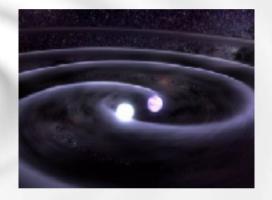


Searches for Compact Binary Coalescences in LIGO and Virgo data

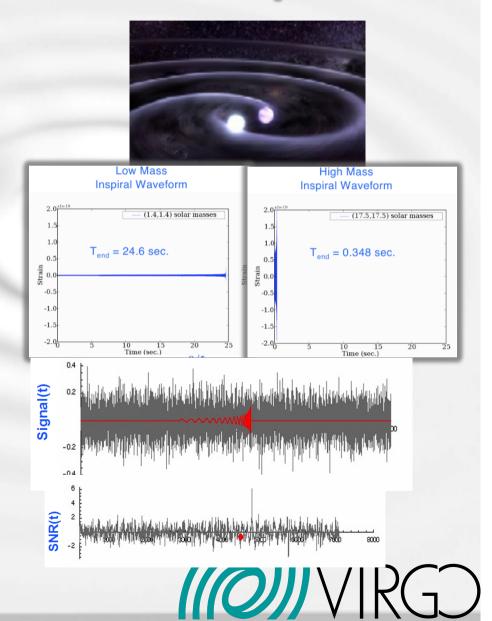
Gabriela González
For the LIGO Scientific Collaboration and the Virgo Collaboration
APS meeting, Feb 13 2010


Session B13: Observational Implications of Gravitational Waves

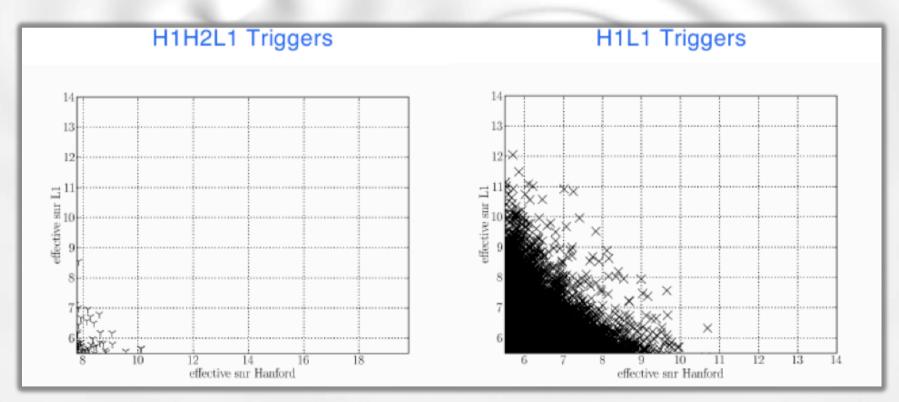
The LIGO-Virgo CBC group searches

LIGO – S5: November 4, 2005 – September 30, 2007 Virgo – VSR1: May 18, 2007 – September 30, 2007 S6 and VSR2 started on July 7 2009 – S6/VSR2a=First 7 weeks

- Low mass search: Total mass from 2-35 M_☉
 - S5 First year search: PRD 79, 122001 (2009)
 - S5 12-18 month search: PRD 80, 047101 (2009)
 - S5-VSR1 5 month joint search (nearing completion)
 - S6/VSR2a: Data analyzed
- High mass search: Total mass from 25-100 M_☉
 - (nearing completion)
- S5-VSR1 GRB (triggered) search
 - arXiv:1001.0165v1 (2010)
- S5 Ringdown Search
- Spinning Search

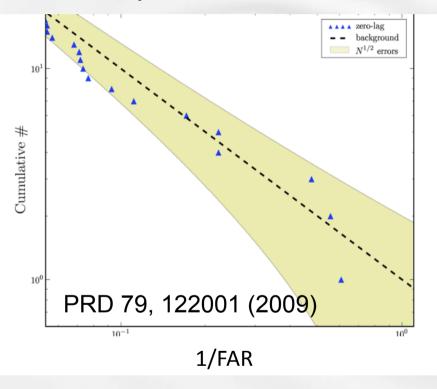


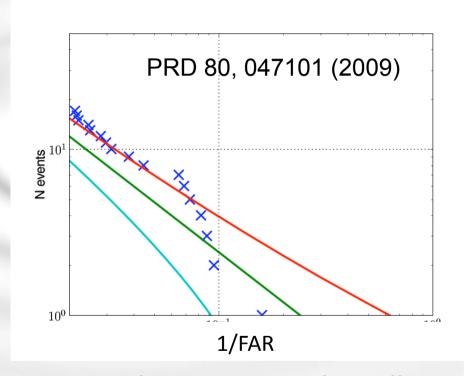
Overview of the Search Pipeline


- Generate a template bank
 - Total mass from 2-35 M_☉ (low mass search)
 - Total mass from 25-100 M_☉
 (high mass search)
 - Minimum component mass 1 M_☉
- Match filter the data
- Search for coincidence in multiple detectors
- Apply data quality
- Signal consistency checks
 - Use χ^2 parameter
- Calculate a false alarm rate
- Interpret the results

False alarm rates (FAR)

- Estimate looking for coincidences with unphysical time delays.
- 2 ifo background coincidences are more likely than 3 or 4 ifo coincidences
- We combine results using FAR, not SNR




Low Mass Results (pre-VSR1)

Loudest triggers

S5 1st year low mass

S5 12-18 month search

High mass results and remaining S5-VSR1 low mass results will be ready soon!

Low Mass Results (pre-VSR1)

- No triggers were found that were inconsistent with background estimates.
- The loudest triggers were subject to our "follow-up process"
- Our conclusion is that no gravitational wave candidates were found in this search 🕾
- With no potential events, we set upper limits on the rates of binary coalescences.

Upper limits (pre-VSR1)

PRD 80, 047101 (2009)

	Binary neutron stars	Neutron star – black holes	Binary black holes
Current results	1.4x10 ⁻² L ₁₀ ⁻¹ yr ⁻¹	3.6x10 ⁻³ L ₁₀ ⁻¹ yr ⁻¹	7.3x10 ⁻⁴ L ₁₀ ⁻¹ yr ⁻¹
Predicted "plausible" astrophysical rates	6x10 ⁻⁴ L ₁₀ ⁻¹ yr ⁻¹	6x10 ⁻⁵ L ₁₀ ⁻¹ yr ⁻¹	2x10 ⁻⁵ L ₁₀ ⁻¹ yr ⁻¹
Predicted "realistic" astrophysical rates	6x10 ⁻⁵ L ₁₀ ⁻¹ yr ⁻¹	2x10 ⁻⁶ L ₁₀ ⁻¹ yr ⁻¹	2x10 ⁻⁷ L ₁₀ ⁻¹ yr ⁻¹
Definition	$m_1 = m_2 = 1.35 M_{\odot}$	$m_1 = 5.0 M_{\odot}$, $m_2 = 1.35 M_{\odot}$	$m_1 = m_2 = 5.0 M_{\odot}$

Astrophysical rates: LIGO-P0900125

Milky Way $-1.7 L_{10}$

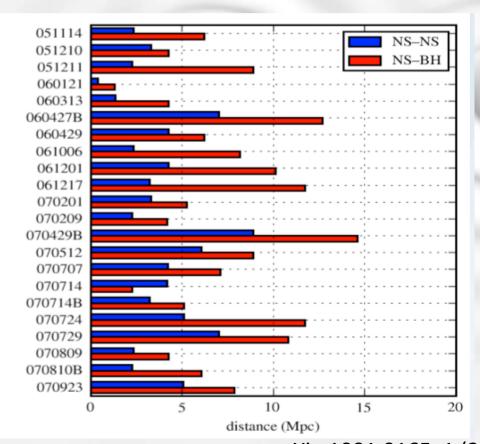
Searches for short GRBs

- Analyzed data: S5/VSR1 Nov 2005-Nov 2007
- 212 GRBs in total
- 33 short GRB
- 22 short GRB with enough data from at least two interferometers

L1, H1, V1 on!!

Previously published: No GW detected, inspiral merger excluded in M31 at >99% level.
Astrophys. J. 681, 1419 (2008)

analyzed GRBs			
051114	070209		
051210	070429B		
051211	070512		
060121	070707		
060313	070714		
060427B	070714B		
060429	070724		
061006	070729		
061201	070809		
061217	070810B		
> 070004	070000		


070923

070201

B13, Sat 12:09pm: Seeking optical counterparts to gravitational wave event candidates (Jonah Kanner) K13, Sun 3:30pm: High Energy Gamma Rays from GRB and Gravitational Wave Detection (many talks!)

GRB search result

No GWs detected (3)

- 90% exclusion distances
 - Median NS-NS

 (1.4/1.4 M_o)

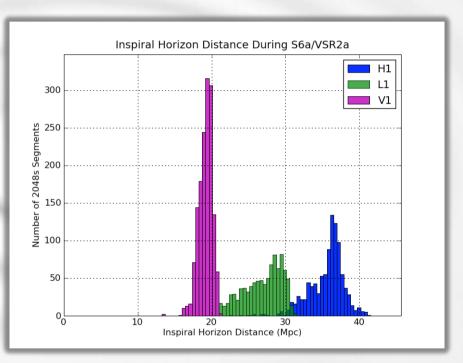
3.3 Mpc

Median NS-BH
 (1.4/10 M_o)
 6.7 Mpc

arXiv:1001.0165v1 (2010)

S6-VSR2 Status Update

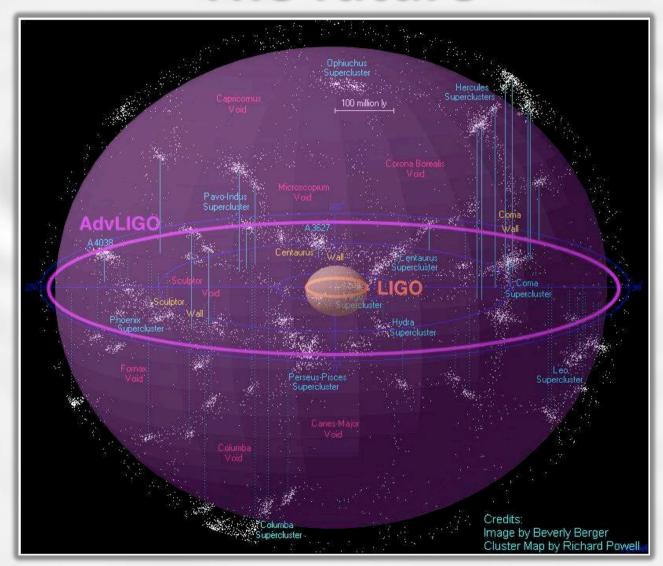
- S6 and VSR 2 started on July 7 2009
- S6 is LIGO's 6th science run, "Enhanced LIGO"
- VSR2 is Virgo's 2nd science run
- Planned to run for about a year with interspersed commissioning breaks
- S6-VSR2a ran 7 weeks; ended August 24th with first LIGO commissioning break
- Virgo started commissioning break to install new mirrors (better sensitivity!) in January 8, back in ~June



S6-VSR2a Current Status

- All seven weeks

 analyzed and boxes
 opened
- Results will undergo internal review and be released soon
- S6a included a Blind Injection Challenge


The Future

- S6 will continue until ~Fall 2010
- Virgo is installing monolithic suspensions and plans to rejoin in three to four months
- Advanced LIGO detectors will begin to be installed in the fall, and will start to come online in 2014 and begin working towards 10x the sensitivity of S5/VSR1
- This will allow us to see 1000 times as many galaxies!

The future

