,rollbul}, 

 bladeUtype, 

 DiagonalMatrix[{kbux,kbuy,kbuz,kbyawu,kbpitchu,kbrollu}], 

 {0,0,bdu*kbuz,0,0,0} 

}]; 

8.3.8 The kinetic energy: kinetic 
To make the specification of the kinetic energy more readable it is convenient to group the 
moment-of-inertia constants into tensors, like the following for the optic in the triple model: 

 IM3 = {{I3x, 0, 0}, {0, I3y, 0}, {0, 0, I3z}}; 

The kinetic energy should then be given as a expression in terms of Mathematica total derivatives 
of the variables (from allvars, not allfloats) with respect to t (time), and assigned to the 
symbol kinetic. This is admittedly not very user-friendly and really ought to be automated in 
some future version. For the moment, just copy the pattern of the following fragment showing the 
term for the kinetic energy of the upper mass (massU) in the triple model:  

kinetic = ( 

 … 

 +(1/2) m3 Plus@@(Dt[b2s[optic,COM],t]^2) 

 +(1/2) omegaB[yaw3, pitch3, roll3].IM3.omegaB[yaw3, pitch3, roll3] 

 … 

); 

Here, Plus@@(vector)^2 is a Mathematica shortcut for summing over squares, 
Dt[coordinate, t] is the total time derivative, b2s[object, point] (a function from 
the package RotationsXYZ`) is the coordinates of a local point on an object, COM (defined 
previously as {0,0,0}) is the centre of mass in local coordinates, and omegaB[] (also from 
RotationsXYZ`) is the angular velocity vector. 

8.3.9 Values of constants: defaultvalues 
As noted previously, defaultvalues is a list of substitutions for properties of the pendulum. 
Specifically, it should contain substitutions for everything that isn’t a “variable” (a coordinate 
involved in the normal modes). As well as the properties of the pendulum per se, it should also 
contain some or all of the following special items. First it needs to contain substitutions for the 
following constants: 

• g (local gravitational acceleration) 

• temperature (temperature, for the thermal noise calculations) 

• boltzmann (Boltzmann’s constant, for the thermal noise calculations) 
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Second, it should contain substitutions for the usual static values of the “parameters” (i.e., the 
coordinates of the structure or other objects involved only in transfer functions). 

Third, it should contain the function call constraintsubstitutions[], which expands to a 
list of substitutions of the form kconvariablename -> 0, one for each variable in allvars. 
Each of the generated constants represents an elastic force tying the corresponding DOF to 
mechanical ground. Additional potential terms corresponding to these constants are automatically 
generated in the calculation notebook, but since the constants are zero by default, they normally 
have no effect. However for debugging purposes, you may find it convenient to override particular 
constraint elasticities with large values to immobilize particular parts of the pendulum. 
Fourth, it may also contain substitutions of the form 

damping[real,dampingtype] -> (function&) 

and/or 
damping[imag,dampingtype] -> (function&) 

which define the frequency dependence of the elasticity and damping for potential terms of the 
specified dampingtype. The & operator is Mathematica’s syntax for a so-called pure function, 
which is a object that represents a function operation but lacks a name. The arguments of a pure 
function are represented by #1, #2 etc. The parentheses around the pure function are required here 
because & has a lower precedence than ->. The functions you supply should accept a value of 
frequency in Hz (not rad/s) and return a multiplier giving the real or imaginary component of the 
complex elasticity as a fraction of the purely real elasticity defined by the potential.  If you don’t 
supply one or both substitutions for a particular damping type they default to 

damping[real,dampingtype] -> (1&) 

and 
damping[imag,dampingtype] -> (0&) 

i.e., frequency-independent elasticity with no damping. Unless you’re really paranoid about the 
Kramers-Kronig relationship or working with very large loss angles you can normally rely on the 
default for the real part and specify only the imaginary one. Structural damping can be specified by 

damping[imag,dampingtype] -> (phi&) 

and thermoelastic damping would be 
damping[imag,dampingtype] -> 
(delta*(2*N[Pi]*#1*tau)/(1+(2*N[Pi]*#1*tau)^2)&) 

where delta and tau are defined elsewhere in defaultvalues. 

8.3.10 Approximation to equilibrium position: startpos 
The list startpos should be a list of substitutions for the variables in allvars giving an 
approximate equilibrium state for the system. This is used as a starting point for finding the exact 
equilibrium by numerical minimization of the potential. The substitutions can have symbols on the 
right hand sides provided of course that there are substitutions for those symbols in 
defaultvalues. 
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8.3.11 Extra potential terms for debugging: preeqtermlist and posteqtermlist 
If desired preeqtermlist can be defined in the model case notebook as a list of  
{potentialterm,dampingtype} pairs to modify the default structure of the  model. Any 
such terms are added to the main potential before the equilibrium position is found. The potential 
expressions in preeqtermlist will be evaluated twice, once with tensionoffswitch-
>False and once with tensionoffswitch->True. If a particular term has a component 
representing a static tension, it should be zeroed out in the latter case. 
If desired posteqtermlist can be defined in the model case notebook as a list of 
{potentialterm,dampingtype} pairs to modify the default structure of the model. Any 
such terms are added to the main potential after the equilibrium position is found, as with the 
constraint forces. Any static forces they represent must cancel for the equilibrium position to be 
valid. The equilibrium position may be invoked with expressions like 
allvars[[i]]/.optval/.nonoptval. To prevent error messages from optval and 
nonoptval being evaluated before they are calculated, posteqtermlist should normally be 
defined with the := operator.  
The potential expressions in preeqtermlist and posteqtermlist will be evaluated twice, 
once with tensionoffswitch->False and once with tensionoffswitch->True. If a 
particular term has a component representing a static tension, it should be zeroed out in the latter 
case. 

8.4 Model dependent diagnostic utilities 
The model writer is also responsible for providing custom versions of the utilities described in this 
section, which are not necessary for the basic recalculation of the model, but are still highly 
desirable for analyzing the resulting data. 

8.4.1 Angular velocity transformation matrices: e2s, e2b and e2ni 
The coefficients corresponding to the angle variables in the raw eigenvectors are not in a very 
convenient basis. In accordance with the normal mode formalism, they represent infinitesimal 
amounts by which the yaw, pitch, and roll angles at equilibrium are incremented in normal mode 
motion. However because of non-linearity and non-commutativity issues, the incremental rotation 
in going from (yaw, pitch, roll) to (yaw+dyaw, pitch+dpitch, roll+droll) is not the same as (dyaw, 
dpitch, droll) (except for yaw=pitch=roll=0). Worse, the three individual rotations implied in 
(yaw+dyaw, pitch+dpitch, roll+droll) aren’t about mutally orthogonal axes (again, except when 
yaw=pitch=roll=0). The toolkit provides transformation matrices to convert the eigenvector 
coefficients into a variety of more useful forms. “Space” coordinates use a basis of infinitesimal 
rotations about the global or space x, y and z axes (in that order) and are useful if you want to 
interpret normal mode motion as an angular velocity. The 3x3 matrix function omegaIS[] 
transforms to that basis: 

omegaIS[yaw,pitch,roll].{dyaw, dpitch, droll} 

“Body” coordinates use a basis of infinitesimal rotations about the body x, y and z axes for the 
object and are useful in conjunction with the MOI tensor (which is implicitly in body coordinates). 
These can be calculated using omegaIB[]: 

omegaIB[yaw,pitch,roll].{dyaw, dpitch, droll} 
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(Finally non-incremental yaw/pitch/roll coordinates use a basis of infinitesimal rotations in yaw, 
pitch and roll. Since this amounts to a basis of infinitesimal rotations about the z, y and x axes,  for 
the object they are effectively just the space coordinates permuted: 

omegaSNI.omegaIS[yaw,pitch,roll].{dyaw, dpitch, droll} 

where 
omegaSNI = {{0,0,1},{0,1,0},{1,0,0}} 

However since these provided utilities only apply to the angle variables of one object at a time, and 
the toolkit has no way to know to know which variables in allvars are for angles, the user is 
responsible for creating matrices (e2b, e2s and e2ni) which process a whole eigenvector at 
once, along the following lines: 

e2ni := DiagonalBlockMatrix[{ 

 IdentityMatrix[3], 

 omegaSNI.omegaIS[yawul,pitchul,rollul], 

 IdentityMatrix[3], 

 omegaSNI.omegaIS[yawur,pitchur,rollur], 

 IdentityMatrix[3], 

 omegaSNI.omegaIS[yaw1,pitch1,roll1], 

 IdentityMatrix[3], 

 omegaSNI.omegaIS[yawllf,pitchllf,rollllf],  

 IdentityMatrix[3], 

 omegaSNI.omegaIS[yawllb,pitchllb,rollllb], 

 IdentityMatrix[3], 

 omegaSNI.omegaIS[yawlrf,pitchlrf,rolllrf], 

 IdentityMatrix[3], 

 omegaSNI.omegaIS[yawlrb,pitchlrb,rolllrb], 

 IdentityMatrix[3], 

 omegaSNI.omegaIS[yaw2,pitch2,roll2], 

 IdentityMatrix[3], 

 omegaSNI.omegaIS[yaw3,pitch3,roll3] 

}]/.optval; 

8.4.2 Plotting routines: eigenplot[] 
To enable drawing 3D pictures of the normal modes there should be a custom version of the routine 
eigenplot[eigenvector, amplitude, {viewpoint}]. The versions in the existing 
models can be used as a pattern. They use routines from the custom package MyShapes`, which 
is similar to the standard package Graphics`Shapes` but with a few refinements for precisely 
this application. The toolkit function tosub[eigenvector] is provided to convert the 
displacements relative to the equilibrium position given by the eigenvector to absolute values in the 
form of a list of substitutions. Since eigenvectors only directly specify the behaviour of variables, if 
there are any floats defined and there are objects that need to be ploted that depend on them, 
eigenplot[] will need to have an extra argument floatmatrix giving the conversion 
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between variables and floats. A call to tosub[eigenvector,floatmatrix] then generates 
substitutions for floats as well as variable. 
Note that eigenvectors should not be processed with e2ni before being given to eigenplot[]. 

8.4.3 Listing routines: pretty[] 
To present eigenvectors in a useful manner there should be a custom version of the routine 
pretty[eigenvector] to list the coefficients in the eigenvector in a table format with 
headings. It is commonly convenient to process eigenvectors with e2ni before listing them, but 
this should be left up to the end-user rather than being done automatically in pretty[]. 

8.4.4 Input and output vectors 
To enable basic use of the various transfer function routines there should be a set of input and 
output vectors for the coordinates likely to be of  interest such as those of the structure and the final 
payload. Toolkit functions makeinputvector[parameter], 
makefinputvector[variable] and makeoutputvector[variable] are supplied to 
make this easy. 

9 The calculation of the model 

9.1 The Calculate[] function 
As explained above, the Calculate[] function is normally used to compute or load results for a 
whole stage at once. However it works on any symbol representing one of the standard 
intermediate or final results. A typical clause in the definition of Calculate[] looks like this: 

Calculate[symbol] := ( 

 Calculate[dependencies]; 

 If[!useprecomputed||exceptdamping, 

  Status["Computing symbol"]; 

  code to compute symbol; 

  saveprecomputed["symbol.m", symbol]; 

  Done[], 

 (*else*) 

  getprecomputed["symbol.m"]; 

 ]; 

) 

Note the following features: 

• Before attempting to compute or load the requested symbol, Calculate[] calls itself 
recursively to compute or load all the symbols on which the requested one depends. 

• If the switch useprecomputed is True, Calculate[] attempts to load an archived value 
for the symbol from the precomputed subdirectory within the case directory. 

• The condition “||exceptdamping” is omitted in the clauses for result symbols that do not 
depend on the frequency dependence of elasticity, in particular the potential matrices. Thus by 
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setting both useprecomputed and exceptdamping to True, one can explore the effects 
of different magnitudes and frequency dependences of damping without wasteful recalculation. 

The effect of the recursion is that intermediate results are computed in the order described in the 
next few sections. When debugging a new model it will be helpful to work through the result 
symbols in that order, calling Calculate[] manually on each one in turn so that stages with 
errors can be identified. Note that Calculate[] has no effect on symbols that have already been 
loaded. To recalculate a result after an error has been corrected, call Clear[symbol]; 
Calculate[symbol]. Alternatively, clear the results for a whole stage at once with 
Reset[stage] (where stage is one of Stage0A etc). 

9.2 Stage 0A – normal modes without wire bending elasticity 

9.2.1 Numerical Substitutions: constval 
The seminumeric substitutions in defaultvalues and overrides are merged using 
Override[] and then processed using Recurse[] to propagate the numeric values throughout, 
producing a list called constval. 

9.2.2 Numerical start position for minimization of the potential: startval 
The starting position startpos suggested by the model writer is converted to fully numeric form 
called startval by processing with constval. 

9.2.3 Coordinates that don’t participate in the minimization: nonoptcoords and 
nonoptval 

The minimization of the potential should normally be done with respect to all the variables and 
floats in allvars and allfloats. However as an aid to debugging, all those in the list 
nonoptcoords are excluded. This is useful in isolating problems in the specification of the wires 
and springs. The variables in it are pegged to the values in startval during the minimization. 
The list nonoptval is a subset of startval with substitutions for just the variables in 
nonoptcoords. 

9.2.4 Variables that participate in the minimization: optcoords 
The list optcoords is set to the complement of nonoptcoords with respect to allvars and 
allfloats. (For backward compatibility, nonoptvars is also accepted but this is deprecated.) 

9.2.5 The base list of potential terms for the minimization: potentialtermlist 
The default set of potential terms that are to be considered in the minimization are assembled into a 
list together with their damping tags: 

potentialtermlist = {{term,tag},{term,tag},…} 

This includes all the terms generated from gravlist and springlist, the terms for simple 
longitudinal extension of the wire from wirelist, plus any extra terms defined manually in 
preeqtermlist. This was the originally the full list, but as of v2.5 of the toolkit, it can be 
supplemented with optional extra wire terms as discussed in the next section. 
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9.2.6 Additional wire terms for the minimization: potentialtermlistWBnr, 
potentialtermlistWTnr, potentialtermlistWEnr 

As of v2.5 of the toolkit, if wiretermsearly is defined to be True or EqOnly, either directly 
or as a substitution in constval, then any wire potential terms for bending or torsion that can be 
calculated are accumulated in potentialtermlistWBnr, potentialtermlistWTnr or 
potentialtermlistWEnr (B = bending, T = torsion, E = extra longitudinal extension).  

The reason that some may not be able to be calculated is the feature whereby wire attachment 
angles specified as dummy symbols are calculated after the minimization such that the associated 
wires are straight at equilibrium (see 9.4.1). Bending terms can only be calculated for endpoints 
where the wire attachment angles are given explicitly. Torsion terms can only be calculated for 
wires where the wire attachment angles for both endpoints are given explicitly. Any terms not 
meeting these requirements are deferred to Stages 1 or 2 as of old. 

9.2.7 The full expression for the potential: potential 
The terms in potentialtermlist are combined with any in potentialtermlistWBnr, 
potentialtermlistWTnr and potentialtermlistWEnr, multiplied by the real part of 
the damping multiplier evaluated at f=0 (damping[real,dampingtype][0]) and summed to 
produce the total potential as a single expression. 

9.2.8 The numeric potential: potentialNN 
The symbolic expression for the potential is processed with constval and nonoptval to 
produce potentialNN, an expression containing only the coordinates in optcoords. 

9.2.9 The minimization: potential0 and optval 
The minimization gives potential0, the value of the potential at the minimum, and optvals, 
a specification of the minimum as a list of substitutions for the variables in optcoords. 

9.2.10 Velocity variables: velocities 
A list of velocity names is created by adding “v” to all the variable names in allvars.  

9.2.11 The kinetic energy matrix: kineticN and kineticmatrix 
The expression kinetic for the kinetic energy is given in terms of symbolic constants, variables and 
total time derivatives of variables. The time derivatives are replaced by velocity variables, and 
constval, optval and nonoptval are used to remove all other symbols, producing 
kineticN. Partial derivatives with respect to all pairs of variables in velocities are then 
taken to produce kineticmatrix. 

9.2.12 The potential used for the normal mode calculation: potentialtermlist0 
Extra items of the form {constraintterm, constrainttype} are added to 
potentialtermlist to produce potentialtermlist0. The extra terms represent elastic 
forces tying the various DOFs to the equilibrium position determined in the previous step. Terms 
defined manually in posteqtermlist are also added at this point. 
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As of toolkit v2.5, if wiretermsearly is defined to be True (but not EqOnly), either directly 
or as a substitution in constval, any terms in potentialtermlistWBnr, 
potentialtermlistWTnr or potentialtermlistWEnr are appended. 

9.2.13 The Stage 0A damping-specific potential matrices: potentialmatrices0T 
The potential term parts of all the items in potentialtermlist0 are differentiated with 
respect to the variables, floats and parameters to form individual damping-specific potential 
matrices corresponding to the 

� 

Ti . Matrices with the same damping tags are combined. The final list 
potentialmatrices0T has the form {{dampingtype, matrix}, {dampingtype, 
matrix},…}. (For no particularly good reason the tag comes first here rather than second as 
above.) As explained above, the potential matrices at this stage should be treated with caution 
because they have not yet been corrected for dissipation dilution. 

9.2.14 The Stage 0 potential matrix: potentialmatrix0 
The individual potential matrices in potentialmatrices0T are multiplied by the real part of the 
complex elasticity multiplier evaluated at f=0 (damping[real, dampingtype][0]) and 
summed to produce a net stiffness matrix. 

9.2.15 The Stage 0 normal modes: eigenvalues0, eigenvectors0 and Hz0 
The potential and kinetic energy matrices are simultaneously diagonalized to produce 
eigenvalues0 and eigenvectors0. The eigenvalues, which are in units of (rad/s)2 are then 
scaled to units of Hz to produce Hz0. 

9.3 Stage 0B – damping without wire bending elasticity 

9.3.1 Potential matrices without tension: potentialmatrices0NT 
The entire potential matrix calculation from stage 0A is repeated with the wire tension and spring 
preload set to zero, producing potentialmatrices0NT. This and potentialmatrices0T 
are passed to dissipationdilution[] which correlates them and identifies the components 
of elasticity that produce damping to produce a new list potentialmatrices0. 

9.3.2 The equations of motion function and the coupling function: eom0 and 
coupling0 

These are calculated from kineticmatrix and potentialmatrices0. Thus they neglect 
wire bending elasticity but correctly incorporate dissipation dilution on the remaining sources of 
damping. 

9.4 Preparation for Stages 1 and 2 

9.4.1 Wire angles: relaxval 
As noted above, the wire definitions are allowed to have placeholder symbols for wire attachment 
angles. The definitions are scanned for such symbols and the optimum attachment angles are 
calculated taking into account the equilibrium position of the pendulum. The values are assembled 
into a substitution list relaxval. 
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9.4.2 Additional potential term lists: potentialtermlistWB and 
potentialtermlistWE 

In preparation for Stages 1 and 2, new potential terms describing the wire bending are generated 
and stored in the lists potentialtermlistWB and potentialtermlistWE in the same 
{{term,tag},…} format as for potentialtermlist0. The first list, used in Stage 1 
describes the potential from pure angular bending of the wire. The second list, used in Stage 2, 
describes the potential from the additional longitudinal stretch of the wire due to the fact that it has 
been displaced away from the straight line between the endpoints assumed in Stage 0. 
The elasticity theory used in the wire bending phase of the calculation was derived by Mark Barton 
using Mathematica based on the discussion in Matt Husman’s thesis. The function 
wirebendingPE[T,l,EE,I1,I2,alpha1,beta1,alpha2,beta2] computes the 
bending part of the potential energy for a wire with tension T, Young's modulus EE, moments of 
area I1 and I2 along its principal axes, which is stretched between two points l apart on a line 
and makes angles alpha1 and alpha2 with the line at one end and beta1 and beta2 at the 
other end.  

Similarly, wirebendingdelta[T,l,EE,I1,I2,alpha1,beta1,alpha2,beta2] 
computes the extra longitudinal extension of the wire due to the curvature of the wire.  
The code for wire torsion was kindly  provided by Ben Lee of the UWA Gravity Group. 

The functions wirepotential1[], wirepotential1T[] and wirepotential2[] do 
the 3D geometry required to apply the above functions to wires at the angles implied by the 
equilibrium position of the model. 

The tags associated with the new terms are taken from the entries in wirelist. Those in 
potentialtermlistWB get the tag specified for bending; those in potentialtermlistWE 
get the tag specified for stretching. 

9.5 Stage 1A – normal modes and damping with wire bending elasticity 
The Stage 1A calculation processes the entries in potentialtermlistWB representing wire 
lateral bending to produce potentialmatricesWB. This is then merged with 
potentialmatrices0 to produce potentialmatrices1A. In turn, this processed in the 
same way as for Stage 0 to produce potentialmatrix1A, eom1A, coupling1A, 
eigenvalues1A, eigenvectors1A and Hz1A.  

9.6 Stage 1B – normal modes and damping with wire torsional elasticity 
The Stage 1B calculation processes the entries in potentialtermlistWT representing torsion, 
to produce potentialmatricesWT. This is then merged with potentialmatrices1A to 
produce potentialmatrices1. In turn, this processed in the same way as previously to 
produce potentialmatrix1, eom1, coupling1, eigenvalues1, eigenvectors1 and 
Hz1.  
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9.7 Stage 2 – normal modes and damping with additional wire stretch due to 
bending 

The Stage 2 calculation processes the entries in potentialtermlistWE to produce 
potentialmatricesWE. This is then merged with potentialmatrices1 to produce 
potentialmatrices2. In turn, this is processed in the same way as for Stages 0 and 1 to 
produce potentialmatrix2, eom2, coupling2, eigenvalues2, eigenvectors2 and 
Hz2.  

9.8 Exporting state-space matrices 

9.8.1 Building state-space matrices with model results 
The package PendUtil.nb defines a number of functions for constructing the A, B, C and D 
matrices of the state space formalism. There are quite a few variants for different purposes, with 
different numbers of inputs and outputs but the names typically start with ssA, ssB, ssC and 
ssD. 

The usual inputs are a group of displacement inputs corresponding to the structure coordinates in 
allparams, followed by a group of force/torque inputs corresponding to the variables in 
allvars. The standard minimal set of outputs are displacements corresponding to the variables in 
allvars. Variant ssC and ssD matrix functions add (at the end) outputs for the forces/torques on 
the structure corresponding to the coordinates in allparams. This expanded set is useful for 
coupling the state spaces of two different models and is illustrated in the diagram on the next page. 
The block structure of all four matrices is annotated with the physical interpretation of each block 
and how it is constructed using the quantities described in Section 3.1. 

9.8.2 Exporting state-space matrices 
The packages MatlabExport.nb and E2EExport.nb contain utility functions for outputting selected 
quantities to text files readable by Matlab and the LIGO E2E group’s simulation environment  
modeler/Alfi. The Matlab utilities are somewhat more general purpose and allow scalars, vectors 
and matrices to be written, and even provide limited support for symbolic results. The E2E routines 
are specifically for state-space matrices. 

10 Appendix 

10.1 Download locations 
Previously, the toolkit and selected models of interest were published at  
http://www.ligo.caltech.edu/~e2e/SUSmodels/ . This was time-consuming to maintain and is 
somewhat out of date. The explanatory content has been moved to the Advanced LIGO wiki at  

https://awiki.ligo-wa.caltech.edu/aLIGO/Suspensions/MathematicaModels ,  
and the Mathematica code has been moved to the Advanced LIGO SUS SVN repository. The 
repository as a whole can be viewed via the web interface at 
http://redoubt.ligo-wa.caltech.edu/websvn/listing.php?repname=sus&  

or accessed via an svn client at 
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https://redoubt.ligo-wa.caltech.edu/svn/sus .  
LIGO.ORG credentials are needed for viewing both the wiki and the SVN, and write privileges 
granted by David Barker are needed for commiting changes to the SVN. 
Relative to the repository root, denoted by ^, the toolkit and models are in subdirectories of 

^/trunk/Common/MathematicaModels 

10.2 Directory structure 
As noted above, the Mathematica code has been divided up logically and by directory structure into 
four classes: (i) the toolkit, (ii) models, (iii) cases, (iv) calculations. 
This directory structure has been revised and elaborated since the last version of this manual, and 
the “calculations” class is new, having been separated out from the idea of a case. To manage the 
extra complexity, the code to work with it has been encapsulated in two simple functions, which 
should in fact greatly reduce the burden on the user.  
The older structure was rather unsatisfactory because paths to two key directories needed to be 
hard-coded in many different places, but it seemed to be the least bad system achievable under 
Mathematica v4, for which the toolkit was first developed.  

Unfortunately since the hard-coded paths normally need to be different for different users, this 
made collaboration difficult - one couldn't send another user a case of a model and have it be 
immediately usable. In aLIGO, the SUS SVN repository became the preferred place to store stuff 
like models, and the old structure would have been intolerable, because different users would be 
continually overwriting files for non-substantive changes. Fortunately new features introduced in 
Mathematica v5 made it possible to do better. 

10.2.1 Toolkit Directory 
The toolkit comprises the most generic code and is structured as a number of Mathematica 
“packages” in a toolkit directory, which needs to be on the Mathematica search path ($Path). As 
is standard for packages, each comes as a source notebook (with extension .nb) and an 
automatically generated executable file (with the same filename but extension .m). Key packages 
used by most models include 

• PendUtil` (the main pendulum specific utilities) 

• RotationsXYZ` (custom package for rotation matrices in terms of yaw, pitch and roll) 

• MyShapes` (custom package similar to Graphics`Shapes` but with rotation bug fixed and a 
few extra shapes) 

• StatusWindow` (custom package to display progress messages in a status window) 

• IFOModel` (parameters from Bench) 

• MatlabExport` (export of values, vectors and matrices to Matlab) 

• E2EExport` (export of values, vectors and matrices to E2E) 
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Formerly the location of the toolkit could be anywhere, but the path to it had to be hard-coded into 
each case. We now insist that the toolkit files are stored in a subdirectory of one of the 
Mathematica Autoload directories, either the global $BaseDirectory/Autoload/ or the 
user-specific $UserBaseDirectory/Autoload/. (These path specifiers are pseudo-code - a 
hybrid of Mathematica ($BaseDirectory) and Unix (.../Autoload/) syntaxes. To find the  
actual location, examine the value of the $BaseDirectory or $UserBaseDirectory 
symbol in Mathematica, and then complete the path in the appropriate syntax for your OS.)  
The significance of these locations is that when the Mathematica kernel is launched, it searches all 
subdirectories of Autoload for files called init.m and runs them. The toolkit includes an 
init.m file which adds its enclosing directory to the path, making the rest of the toolkit files 
available.  

The toolkit can be installed by going to the Autoload directory and doing a checkout of the SVN 
directory 

^/trunk/Common/MathematicaModels/PendulumToolkit 

By default this will create a directory .../Autoload/PendulumToolkit but the exact name 
PendulumToolkit is not significant to Mathematica. PendulumToolkit can also be a 
Unix/Mac/Windows symlink to a directory in a more convenient location (but not a Mac OS X 
alias or a Windows shortcut). 

For installations of Mathematica prior to v8, a more complicated setup is required - see the wiki for 
details. 

10.2.2 Model/Case/Calculation Directories 
A model is defined by a model definition notebook, which resides in a model directory. All the 
cases and calculations for that model reside in subdirectories, so that a model and all its addons can 
be single checkout from the SVN.  

A case is defined by a case definition notebook, which resides in a case directory. Case directories 
can reside in the model directory, or can be grouped into “folders” and “subfolders” below that. 
(Intermediate directory levels used to group related cases are called folders.) Since a model and all 
its cases will be one big subtree of the SVN, each user is encouraged to have their own user folder, 
named with their ligo.org name (albert.einstein or the like) to keep cases of personal 
interest separate from reference cases representing production suspensions. 

A calculation is defined by a calculation notebook, which must reside in the top level of the case 
directory. 

Execution starts in the calculation notebook, and a search upwards is made to find first the case 
definition and then the model definition. The author of a new case is responsible for creating a 
calculation directory called stdcalc. Users are welcome to have their own calculation directory 
named with their ligo.org name (albert.einstein or the like). Such calculation directories are 
also called user directories (to be distinguished from user folders two or more levels above.) 

10.2.3 Detail of directory structure for typical model 
The directory structure for the quad model (which is representative) is outlined below: 
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QuadLite2Lateral/    (The quad model directory, checked out from the SVN.)  

 ASUS4L2LateralModelDefn.nb    (Model definition notebook for the quad model.)  

 ASUS4L2LateralModelDefn.m    (Autosave version with executable code from above.)  

 default/ (The "case directory" for the default case of the quad model)  

  ASUS4XLLateralCaseDefn.nb    (The case definition notebook for the default case.)  

  ASUS4XLLateralCaseDefn.m    (Autosave version with executable code from 
above.)  

  precomputed/    (Precomputed results for the default case.)  

  stdcalc/    (Pseudo-user directory with prototype version of calculation.)  

   ASUS4XLLateralModelCalcPlots.nb    (User calculation notebook for pseudo-
user stdcalc with representative collection of plots.)  

   ASUS4XLLateralModelCalcExport.nb    (User calculation notebook for 
pseudo-user stdcalc that generates standard set of exported result files.)  

  quickcalc/    (Pseudo-user directory with prototype version of quick calculation.)  

   ASUS4XLLateralModelCalcPlots.nb    (User calculation notebook for pseudo-
user quickcalc with representative collection of plots.)  

   ASUS4XLLateralModelCalcExport.nb    (User calculation notebook for 
pseudo-user quickcalc that generates standard set of exported result files.).)  

  albert.einstein    (User directory for A. Einstein.)  

   ASUS4XLLateralModelCalc.nb    (Custom calculation for A. Einstein.)  

 anothercase/    (Another case, with different numerical parameters.)  

  ASUS4XLLateralCaseDefn.nb    (The case definition for anothercase.)  

  precomputed/  

  stdcalc/  
  quickcalc/ 

 SuchAndSuchCases/ (A folder for a particular type of case.)  

  asuchandsuchcase/ (A case in a folder.)  

  SoAndSoCases/ (A subfolder for a particular subtype of case.)  

   asoandsocase/ (A case in a subfolder.)  

   ...    (And so on to arbitrary depth.)  
 ...     (Other cases at the top level. Note however that default is the only top-level case allowed 
in the SVN.)  
...    (Other models.)  
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10.2.4 Directory structure differences from older versions 
The need to make the toolkit and models SVN-friendly was the impetus to revise the old scheme. 
The key changes are as follows: 

• The init.m in PendulumToolkit does most of the path set up. It adds 
PendulumToolkit to the Mathematica path ($Path) (eliminating the need for the 
modelsupportdirectory variable), and defines functions to make it easy to define 
modeldirectory relative to the calculation notebook.  

• In Mathematica v7 and earlier, there is no function by which the init.m file in 
PendulumToolkit can tell the name of the directory it is in, which it needs to set the 
path to include itself. Thus we use a supplementary init.m file in 
$BaseDirectory/Kernel/ or $UserBaseDirectory/Kernel/ to provide that 
information via one hard-coded assignment. Templates for creating one of these files are 
provided, but only need be installed by users with older versions.  

• The old/current level of the hierarchy is gone. "The" model directory (the one pointed 
to by modeldirectory) can now have a name reflecting the model. It's easiest to have it 
be the same as on the SVN (e.g., QuadLite2Lateral) but you can check it out under 
another name if you prefer. Models can be checked out in arbitrary places - different models 
don't have to be siblings.  

• Case directories no longer have to live in the top level of the model directory, but can now 
be organized into a tree structure of arbitrary depth. (Directories used for the purpose of 
grouping cases are called folders in this and other documentation.) The formal name of a 
case has been generalized from a single string to a Mathematica list of strings giving the 
relative path from the model directory to the case directory, e.g, 
{"myfolder","mysubfolder","mycase"}. 

• A new "user" level has been added at the bottom of the hierarchy. Each person using a case 
of a model from the SVN is strongly encouraged to have their own calculation notebook in 
their own user subdirectory, with their preferred set of plots etc. There are two standard 
pseudo-users, stdcalc and quickcalc, with template calculations that can be customized. 
stdcalc is the full calculation as of old. quickcalc is currently only available for quad 
and triple model and uses the package QuickQuadLateral or QuickTriple to do a 
slightly approximate but quicker version of the calculation.  

• The case calculation notebook has been split into a case definition notebook that contains 
only definitional stuff and lives on the case level, and a user calculation notebook that lives 
on the user level. 

• The case definition notebook now has all cells set to be initialization cells and has an 
associated autosave .m file like the model definition notebook.  

• The user calculation notebook is responsible for loading the case definition, which in turn is 
responsible for loading the model definition. Functions are provided to make this easy. 
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10.2.5 Flow of control between code in toolkit models, cases and calculations 
The following sequence illustrates how everything gets loaded for a case 
{"myfolder","mysubfolder","mycase"} of the quad model when the toolkit has been 
installed in $UserBaseDirectory/Autoload/PendulumToolkit. 

When the Mathematica kernel launches, $UserBaseDirectory/Kernel/init.m file is 
discovered and run (assuming it has been created as recommended for Mathematica v7 or earlier). 
If it is actually Mathematica v7 or earlier that is running, it adds 
$UserBaseDirectory/Autoload/PendulumToolkit to the Mathematica $Path.  

The $UserBaseDirectory/Autoload/PendulumToolkit/init.m file is discovered 
and run, and for Mathematica v8 or later adds 
$UserBaseDirectory/Autoload/PendulumToolkit to $Path.  

Regardless of version, $UserBaseDirectory/Autoload/PendulumToolkit/init.m 
also defines a number of useful functions for managing the hierarchy, all based on 
notebookdirectory[] which returns the directory of the notebook from which it is executed 
(typically a user calculation notebook). The key ones are loadcasefromuser[] which 
attempts to load a case definition, and loadmodelfromuser[] which attempts to load a model 
definition.  
The user calculation notebook, 
QuadLite2Lateral/myfolder/mysubfolder/mycase/stdcalc/ASUS4XLLatera
lModelCalc.nb is responsible for calling 
loadcasefromuser["ASUS4XLLateralCaseDefn.m"] to run the .m version of the case 
definition notebook in the directory one level above 
(QuadLite2Lateral/myfolder/mysubfolder/mycase/ASUS4XLLateralCaseDef
n.m).  

The case definition notebook is responsible for setting 
modelcase = {"myfolder","mysubfolder","mycase"} and calling 
loadmodelfromuser["ASUS4L2LateralModelDefn.m"] to load the model. 
loadmodelfromuser[] searches upward from the case directory 
(QuadLite2Lateral/myfolder/mysubfolder/mycase) to the model directory 
(QuadLite2Lateral).  

 
Notes 

The name of the function loadmodelfromuser[] is potentially confusing because it reflects 
the anticipated situation at runtime rather than anything about the source code. The call to the 
function will normally appear in the case definition notebook, and will be copied to the associated 
.m file by the autosave process. The .m file will be run by a call to loadcasefromuser[] in 
the user calculation notebook, so the user calculation notebook will be the current notebook for the 
execution of both calls. If you evaluate loadmodelfromuser[] directly in the case definition 
notebook with Shift-Return or the like, it will fail. Normally this should not be a problem because 
there's so little non-trivial code in most case definition files that it can be debugged simply by 
saving changes and evaluating the loadcasefromuser[] line in the user calculation notebook. 
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If you do ever have a particularly complicated case definition notebook that you would like to 
debug a cell at a time you can change loadmodelfromuser[] to loadmodelfromcase[] 
temporarily. In Mathematica v8 there's a variable $InputFileName by which the .m version of 
the case definition notebook could know where it is, but this has been avoided for backward 
compatibility.  

In older versions of the toolkit, some functions like saveprecomputed[] assumed that the 
Mathematica working directory was set to the case directory, and the case notebook was 
responsible for setting it. That requirement has been eliminated from the toolkit and the setup for it 
has been eliminated from the default template cases, but if it matters to your own code you can 
always reinstate it with SetDirectory[casedirectory[]] after the model has been 
loaded.  
The search behaviour of loadmodelfromuser[] is a natural generalization of the old system. 
Formerly the standard code for loading a model would search the case directory and the model 
directory in that order. That way, a customised model (say with added asymmetry) in the case 
directory would be given precedence. Now the search goes from the case directory via all 
intermediate levels to the model directory. If you have a group of cases with the same type of 
asymmetry, consider taking advantage of this by putting them in a subfolder with a shared custom 
model definition.  

 


