

LIGO: The Laser Interferometer Gravitational Wave Observatory

Credit: Werner Benger/ZIB/AEI/CCT-LSU

Michael Landry

LIGO Hanford Observatory/Caltech for the LIGO Scientific Collaboration (LSC) http://www.ligo.org Beamlines 2.0 2010 APS/EMC Users Meeting 5 May 2010 Argonne National Laboratory

Talk overview

- The search for gravitational waves
- Facilities: beamtubes and vacuum
- Detector components
- Servos
 - » Control km-scale arm lengths to 10⁻¹³ meters RMS
 - » Hold mirror alignments to 10⁻⁸ radians
- Noise, mostly environmental
 - » Plenty of technical noise sources not covered here
- Advanced LIGO

Gravitational waves

- GWs are "ripples in spacetime": rapidly moving masses generate fluctuations in spacetime curvature:
 - » They are expected to propagate at the speed of light
 - » They stretch and squeeze space

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

What is the observable effect?

Example:

Ring of test masses responding to wave propagating along z

Amplitude parameterized by (tiny) dimensionless strain h:

$$h(t) = \frac{\delta L(t)}{L}$$

What might make Gravitational Waves?

- Compact binary inspiral: "chirps"
 - » NS-NS waveforms are well described
 - » BH-BH need better waveforms
- Supernovae / GRBs:
 - » burst signals in coincidence with signals in electromagnetic radiation / neutrinos
 - » all-sky untriggered searches too
- Cosmological Signal: "stochastic background"
- Pulsars in our galaxy: *"periodic"*
 - » search for observed neutron stars
 - » all-sky search (computing challenge)

Also: the unknown!

LIGO-G1000391-v1

Gravitational wave astronomy

Landry - Beamlines 2.0, 5 May 2010

Gravitational Wave Detection

Suspended Interferometers

- » Suspended mirrors in "free-fall"
- Michelson IFO is
 "natural" GW detector
- » Broad-band response
 (~50 Hz to few kHz)
- » Physical environment monitoring (e.g., seismic, weather, RF, acoustic, etc)

LIGO design length sensitivity: 10⁻¹⁸m

LSC Sites

LIGO Hanford Observatory (4km, 2km detectors)

LIGO Livingston Observatory (single 4km detector)

Beamtubes

Beamtube facts, per site:

8km of 1.24m diameter 304L stainless tube
65 foot-long spiral-welded sections
welded stiffening rings, supports and bellows
~10,000m³, 10⁻⁹Torr

LIGO-G1000391-v1

Landry - Beamlines 2.0,

Beam Tube Bakeout

Bakeout

partial pressures during bakeout

NOTE: All results except for H are upper limits Livingston Hanford Goal^b HY2 HY1 HX1 HX2 LX2 Species x 10⁻¹⁴ H₂ 4.7 4.8 6.3 5.2 4.6 4.3 torr liters/sec/cm² x 10⁻²⁰ CH₄ 48000 < 900 < 220 < 8.8 < 95 < 40 torr liters/sec/cm² x 10⁻¹⁸ < 4 H₂O 1500 < 20 < 1.8 < 0.8 < 10 torr liters/sec/cm² x 10⁻¹⁸ CO < 2 650 < 14 < 9 < 5.7 < 5 torr liters/sec/cm² x 10⁻¹⁹ C O₂ 2200 < 40 < 18 < 2.9 < 8.5 < 8 torr liters/sec/cm ² x 10⁻¹⁹ NO+C₂H₆ 7000 < 2 < 14 < 6.6 < 1.0 < 1.1 torr liters/sec/cm² x 10⁻¹⁹

< 5.3

< 3.5

< 0.4

< 16

< 4.3

<7

torr liters/sec/cm²

x 10⁻¹¹

torr liter/sec

1000 ^a Outgassing results correct to 23 C

50-2 °

H_C_O_

air leak

< 15

< 20

^b Goal: maximum outgassing to achieve pressure equivalent to 10⁻⁹ torr H₂ using only pumps at stations

< 8.5

< 10

Beam Tube Bakeout Results ^a

^c Goal for hydrocarbons depends on weight of parent molecule; range given corresponds with 100-300 AMU

Achieved Design Requirements (< 10⁻⁹ torr)

Vacuum overview

Schematic of the Hanford vacuum layout

•

- Control and Data Systems (CDS) makes use of Epics
- Roughing achieved with roots blowers followed magnetically levitated turbos
- Seismically-quiet pumping via ion pumps, and LN2 cryo traps
- Isolation via 44" and 48" gate valves

LIGO-G1000391-v1

Landry - Beamlines 2.0, 5 May 2010

Vertex at Hanford site

All-Solid-State Nd:YAG Laser

Custom-built 10 W Nd:YAG Laser, joint development with Lightwave Electronics (now commercial product)

Cavity for defining beam geometry, joint development with Stanford

Frequency reference cavity (inside oven)

Core Optics Suspension and Control

Shadow sensors & voice-coil actuators provide damping and control forces

Mirror is balanced on 30 micron diameter wire to 1/100th degree of arc

Optics suspended as simple pendulums

LIGO detector facilities

Seismic Isolation

- Multi-stage (mass & springs) optical table support gives 10⁶ suppression •
- Pendulum suspension gives additional 1 / f² suppression above ~1 Hz •

Fast servo example: length control

- Fast channel data acquired at 16384Hz
- Multiple Input / Multiple Output
- Three tightly coupled cavities
- Employs adaptive control system that evaluates plant evolution and reconfigures feedback paths and gains during lock acquisition

Slow servo example: tides

LIGO-G1000391-v1

Landry - Beamlines 2.0, 5 May 2010

LIGO Calibrated output: LIGO noise history

Current science run: S6

Noise budget

Environmental noise

- Planes, trains and automobiles
- Logging in Livingston
- earthquakes
- Digging, burying on the Hanford DOE site

10-degree Map Centered at 55°N,160°W

Dam noise

Dust glitches

RED: spectra for dust flash times on video tape of AS_Q photodiode region; **BLUE**: spectra OFFSET +/- 10 s from dust flash on video tape

LIGO-G1000391-v1

Dewar glitches

HVAC noise

Advanced LIGO

- Factor of 10 greater sensitivity than initial LIGO
- Factor 4 lower start to sensitive frequency range
 - » ~10 Hz instead of ~40 Hz
 - » More massive astrophysical systems, greater reach, longer observation of inspirals
- Intended to start gravitational-wave astronomy
- Frequent detections expected exact rates to be determined, of course
 - » Most likely rate for NS-NS inspirals observed: ~40/year

LIGO-G1000391-v1

Summary

- Search for gravitational waves underway: no detections so far, S6 data being collected
- Facilities, including buildings, beamtubes and vacuum components designed for 20-year lifespan
- Advanced LIGO project underway, deinstall/install begins October 20 (Initial, Enhanced LIGO experience critical)
- Hope to usher in detection and transition to astronomy in the coming few years

Interferometer network

Credit: NASA's Earth Observatory