G1000412-v1 1

BSC-ISI electronics Review of the sensor noise and range

Brian Lantz, Ben Abbott March 30, 2010

G1000412-v1 2

advancedligo Analog readouts for BSC-ISI

- 3-fold goal for readout electronics filtering
 - I. Enough range for commissioning.
 - 2. Enough range to 'almost never' saturate in operation.
 - 3. The ADC noise does not limit stage performance. (limited by either inherent sensor noise or loop gain of stage)
 - 4. Note: I have unilaterally updated the BSC reqs at 10 Hz not accepted, but it doesn't matter for these plots.
- Use several inputs to the calculations
 - I. Noise Sensor noise estimates from Stanford (T0900450)
 - 2. Noise Noise measurements of ADC boards by Jay with some recent measurements by Jeff K on HAM6-ISI
 - 3. Range HAM6-ISI readouts for the GS-13s. (damping off for early commissioning, damping on for running)
 - 4. Range LASTI readouts for the stage I STS-2s.

advancedligo Sensor Noise Inputs

Noise estimates for SEI sensors

ADC noise

- Originally believed 4e-6 V/ \sqrt{Hz} , flat.
- New data from Jay H. last week shows
 - 6e-6V/ \sqrt{Hz} at 1 Hz, 60e-6V/ \sqrt{Hz} at 0.01 Hz, 4e-6 near 10 Hz
 - Worse than value used for original designs.
- Jeff K demonstrated better GS-13 low-freq performance using x10 analog gain before the ADC (last week)

advancedligo Noise improvement on HAM6-ISI

Implemented x10 additional analog gain before the ADC, saw 2 interesting things...

L1 HAM6 ISI, Mar 24 2010 Witness STS ASD - X Direction 10^{-3} WIT STS X (090312 Blends, x1/1 VGEO Gains) First: WIT STS X (100204 Blends, x10/0.1 VGEO Gains) GND STS X (090312 Blends, x1/1 VGEO Gains) X performance much better, 10^{-4} GND STS X (100204 Blends, x10/0.1 VGEO Gains) aLIGO Goal matches expectation above ~50 mHz (was ~250 mHz) 10^{-5} much better at - BECAUSE microseism Amplitude (m/rtHz) 10_{-2} 10_{-0} low freq excess tilt is dramatically reduced. 10⁻⁷ low freq excess now only below ~50 mHz 10⁻⁸ 10^{-9} 10⁻¹⁰ 10⁻² 10^{-1} 10° Frequency (Hz)

advancedligo Noise improvement on HAM6-ISI

Implemented x10 additional analog gain before the ADC, saw 2 interesting things...

Range for Inputs

- GS-13s in 'Low Gain' on stage 1 of HAM6-ISI almost never saturate in operation. Should be fine for Stage 2 of BSC-ISI for Commissioning.
 - OK for blasting (C. Gray, LLO ilog, April 21, 2009)
 - OK for Hurricane Ida Landfall (J. Kissel in LLO ilog, Nov 10, 2009)
 - Sometimes saturates on Tip-tilt shutter impacts (when the mirror hits the cage)
- GS-I3 Channel low-gain (sensor * readout chain) about I.8e5 V/(m/s)
- High gain (*10 larger) makes commissioning difficult, but allows us to improve low frequency performance limit from ADCs.
 High gain will be needed for high-performance operation.
- At LASTI STS-2 on Stage I usually OK, so this level should be OK at observatories. Channel gain is 1.3e5 V/(m/s). Originally set at (100/42) bigger = 3.1e5 V/(m/s) which caused saturations.
- Assert: OK at LASTI = OK at Observatory, or if integrated RMS small (< IV 'typical' for 40 Vp-p ADC) then OK.

advancedligo

Range reference

This level of rms allows commissioning, but is not robust (GS-13s on stage 1 of HAM6-ISI, no damping)

measured data from HAM6 on June 5 2009 * HAM 6 analog readout at that time

Range reference

This level of rms is quite robust (GS-I3s on stage I of HAM6-ISI, damping ON)

measured data from HAM6 on June 5 2009 * HAM 6 analog readout at that time

So far...

- Set expectations for
 - sensor noise,
 - ADC noise,
 - showed impact of this on HAM6-ISI,
 - acceptable voltages at the ADCs.
- Next, for sensors on BSC, show filters which achieve this (or get close).

advancedligo Displacement sensor

- stage 0-1 is 20V differential for 1 mm
 - not using any additional gain at low frequency, need full range.
 - low frequency noise of ADC means we can not hit ideal sensitivity of the displacement sensor.
 - Does not strongly impact the requirements.
 Does cause irritation and reduces flexibility of blend filters.
 - Could be helped a bit with a bit more whitening gain between 100 and 400 mHz. Ben has a design for this.
- stage I-2 is 20V differential for 0.25 mm.
 - noise and range scale exactly together.
 - Only plotting stage 0-1.

advancedligo Stage O-I displacement sensor

- I. Measured noise at low freq is from thermal drift of test rig.
- 2. Measured noise at Hanford not quite this good (see 5e-10 m/rtHz)
- 3.ADC will be a real limit to the sensor noise below either a few Hz, or below 300 mHz (if LHO measurements hold).

4. Noise sets blend freq to be below ~300 mHz (not a big problem, need space to roll off gain).
5. Below 15 mHz, the table will have some extra tilt. This will **not** cause **real** translation, (too far below blend freq) but a witness T-240 **will appear** to show excess translation.

advancedligo L-4Cs for stage 0 and stage 1

- preamp gain of 44V(differential) per volt from L-4C
 - twice the gain of the preamps at LASTI
 - make signals in cables bigger.
- switchable ISI-readout gain of
 - low-gain = 2 (input of I, output gain stage of 2)
 - high-gain = 14 (input of 7, output gain stage of 2)
- stage 0 Feedforward always in low-gain.
- stage I commissioned in low-gain, switch to high-gain
- use same electronics for both sets.

advancedligo L-4Cs for stage 0 and stage

ADC noise - as displacement

Low gain mode

good enough to clearly resolve ground motion and stage I motion from I to I0 Hz, **High gain mode,** ADC noise is 2x below

sensor noise above 1 Hz

advancedligo L-4Cs for stage 0 and stage

ADC noise - at the ADC input

Low gain mode good enough to clearly resolve ground motion and stage I motion from I to I0 Hz, High gain mode, ADC noise is 2x below sensor noise above I Hz

advancedligo L-4Cs for stage 0 and stage 1 Range for Stage 0 stage 0 motion estimate is LASTI HEPI X with HEPI off scaled by ratio of old LLO ground X to LASTI ground X 5x more motion at 10 Hz than Barsotti & Waldman estimates HEPI-off stage 0 motion estimate from scaling LASTI 10⁻⁶

advancedligo L-4Cs for stage 0 and stage Range for Stage 1

Use HEPI X estimate (previous) * plant model with or w/o damping.

HEPI-off stage 1 horizontal motion estimate from scaling model * LASTI HEPI motion

advancedligo L-4Cs for stage 0 and stage 1 Range for Stage 1

Use HEPI X estimate (previous) * plant model with or w/o damping. Can commission with low-gain and damping off Run robustly with high-gain once damping is on

Conclusion: When commissioning, first thing to do is turn on the stage I damping.

- internal differential driver with gain of 1196V/(m/s) at 1 Hz
- fixed gain readout of II3V/V (and AA gain of I at DC)
 - readout gain is 1.35e5 V/(m/s)
 - gives ~same total readout gain as now in use at LASTI
 - I500V/(m/s) of STS-2 * readout gain of 42 * antialias gain of 2.1
 - Low gain of HAM6-ISI GS-13 is 1.8e5 V/(m/s) above a few Hz.

ADC noise - as displacement

ADC noise - at the ADC

range estimate - HEPI off, stage I either free or damped

Range is tight without damping.

Probably need to get stage I damped before doing much with T-240s. Low frequency motion is majority of RMS

More gain probably not a good idea. Mostly helps at frequencies where we use L-4C, likely to impact the robustness.

- Internal differential preamp with gain of 40.2
- ISI readout box has switchable gain
 - Low-gain is DC gain of 2, with zero at 10, pole at 50 Hz good range, pretty good noise at high frequencies.
 - High-gain is fixed gain of 12 (input stage gain of 6).
 puts instrument noise least 2x below ADC noise at all frequencies.

ADC noise - as displacement

Low gain mode

freq's

good enough to get close to requirements at all freq's above 300 mHz (tilt coupling is limit) **High gain mode,** ADC noise is at least 2x below sensor noise at all

ADC noise - at ADC

Low gain mode

good enough to get close to requirements at all freq's above 300 mHz (tilt coupling is limit) **High gain mode,** ADC noise is at least 2x

ADC noise is at least 2x below sensor noise at all freq's

advancedligo

stage 2 motion inputs - low gain, no damping HEPI off

- compare model to data-

magenta is input we use

HEPI-off stage 2 horizontal motion estimates

Range - low gain, no damping - compare model to datablue is stage 2 LASTI data scaled by the LLO ground motion. magenta is scaled LASTI HEPI * model of undamped stage 2

Range - RMS in various configurations. Most commissioning must happen in low-gain. Damp stage 1 first. Not much headroom in high-gain mode until the performance is good.

Expected Signal levels from the horizontal GS–13s on the BSC HEPI off, at the ADC

Conclusions

- Electronics should be OK.
- Goldilocks sort of design
 - too much gain reduces robustness & complicates commissioning.
 - too little gain impacts the noise performance
 - Current design is a compromise hopefully a good one
- I would not say no to better ADCs, but we can get by with these.
- All this assumes linear noise in the ADCs. Non-linear effect of slow bit-edge crossing will require more gain at high frequencies. (Ben has a spot for these).

G1000412-v1 31

advancedligo Additional HAM Data

GI000412-vI 32

advancedlig^o Additional HAM Data 2

advancedligo Additional HAM Data 3

