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1 Introduction

The system guardian paradigm is meant to automate and modularize the control of the
interferometer. The guardian approach is a refinement of systems that already exist within
Initial LIGO such as the Mode Cleaner autolocker, the use of scripts for turning on and off
HEPI, and the autorun gui. Most of the new concepts here are similar to those in use by
Virgo and have proven effective.

This scheme is strongly informed by our experience with the scripting and control environ-
ment of Initial LIGO. A few aspects in particular have impacted commissioning. The first is
the recipe style of automation in which an initial state is assumed and there is limited error
checking. This has often resulted in a situation where, for instance, the interferometer should
lock but doesn’t because process variables are poorly defined. A second objective is to en-
capsulate the expert knowledge of operators and commissioners into the system automation.
A third goal is to impose order on the chaos that is the current library of scripts.

The current scripting environment will prove hopelessly complex in the context of Advanced
LIGO. When the successful damping of a quad pendulum relies on the isolation of an ISI
sitting in turn on a HEPI, there are many places in which purely recipe-based control can
fail. We hope that a modular design will ease the interface between such discrete subsystems.

The basic structure of the proposed system automation is to have a “guardian script” which
controls each subsystem and continually monitors and verifies the subsystem state. Struc-
turally, the guardians are state machines. The guardian accepts commands, delivered by
EPICS fields, for transitioning the subsystem between known states. For example, a sus-
pension might have the states SAFE, DAMPED and TRIPPED. The transition is ac-
complished by scripts unique to each subsystem much like Initial LIGO scripts take us from
acquire to detect to common mode. Each stationary state will also have a verification script
that will run roughly once per second that monitors the current state. This script will catch
unrequested state transitions arising from lock loss, seismic excitations, watchdog trips, and
commissioners.

In order to maintain modularity in code and control, we insist that guardians only operate
on their own subsystem. Larger systems composed of multiple sub-systems such as the
input mode cleaner or the PSL will have system managers. The manager scripts will be
identical in form and function to the guardian scripts, differing only in the fact that they
act by making state requests of guardian scripts. Manager scripts can be stacked such
that a low level manager has to report to his boss manager, all the way up the hierarchy.
For example, the IFO manager makes requests of the input mode cleaner manager, which
in turn makes requests of the suspension guardians. In practice, this will allow operators
and commissioners to only deal with the upper management during normal interferometer
operations, but commissioning on subsystems can be carried on independently.

To maximize the modularity at the minimum cost, each guardian should interact with a single
software front end. Similarly, each front end should be associated with a single physical
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subsystem. Here we make the distinction between the software front end the hardware
front end. Software refers to the Borkspace code, simulink model, and EPICS controller
required to run each subsystem. Multiple software front ends may run on a single hardware
front end — eg. an 8 CPU multicore computer with a PCle chassis with 14 I/O cards.
By uniquely associating a guardian, a front end, and hardware, we maintain the ability to
commission, recompile, and reboot with a minimum of collateral impact. With appropriate
tools, this modularity should allow a “cut and paste” approach to commissioning multiple
similar subsystems.

Unlike the watchdog, the guardian is non-critical and not responsible for system safety. In

the event a guardian script crashes, the automation may fail, but hardware and front-end
based watchdogs will prevent damage to hardware. Ideally.

2 Hierarchy

Figure 1: A sample heirarchy for an interferometer control. Note that many lines are missing.
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3 States

Consider a suspension as an example. During normal use, the suspension hardware and
software are in well defined configurations: eg. free-swinging, damping, lock acquisition, and
low noise. These “states” are defined both by a set of software values — gains, switches, filters
—and by sensor signals. An optic that has its EPICS values set to damping but is saturating
the optical lever and swinging wildly cannot be considered “damped.” The guardian struc-
ture is intended to reflect this understanding of states within the control system and provide
a modular interface. Through the guardian interface, users such as commissioners, opera-
tors, computers, and robots can interact with a subsystem without needing to know any of
the subsystems internal details. This interaction happens by requesting state transitions or
tasks.

The guardian has the exclusive responsibility of transitioning a subsystem between states,
verifying the current state, and running system specific tasks.

All subsystems have a minimal set of required states. These states will have the same
“functional” behaviour for all subsystems so that all operators and commissioners will be
able to understand and control a minimal set of states. These states are UNSAFE, SAFE,
ALARM, and UNKNOWN. The names are mostly self explanatory, but some description
is necessary. The UNSAFE state refers to a “commissioning” configuration - one in which
the guardian is effectively disabled and verification is turned off - that allows users to do
whatever they like via the standard EPICS interface. The SAFE state refers to a known and
verified safe place. For a suspension or ISI, this might consist of damping. The ALARM
state is for known bad configurations, specifically ones which require human intervention.
This might be invoked if a hardware watch dog trips or a hardware failure is detected. Finally,
there is the catch-all UNKNOWN state. This state will handle cases where the subsystem
fails its state verification, but not necessarily in a way that requires operator support.

In addition to the required states, each class of subsystems will define its operational states.
There will be no restriction on the number or functionality of the states. To use a suspension
as an example, the additional states might be DAMPING, MISALIGNED, ACQUIRE
and RUN. In normal use, the different behaviours of the suspension will be achieved by mak-
ing requests of the guardian for an appropriate state. During times of active commissioning,
the subsystem can always be transitioned to UNSAFE or UNKNOWN and operate under
detailed user control.

3.1 Transitions

Once the guardian has received a request for a state transition, it executes a script to
reconfigure the subsystem. In general, the reconfiguration should take the susbsystem from
the initial state to the requested state. Obviously, transitions can only occur between specific
states. For instance, a suspension must first be in ACQUIRE before it can transition to
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Figure 2: An example of a transition taking a suspension from "ACQUIRE” to "RUN.” The
act of transitioning is represented by a pseudocode block.

RUN. The transition may fail resulting in an unrequested final state.

3.2 Verification

The power of the modular approach derives from state verification. As mentioned above,
a state is more than EPICS settings or relay positions; it is more than intention, it is a

reflection of the physical performance of the subsystem. The state is verified by a script
which

3.3 Tasks

A subclass of states, known as “tasks”, consist of scripts that perform active measurements
and return to a known state. The task can be preempted by the guardian or manager, but
may not have a unique verification script. Examples of a task might include suspension
coil balancing, measuring photodiode offsets, or checking a HEPI filter. While the task is
underway, a generic verification may be performed to ensure that the subsystem remains in
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an appropriate state.
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Figure 3: An example flowchart for a task. The guardian is represented by the heavy
blue arrows with the subsystem states denoted by circles. The task script is a light green
arrow. On the left, the task forks from the guardian, makes a state change request, does
a measurement, and returns the system to a known state. On the right, an Earthquake
distrubs the subsystem causing the guardian to kill the task process.

3.4 Logs

A final task of the guardian is to log when transitions occur, tasks are run, and states fail.
This log is in addition to the data that gets written to frames as EPICS values, and will
hopefully represent additional details behind subsystem and script behaviors - the how’s and
the why’s of an action in addition to just the what’s.
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4 Guardian and Manager Code Structure

Guardians and managers, collectively referred to in this section as ”automatons”, have a well
defined structure. Communications among automatons, and internal states of automatons
are structured in the hope of developing a functional, flexible and comprehensible mechanism
for automation with aLIGO.

4.1 Communication

To avoid difficulty in tracking multiple communication channels, all automaton communica-
tions happen via the EPICS system. Modularity is maintained by allowing communication
only in one direction: down the hierarchy. Furthermore, only guardians communicate with
their respective front-ends. For example, guardians receive requests from users and managers,
and publish their state variables, but make no reference to or requests of their managers.

4.2 Internal State

Ideally, the only state information associated with the guardians (and managers) is their
"state” (i.e., a string, such as “SAFE”, which identifies the current state of the subsystem).
To ensure that the operation of the automatons can be tracked and diagnosed, all state
information is stored in EPICS records. This ensures that the existing frame and trend
infrastructure will accurately reflect the automaton status.

4.3 Code Form

The general automaton script is common to all types of automatons. This script defines the
environment in which subsystem specific scripts run, and the movement of the processing
thread from one script to the next. The automatons use scripts for 3 types of actions:

e to respond to unrequested state changes
e to move from one state to the next

e to perform tasks which which return the automaton to the initial state upon completion

The collection of states of given automaton is defined by the collection of respond_XXX
scripts, where XXX is the name of a state. These scripts serve the purpose of responding
to unrequested state changes (e.g., cavity unlock, watchdog tripped, etc.). If the cause of
the state change is recognized as likely to result in another known state, the responding
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script can simply update the automaton’s state. If the state is unrecognized, the special
goto_SAFE script should be executed. Once the transition to the SAFE state is complete,
the respond_SAFE script is responsible for responding to situations that require human
intervention by transitioning to the ALARM state.

The ability of an automaton to move between states is determined by the collection of
transit_XXX_YYY scripts, where XXX is the initial state and YYY the intended final state.
Transit scripts should generally by executed by the automatons in response to a state change
request. However, when timing or speed is important, a transit script may by executed
directly by a manager or user. Transit scripts are also responsible for

1. registering its PID with the automaton in the SUB_PID field before beginning work

2. setting the automaton’s state to a state which provides responses consistent with the
transition before moving away from the initial state (UNSAFE should not be used)

3. performing the actions necessary to achieve the target state
4. setting the final state achieved when done transitioning

5. resetting the SUB_PID to O on exit

The first of these is done so that the automaton can kill the transit process as part of its
response to any unintended state transitions.

All automatons have an associated STATE_REQUEST EPICS field. If this field does not match
the STATE field, a state transition is requested. In addition to immediate state transitions,
the guardian and managers have a set of request fields associated with a request GPS time.
The guardian will execute the transition at its earliest possible convenience after the GPS
time. This functionality can be used for sequencing, for scheduling maintenance tasks, and
periodic updates.

Tasks which involve a set of actions, which which do not result in a new state of the automa-
ton are identified with the collection of task_XXX_ZZZ scripts, where XXX is the state in which
the task starts and ends and ZZZ the name of the task. As with transitions, tasks may be
requested of the automaton, or executed directly by a user or manager. The responsibilities
of task scripts are identical to those of transit scripts.

4.4 Code Location

All of the scripts involved in automation should be located in a common directory, which
we will refer to here as $SCRIPTS. From this uppermost directory, the AutomationBase
directory contains the general use automaton scripts. Each type of subsystem has its own
directory, containing scripts which define the behavior of the subsystem guardian, as well as
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subdirectories for each instance of a subsystem of that type (e.g., SmallTriple/MC1). Each
system manager has its own directory (e.g., IMC)

When a system guardian is started, it is given an instance directory. The guardian’s search
path for scripts looks first in the instance directory, then in the parent directory for respond,
transit, and task scripts. The collection of scripts is cataloged at startup, and when
requested by setting the REHASH field to a non-zero value.
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5 Modularity

We need to work this out... instance in subdirectories? Capitalization convention?

HEPI HEPI_HAM3 ISI_BSC2 QUAD TRANSMON

TRIPLE_MC2 HEPI_HAM1 ISI ISI_BSC3 QUAD_ETMX TRIPLE TRIPLE_MC3
HEPI_HAM2 ISI_BSC1 OMC QUAD_ITMX TRIPLE_MC1 guardian.py
./SmallTriple: CVS FE chans scripts target MC1 MC2 MC3 PRM

./SmallTriple/scripts: goto_SAFE transit_TRIPPED_SAFE verify_TRIPPED
transit_READY_SAFE verify_READY transit_SAFE_READY verify_SAFE

./SmallTriple/target: startup.cmd TRIPLE.c omlfe.rtl

./SmallTriple/MC2: transit_SAFE_READY transit_READY_LOCK
verify_READY verify_LOCK

6 User interface
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