LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY ADVANCED LIGO RECORD OF DECISION/AGREEMENT (RODA)

Document	LIGO-M080041-v1
Date:	26 February 2010
Title:	RODA: Thickness of PR3 and SR3 and wedge information
To the Attention of:	aligo-sys, aligo_coc, aligo_sus, aligo_aos
cc:	
From/ signatories:	Name/Title: Norna Robertson (SUS leader) Name/Title: Narilynn Billingsley (COC leader) Name/Title: Mike Smith (AOS leader) See the LIGO Document Control Center (DCC) for electronic approvals
System(s) affected:	\square Initial LIGO \square Enhanced LIGO ∇ Advanced LIGO \square Other:
Nature/ Scope:	∇ Design Decision $\quad \square$ Requirements Decision $\quad \square$ Work Scope Decision \square Working Agreement between Groups \square Other $\quad \square$
Subsystem(s) affected	\boldsymbol{V} Relevant Subsystem(s)/Component(s):SUS, COC, AOS PR3, SR3
Primary Contacts	Group or Affiliation and Contact ${ }^{\text {COC, Garilynn Billingsley }}$
Reference Documents:	

DECISION/AGREEMENT STATEMENT:

The thickness of PR3 and SR3 is changed from 100 mm to 101.4 mm . This is measured at the thickest part of the optic to the theoretical sharp extension of the bevel legs, as are all core optics. The tolerance remains at the typical $\pm 0.5 \mathrm{~mm}$.
The wedge is asymmetric, with the HR surface perpendicular to the barrel.

Background

SUS has an existing design that uses 100 mm as the thickness at the center of the PR3/SR3 optic. Historically, we name the thickness at the thickest point of the optic. In order to make the optic mass consistent with the existing suspension design we will call the thickest part of the optic 101.4 mm

The wedge being carried by AOS is currently 0.6 degrees.

Version information

The first version of this document M080041-00 on the old DCC, dated 3 April 2008, has the wedge described as symmetric.

In this updated version, v1 on the new DCC, the wedge has been changed to asymmetric, and this is what is being delivered as per drawings, PR3 - D080662, F-PR3 - D080663 and SR3 - D080664.

