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1 Introduction

The location of the mode of a resonant cavity can be completely defined by the waist position
and angle. In the case of a two mirror cavity, its a simple matter to calculate how the waist
shifts with misalignment of the mirrors. For a ring cavity with three or more mirrors, there
are more mirror degrees of freedom than there are cavity mode degrees of freedom and we
must define a control matrix. In this note, we show a general technique for calculating
the waist motion as a function of mirror alignment using ray optics. Then we apply that
technique to three test cavities of interest to LIGO: 1) a flat-curved Fabry-Perot cavity, 2)
a three-mirror input mode cleaner cavity, and 3) a four mirror output mode cleaner cavity.

1.1 Zemax verification

All of the results in this document have been verified using the Zemax ray-tracing program.

2 Ray optic technique

Using ray optics for cavity misalignment is the exact same procedure as any other ray tracing
operation, with two twists. First, each optic in the cavity has an associated misalignment
angle. For mirrors in the ray approximation, this angle adds to the traditional ray optics
matrices, as shown for flat and curved mirrors in Figure 1. Second, we use the ray tracing
matrix for a cavity round trip to solve for the eigenray, ~x0. The eigenray has the unique
property that it travels around the cavity and returns to the same location it started from.
Obviously, the eigenray represents the cavity mode and waist position.
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Figure 1: The effects on a ray of an optic misalignment of angle α upon reflection from flat
and curved optics.

A mathematica script calculating the example matrices is included in the Appendix.
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3 Two mirror Fabry-Perot
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Figure 2: Layout of the flat-curved two mirror cavity. The green line labeled x∗ marks the
reference plane used in the calculations.

Starting from the reference plane on the left in Figure 2, we propagate a ray a distance L to
the curved mirror, reflect off the curved mirror including a misalignment angle α. The ray
returns a distance L to the flat mirror and picks up a second misalignment angle, β. Note
that the coordinate system of each reflection, and hence the sign of the misalignment angle
depends on the incoming ray. The sign is chosen such that a ray with a positive displacement
is shifted towards the axis. Recalling that the eigenray ~x0returns to itself after a round trip,
the matrix form is:

~x0 =

(
1 L
0 1

)[(
1 0

−2/R 1

)(
1 L
0 1

)
~x0 +

(
0
−2α

)]
+

(
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)
. (1)

Defining M as the matrix for a round trip in the cavity, the equation can be solved for the
shift of the cavity waist as a function of the mirror alignment:
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(
R
0

)
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R− L

1

)
β (3)

This result accords with simple geometry. Because the cavity mode must be perpendicular
to the flat optic, a tilt of the curved mirror, α, has no effect on the cavity angle. The effect of
α on the displacement is proportional to the radius, which is also easy to see in the paraxial
ray limit. On the other hand, β, changes both the displacement and angle. The angle of
the cavity mode is exactly the angle of the flat optic, while the displacement depends on
the difference between the focusing of the curved mirror and the length of the cavity. When
R = L, the cavity is in the 2fto2f configuration and the flat mirror alignment has no effect.
For longer lengths, the cavity is unstable as evidenced by the fact that an angle misalignment
shifts the cavity mode in the opposite direction.
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4 Three mirror input mode cleaner
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Figure 3: Layout for a three mirror cavity such as the input mode cleaner. The small “+”
indicates a positive displacement at the reference plane. The blue dashed line shows the
effects of parity for a three mirror cavity. All of the angles are defined as positive when the
mirror rotates counter-clockwise.

The three mirror cavity shown in Figure 3 is slightly more complicated in that there are
three angles, α, β and γ, and two half-lengths, L and l. In general, a ray traced through
a ring cavity includes skew rays that impact an optic off center in both x and y, thereby
coupling the two dimensions on reflection. Consequently, complex geometries are easiest to
solve using a ray tracing program. For a planar ring cavity such as the cavity shown in
Figure 3, the horizontal and vertical planes can be separated and dealt with analytically.
Three complicating factors are considered below: three dimensional rays, astigmatism and
parity.

4.1 Three dimensional rays

Unlike a ray in a linear cavity, a ray in a ring cavity must explicitly include three dimensions.
This is most evident in the treatment of reflections. The ray reflected lies from an optic lies in
the plane formed by the incident ray and normal for the optic surface. For an optic misaligned
in the plane of a ring cavity, the incident ray, optic normal, and reflected ray remain in the
plane and the propagation is identical to the linear cavity. For an optic misaligned out of
the plane, the reflection plane is determined by the incident ray and the vector normal to
the reflecting optic, introducing a dependence on the angle of incidence. A ray incident
with angle θaoi onto an optic misaligned vertically by φ, will generate a reflected ray with
an “effective” vertical angle of φeff = 2 [cos θAOI ] φ. For the cavity shown in Figure 3, the
vertical angles are modified as:

αV =

√
L+ l

2L
α, βV =

√
L2 − l2
L2

β, and γV =

√
L+ l

2L
γ. (4)

The horizontal angles remain unchanged.
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4.2 Astigmatism

In a ring cavity, the cavity ray reflects off the curved optic with a finite, sometimes large,
opening angle. As with a transmissive lens, the angle of incidence introduces an astigmatism.
Rays in the plane of the reflection, planar rays, see an effective radius of curvature of Rp

eff =
R cos θ. Rays in the orthogonal plane see an effective radius of curvature of Rs

eff = R/ cos θ.

4.3 Parity

The displacement and angle of a ray are inverted on reflection. However, this inversion only
has a physical consequence when the cavity already has a well defined plane such as the
horizontal plane, as shown schematically by the dashed blue line in Figure 3. Reflection
about the vertical coordinate does not require Consequently, two solutions are required, one
for horizontal shifts that includes additional minus signs:
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(5)

and one for the vertical motions without the minus signs:
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Notice that the appropriate effective radius of curvature is used for each dimension.

4.4 Sensitivities

Solving Equations 5 and 6 for the sensitivities yields:

~xH
0 = −

(
L

Rs
eff−L

Rs
eff−l−L

)
α−

(
0

−Rs
eff

Rs
eff−l−L

)
β −

(
−L

Rs
eff−L

Rs
eff−l−L

)
γ, (7)
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4.5 LIGO Input mode cleaner

Parameter Symbol Value
Total length L 12.20 m
Short side length lshort ≈ 0.4 m
Radius of curvature R 17.25 m
Curved mirror AOI θAOI ≈ 1◦

Table 1: LIGO input mode cleaner parameters.

As an example, we solve for the control matrix for a LIGO 4km interferometer’s input mode
cleaner. The parameters used here are shown in Table 1. For a ring cavity, the perimeter,
p = 2L, is often used instead of the length to remove ambiguity. In the case of the input
mode cleaner, the length of the long side of the triangle is llong = L− l/2 = 12 m.

We evaluate the sensitivity matrix from Eqs. 8, 7 numerically using the Matlab script from
Appendix A:

~xH
0 = −

(
12 0 −12

1.04 −3.42 1.04

)αβ
γ

 (9)

and

~xV
0 = −

(
3.745 17.25 3.745
−0.701 0 0.701

)αβ
γ

 . (10)

From these equations we can calculate a control matrix using Matlab’s pinv function:

αβ
γ

H

=

−0.0417 −0.0751
0.000 0.247
0.0417 −0.0751

(ω
ω′

)H

(11)

and αβ
γ

V

=

−0.0115 0.713
−0.0530 0.000
−0.0115 −0.713

(ω
ω′

)V

. (12)

The pseudo-inverse implemented by pinv takes an error signal and generates a control signal,
minimizing the required RMS drive. We can calculate the condition values for these matrices
and find values of 4.5 and 18 for horizontal and vertical, respectively. While the normalization
of these condition values is beyond the scope of this note, it is clear that the horizontal motion
should be better behaved than the vertical.
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5 Four mirror output mode cleaner
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Figure 4: Layout for a four mirror cavity such as the Enhanced LIGO output mode cleaner.

Our goals for analyzing the four mirror output mode cleaner are modest. We’d like to
evaluate the effect of misaligned mirrors on the spot position at the curved mirrors. We’ll
introduce the simplifying variable L = L1 + L2 and evaluate the displacement at the plane
of one of the curved mirrors. By analogy with a flat cavity, we define an effective g-factor,
g′ = 1− (L/2)/R, that differs from a linear cavity by an extra factor of 2. Finally, because
we are only interested in the order of magnitude requirements for displacements, we ignore
the angle of incidence on the mirrors. The analytic solution for cavity mode motion at each
of the curved mirrors is then:

2g2
eff ~x

V
0 =

(
L1 −R

1− 2L1/R + 2L1/L

)
α +

(
−R
1

)
β −

(
L2 −R

1− 2L2/L

)
γ +

(
L−R
−1

)
δ. (13)

Parameter Symbol Value
Short length L1 265 mm
Long length L2 275 mm
Radii of Curvature R 2.0 m

Table 2: Output mode cleaner parameters used to estimate displacement at a curved mirror.

Since there are an even number of reflections, the round trip field has a parity of 1 and the
horizontal and vertical solution are the same. Individual mirror perturbations will have a
different sign for horizontal and vertical depending on the number of reflections between the
reference plane and the optic. For the purpose of the displacement magnitude, we include
only the vertical solution. The relevant parameters for the Enhanced LIGO Output Mode
Cleaner are listed in Table 2. Numerically, the cavity mode displacement at one of the small
optics is given by:

|δx| =
(
1.0 1.2 1.0 0.85

)
α
β
γ
δ

 (14)

The OMC has a waist of ≈ 500 µm. To limit displacement to less than 1/10 of the cavity
waist requires a limit on the angular alignment of 50 µrad.
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A Input mode cleaner Matlab script

% funct i on [M h , M v ] = AlignInputModeCleaner (d mc1mc2 , d mc1mc3 , Radius )
%
% This func t i on re tu rns the s h i f t o f the cav i ty mode waist and angle as a
% funct i on o f the three input mirror ang l e s . Outptu i s two 2x3 matr ices ,
% with each column rep r e s en t i ng MC1, MC2 and MC3 in turn . The f i r s t row i s
% the mode displacement , the second row i s the mode angle . The f i r s t
% matrix i s f o r Hor izonta l , the second f o r v e r t i c a l tunings .
%
% d mc1mc2 i s the d i s t ance MC1 to MC2, and d mc1mc3 i s the d i s t ance
% MC1 to MC3.
%
% Good numbers are d mc1mc2 = 12 , d mc1mc3 = 0 .4 , and Radius = 17 . 2 5 .
%
% The math here i s based on T09xxxxxx
%
%
funct i on [M h , M v ] = AlignInputModeCleaner (d mc1mc2 , d mc1mc3 , Radius )

try , d mc1mc2 ;
catch

d mc1mc2 = 12 ;
d mc1mc3 = 0 . 4 ;
Radius = 17 . 2 5 ;

end

%% Hor i zonta l
L = d mc1mc2 ;
l = d mc1mc3 /2 ;
curved AOI = as in ( l / L ) ;
R e f f = Radius∗ cos ( curved AOI ) ;

f l a t a n g l e = ( R ef f−L) / ( R ef f−l−L ) ;
curved ang le = −R e f f /( R ef f−l−L ) ;

M h = − [ L 0 −L ; f l a t a n g l e , curved angle , f l a t a n g l e ] ;

%% Ver t i c a l
L = d mc1mc2 ;
l = d mc1mc3 /2 ;

curved AOI = as in ( l / L ) ;
R e f f = Radius/ cos ( curved AOI ) ;

f l a t a n g l e = sq r t ( (L+l )/(2∗L ) ) ;
curved ang le = sq r t ( (Lˆ2− l ˆ2)/Lˆ2 ) ;

M v = − [ ( R ef f−L)∗ f l a t a n g l e R e f f ∗ curved ang le ( R ef f−L)∗ f l a t a n g l e ;
−L/( l+L)∗ f l a t a n g l e 0 L/( l+L)∗ f l a t a n g l e ] ;
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