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Abstract

Gravitational waves are ripples of space-time predicted by Einstein’s theory of General Rel-
ativity. The Laser Interferometer Gravitational-wave Observatory (LIGO), part of a global
network of gravitational wave detectors, seeks to detect these waves and study their sources.

The LIGO detectors were upgraded in 2008 with the dual goals of increasing the sen-
sitivity (and likelihood of detection) and proving techniques for Advanced LIGO, a major
upgrade currently underway. As part of this upgrade, the signal extraction technique was
changed from a heterodyne scheme to a form of homodyne detection called DC readout.
The DC readout system includes a new optical filter cavity, the output mode cleaner, which
removes unwanted optical fields at the interferometer output port.

This work describes the implementation and characterization of the new DC readout
system and output mode cleaner, including the achieved sensitivity, noise couplings, and
servo control systems.
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Chapter 1

Introduction

1.1 Gravitational Waves

Almost all of humanity’s knowledge of the universe is derived from observations of elec-
tromagnetic waves. The effort to detect gravitational waves (GWs) seeks to expand this
knowledge by observing an entirely different field, and to further verify the correctness of
the theory of general relativity.

Any theory of gravity that avoids instantaneous action at a distance must feature some
kind of gravitational waves. Even Newtonian gravity can be modified to account for propa-
gation delays from massive bodies that are the sources of attraction[1]. Gravity as we know
it, however, is described by the general theory of relativity. In general relativity, spacetime
is treated as a four-dimensional manifold with some intrinsic curvature. This curvature is
generated by the presence of mass and energy. In the absence of forces, particles follow
geodesic trajectories on this manifold. Quintessentially, “Space tells matter how to move;
matter tells space how to curve” [2].

This relationship between matter and curvature is made formal through the Einstein field
equation, which equates (up to units) the Einstein tensor (G), encoding curvature, with the
Stress-Energy tensor (T), encoding the matter and energy contents:

G =
8πG

c4
T (1.1)

where G is (Newton’s) universal gravitational constant and c is the speed of light.
To perform calculations, we typically need to work in some coordinate basis. Thus one

will work with Gµν , where µ and ν ∈ 0, 1, 2, 3 are coordinate indices. In this notation, the
Einstein tensor is given by Gµν = Rµν − 1

2
Rgµν , where Rµν is the Ricci curvature tensor, R

is the Ricci scalar, and gµν is the spacetime metric. The metric plays a central role here, as
it both encodes the curvature and implicitly defines the coordinate system.

To reveal the mechanism of gravitational waves, we are interested in vacuum (T = 0)
solutions of the Einstein field equations in the weak-field limit. In the weak-field limit, we
can write the metric gµν as the sum of the flat-space Minkowski metric ηµν and a small

1
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perturbation hµν :
gµν = ηµν + hµν

This is the regime of linearized gravity. Calculating out the Einstein field equation keeping
only terms of first-order in h and choosing the transverse-traceless gauge, one finds[3] a wave
equation for h: (

∇2 − 1

c2

∂2

∂t2

)
hµν = 0

where hµν has, for a wave propagating along the z axis, the form:

[h(z, t)] =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 cos (2πf(t− z/c))

Here we see several of the essential points of gravitational waves:

� there are two independent components (polarizations),

� they travel at the speed of light, and

� they are manifest as a transverse tidal force on inertial objects.

In the transverse traceless gauge, inertial objects reside at fixed coordinates. To see the
effect of a gravitational wave, suppose inertial test masses reside at coordinates 0 and L0

along the x axis, and suppose a gravitational wave is incident along the z axis. The proper
length between two points is given by

L =

∫ √
−gµνdxµdxν

Integrating along the x axis, and assuming that the metric takes the form g = η+h, we find

L =

∫
√
gxxdx (1.2)

= L0

√
1 + h+ (1.3)

≈ L0

(
1 +

1

2
h+

)
. (1.4)

The gravitational wave lengthens the path by ∆L = 1
2
h+. Half a period later, the wave will

shorten the path length by the same amount. Simultaneously, a similar path along the y axis
will see a ∆L of the opposite sign. This oscillatory transverse stretching and compressing is
depicted in figure 1.1. Because the change in optical path length has the form of a change
in length per unit length, it is often described as a strain.
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Figure 1.1: Effect of a gravitational wave (traveling into or out of the page) on a ring of
non-interacting inertial test particles, with the gravitational wave waveform superimposed.

A photon traveling from one test mass to another will see this change in proper length,
assuming that the gravitational wave phase (and thus the metric) changes negligibly in the
time required by the photon to make the trip. This is the basis of laser interferometric
gravitational wave detectors: if we can arrange mirrors as inertial test masses, then we can
imprint the gravitational wave onto the phase of laser light.

1.2 Generation of Gravitational Waves

Conservation of energy and momentum forbid changes in the monopole and dipole moments
of an isolated mass distribution. The leading multipole term leading to gravitational wave
radiation is therefore the quadrupole moment, which is forbidden by no conservation law.
For instance, two objects in orbit around one another exhibit a time-varying quadrupole
moment.

A typical GW source of interest is a pair of massive objects revolving around their
common center of mass in a binary orbit. Maggiore[4] gives the strain in the two polarizations
h+ and h× due to two objects in a circular, binary orbit as

h+(t) =
4

r

Gµω2R2

c4

1

2
(1 + cos(θ)2) cos(2ωt) (1.5)

h×(t) =
4

r

Gµω2R2

c4
cos(θ) sin(2ωt) (1.6)

where r is the distance to source, µ is the reduced mass of the binary system, R is the radius
of the binary orbit, θ is the angle between the normal of the orbital plane and the line of sight
to the observer, and 2ω is the gravitational wave frequency. Some points to note include:

� The gravitational wave strain drops only as 1/r with distance from the source, in
contrast to the inverse square law by which electromagnetic observations suffer.

� The gravitational wave frequency is twice the orbital frequency.
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� The emission is surprisingly isotropic.

� Most of the GW emission is along the rotational axis of the binary system; these
GWs are circularly polarized. Emission in the plane of the binary system is linearly
polarized. This is as one would expect from basic symmetry considerations.

To get a sense of the scale of the phenomenon, we can plug in some numbers. A binary
system in the Virgo cluster orbiting at 50 Hz where each object is a one-solar-mass star
would produce an expected strain on earth of the order h ∼ 10−21– an almost preposterously
small effect, making GW detection a significant challenge.

1.3 The Hulse-Taylor Pulsar

The emission of gravitational waves by a binary star system has already been confirmed
through indirect observation. In 1974, Hulse and Taylor discovered a radio pulsar that is a
member of a binary star system[5, 6]. The electromagnetic emissions of the pulsar allowed
the orbital parameters of the binary system to be precisely tracked over a long period of
time. As the system spins, energy is radiated away from the orbital system in the form
of gravitational waves. Measurement of the orbital period through pulsar tracking over 30
years shows that the orbit is decaying exactly as predicted by general relativity1

1.4 Detectors

The first attempts to detect gravitational waves used resonant bar detectors[11, 12]. In such
a detector, a large cylinder of a metal alloy with a very high mechanical Q-factor is suspended
in a vacuum chamber and cooled to cryogenic temperatures. A passing gravitational wave
couples mechanical energy into the bar, ringing up the fundamental mechanical mode of
the bar. Sensitive displacement sensors (later bars used SQUIDs) read out this mechanical
displacement. Resonant bars are inherently narrow-band devices, sensitive to gravitational
waves within a narrow linewidth about their fundamental resonance.

Bar detectors do have the advantage that they are small enough that they can be moved
or re-oriented. The ALLEGRO bar detector at LSU [9] was rotated to modulate its over-
lap function with the nearby LIGO Livingston observatory, and the data was analyzed for
coincident events between LIGO and Allegro[13]. A typical cryogenic resonant bar detector
setup is depicted in figure 1.2.

1.4.1 Laser Interferometers

Inaugurated by an initial study by Rai Weiss[14] and experiments by Robert Forward[15] in
the 1970’s, laser interferometers are now the instrument of choice in the search for gravita-

1Another binary system containing pulsars was discovered in 2004. In this system both objects are
pulsars[7, 8].
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Figure 1.2: Depiction of the cryostat of the explorer bar detector, which has operated at
cern since 1990. Explorer was oriented in parallel to the allegro detector at LSU[9] to
enable searches for coincident detections. Illustration adapted from [10].

tional waves. A gravitational wave will modulate the optical path length of light traveling
between inertial test masses. This path length modulation can be detected by a laser in-
terferometer. In terrestrial interferometers, large (∼ 10kg) glass cylinders serve as both
super-polished mirrors and inertial test masses. These optics are hung as pendula to allow
inertial freedom of the pendular resonance frequency and enclosed in a large, high-vacuum
enclosure.

Large laser-interferometer gravitational wave detector installations include LIGO[16] in
the United States, VIRGO[17] in Italy, and GEO600[18] in Germany. The operation of laser
interferometer gravitational wave detectors is the focus of this work and is detailed in the
following chapters.

1.4.2 Other Detectors

There are a few other mechanisms by which gravitational waves may be detected, or by
which their influence may be observed.

Pulsars serve as extremely reliable clocks, beaming a sequence of pulses towards earth
whose arrival times can typically be predicted to better than a microsecond. The path
of the electromagnetic waves traveling from the pulsar to earth acts in some ways like an
arm of a laser interferometer: gravitational waves passing transversely to the Earth-Pulsar
baseline will modulate the optical path length, producing perturbations in the arrival time
of the pulsar pulses–perturbations which are correlated between observations of distinct
pulsars. Pulsar timing arrays seek to analyze these correlated residuals to find evidence of
gravitational waves; Hobbs [19] anticipates that pulsar timing analysis will yield detections
of gravitational waves in the nanohertz regime (period 3-30 years) in the next 5-10 years.
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Primordial gravitational waves will also leave their imprint on the polarization of the
cosmic microwave background radiation. Many CMB polarization experiments are currently
underway (e.g. [20]), searching for the faint “B-modes” in the microwave polarization.

1.4.3 Detector Products

The data produced by a gravitational wave detector consist of the calibrated strain time
series h(t) (current detectors are sensitive to only a single polarization) along with auxiliary
data streams which convey the state of the detector and its environment. These auxiliary
data streams are used for both detector debugging and for vetoing of candidate signals which
are coincident with local environmental disturbances[21, 22].

1.5 Sources of Gravitational Waves

Anticipated sources of gravitational waves can be conveniently categorized as continuous or
transient, and as modeled or unmodeled. There is some overlap in this division. Associated
with each potential source of gravitational waves are search efforts which search the data
produced by extant gravitational wave detectors for evidence of GWs from that source.

� compact binary coalescence — Pairs of compact objects (black holes or neutron
stars) in binary orbits are expected to lose energy through gravitational waves, causing
the orbit to decay until the objects finally begin to interact and merge into a single
object. This inspiral process will generate a characteristic chirp signal, followed by the
complex merger process and then ringdown.

� continuous wave — Rapidly spinning objects will generate essentially monochromatic
signals, which are in turn doppler-shifted by the relative motion of the Earth and
the source. The search for these signals is sometimes called the pulsar search, since
the primary source in this category is expected to be rapidly spinning neutron stars
(such as pulsars). The search, in turn, is divided into searches for known pulsars
and unknown pulsars. Pulsars which are known electromagnetically can be targetted
directly, whereas unknown pulsars require a brute-force search of the parameter space.

Currently this is attacked in part through the distributed computing project Ein-
stein@Home. Interestingly, the pulsar search works equally well for analyzing radio
telescope data; several previously unknown radio pulsars have been discovered by feed-
ing Aricebo data into the Einstein@home project[23].

� bursts — Transient cataclysmic events such as supernovae will generate bursts of
gravitational waves whose waveforms are not known in advance.

� stochastic background — In the same manner as the cosmic microwave background
radiation, a cosmological background of gravitational waves is expected to exist. This
is perhaps the most exotic anticipated source of gravitational waves, since its detection
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will inform us of the state of the universe at an age far earlier than has yet been
probed. Sadly, the cosmological background is almost certainly too weak to detect in
the forseeable future.

The cacophony of unresolved astrophysical sources also combines to produce a gravi-
tational wave stochastic background.

The stochastic background search is fully coherent. In its simplest form, the search
simply computes the correlation between pairs of gravitational wave detectors. This
can be done in either an all-sky search or in a sky-position-dependent search. Typi-
cally, some power-law gravitational wave spectrum is assumed. The signal processing
strategy for the detection of a stochastic background is described by Allen and Romano
in [24].

Improvements in search sensitivity can be achieved by incorporating knowledge of the
expected signal waveform or spectrum; integrating over a long period of time (for continuous
sources); and by looking for coincidence or coherence between multiple detectors.

The global network of gravitational wave detectors is operated as a sensor array, an
interferometer composed of many interferometers.

1.6 LIGO

Ground was broken on the first of the two LIGO observatories in 1994. After years of con-
struction and then detector commissioning, the three detectors at the two observatories (at
Hanford, WA; and Livingston, LA, pictured in figure 1.3) reached their design sensitivity[25]
in 2004[26]. Having reached this milestone, the attention turned to collecting data for as-
trophysical observation rather than instrument development. By October 2007, the LIGO
project accomplished the goals of what is now known as “initial LIGO,” having collected 1
year of observational data with all three detectors online simultaneously, over the course of
the 5th science run (known as S5).

It had always been intended that this initial generation of LIGO would be followed by
a programme of improvements[27]. The next generation of LIGO detectors is “Advanced
LIGO,” which will feature significantly more effective (and more complex) seismic isolation,
an increase of 20× in laser power, in addition to other improvements.

Rather than spend the entire time before the onset of Advanced LIGO taking observa-
tional data in the Initial LIGO configuration, it was decided to implement an intermediate
series of upgrades in a project that came to be called “Enhanced LIGO”[28, 29, 30]. The
goals of enhanced LIGO were to both increase the chances of an early discovery (by increasing
the detector sensitivity), and to gain early experience with Advanced LIGO technologies.

The observational data collected so far has been analyzed (and continues to be analyzed)
for evidence of gravitational waves. Although no gravitational waves have yet been detected,
these searches have set the tightest upper limits to date on GW emission. Results of searches
for compact binary inspirals[31, 32], unmodeled bursts[33, 34], known pulsars[35], periodic
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Figure 1.3: Aerial photo of the LIGO Livingston Observatory, containing the L1 detector.
The main building in the center of the photo contains the beamsplitter; the two 4 km arms
reach out to the right of the photo. Photo by Greg Grabeel and the author.

sources[36], GWs associated with a gamma-ray burst[37], a particular neutron star[38], and
the stochastic backround[39] have recently been published. The gamma-ray burst paper[37]
illustrates the value of the LIGO observational results despite not having actually detected
any GWs. The electromagnetically observed sky position of gamma ray burst 070201 was
coincident with the spiral arms of the Andromeda galaxy (M31); the non-detection of GWs
associated with the event led to the conclusion that it did not occur in M31, but much
further away.

1.6.1 Summary of Changes Made for Enhanced LIGO

Detector upgrades during Enhanced LIGO included:

� An increase in laser power. The initial LIGO laser, an Nd:YAG NPRO capable of
producing < 10 Watts of laser power at a wavelength of 1064 nm, was replaced with
the Advanced LIGO laser front-end, built by Laser-Zentrum Hannover[40], with an
output power of 35 W.

� The input optics were redesigned to handle the higher input power [41, 42].

� A new thermal compensation system was implemented to compensate for the greater
amount of thermal lensing that would be induced by the higher operating power[26, 43].
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� An output mode cleaner was installed, supported by a prototype of the advanced LIGO
in-vacuum seismic isolation system [44]

� The Angular Sensing and Control system was redesigned to cope with angular insta-
bilities introduced at high power [45, 46]

� Readout of the gravitational wave channel was changed from RF readout to DC read-
out.

The state of the LIGO detectors before these modifications is described in [16] as well as
numerous PhD dissertations, notably Rana Adhikari’s [47] and Stefan Ballmer’s [26]. Robert
Ward’s dissertation details the implementation and evaluation of DC readout at the LIGO
40 meter prototype interferometer in Pasadena [48]. During the same time as Enhanced
LIGO, DC readout was simultaneously and independently implemented at GEO[49, 50].

1.7 The Future

It is hoped that Advanced LIGO and Advanced VIRGO, currently under construction, will
bring the first direct detection of gravitational waves and begin the era of regular detection
and gravitational wave astronomy. Beyond the ‘Advanced’ detectors, several next-generation
interferometers are also in the works.

Technological development of terrestrial laser interferometers is a vibrant field. The
Advanced detectors are anticipated to be limited almost everywhere by quantum mechanical
noises, making gravitational wave detectors an active field for work in quantum optics.
The next generation of terrestrial gravitational wave detectors will be limited by near-field
gravity–“Newtonian noise” from density waves in the surrounding environment. The path
forward will be to move underground (where this effect is smaller); measure, predict, and
subtract the Newtonian noise contribution using a seismic sensor array; or to move into
space. The Einstein telescope [51] is a proposed system of three interferometers with arms
forming an equilateral triangle, to be installed in tunnels deep under Europe.

Going into space makes feasible the use of extraordinarily long arms and yields complete
freedom from terrestrial noise, allowing access to very low frequency gravitational waves.
The Laser Interferometer Space Antenna (LISA) design is composed of three spacecraft
forming an equilateral triangle, the whole constellation in solar orbit[52]. These spacecraft
will house truly inertial test-masses, floating within an internal vacuum enclosure while
external microthrusters keep the spacecraft centered around the test mass, a configuration
known as a drag-free satellite [53]. The gravitational wave channel is derived using time-
delay interferometery. The proposed LISA design is sensitive to gravitational waves in the
range 10−4 to 10−1 Hz (period of 3 hours down to 10 seconds).
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1.8 This Dissertation

LIGO, is, of course, a team effort, conducted by the LIGO Laboratory and by the LIGO
Scientific Collaboration, of which I am a member. The success of LIGO is due to the hard
work of hundreds of people over the course of several decades. I came to LIGO Livingston
Observatory in January 2008 where I worked with the commissioning team to commission
the enhancements to the L1 detector (i.e. make it work) with a specific focus on DC readout
and the output mode cleaner (OMC), which are the focus of this work. This dissertation
describes the implementation of DC readout and an output mode cleaner during Enhanced
LIGO. My personal scientific contributions to the project are concentrated in chapter 5.

In Chapter 2, I explain the principles and practice behind the sensitivity of the LIGO
detectors. I show how the machine converts gravitational wave-induced phase modulation
into a modulated optical field while offering a large amount of immunity to other effects.

In Chapter 3, I describe DC readout, the newly implemented scheme for recovering the
gravitational wave signal from the optical fields exiting the interferometer.

Chapter 4 introduces the output mode cleaner, its design and control, and the general
idea of mode cleaners.

Finally, in Chapter 5, I present results demonstrating the performance of this system,
including measurements and models of the transfer functions of laser and oscillator noises,
and verification that the noise floor of the enhanced detector is well understood.



Chapter 2

The LIGO Detector

2.1 An Interferometric Gravitational Wave Detector

The purpose of the LIGO detectors is to measure the faint oscillations of spacetime imparted
by far-away astrophysical processes. Through clever design and careful engineering, these
machines are capable of resolving these tiny perturbations from the much louder sea of noise
on the surface of the Earth[54].

As described in the preceding chapter, a passing gravitational wave modulates the optical
path length of light passing between inertial test masses. To exploit this effect and build
a detector around it, we need to arrange to have inertial test masses. We need to be able
to tell the difference between phase perturbations due to the gravitational wave and phase
perturbations inflicted by our light source. We need to eliminate sources of phase variations
that would be louder than the effect we wish to measure.

The essential points are:

� We approximate inertial test masses by hanging the optics as pendula. These act as
inertial masses above the pendulum resonance.

� We build a Michelson interferometer for its common-mode noise rejection. A suitably-
polarized gravitational wave will modulate the arm lengths differentially, while laser
frequency noise appears as a common mode modulation. Suppress the frequency noise
by feeding back to the laser.

� To enhance the effect from a passing gravitational wave, we make the arms as long
as possible. To further enhance the response, we have the light travel this path many
times by using resonant cavities.

� To increase the optical response to a gravitational wave, we increase the light power
in the interferometer by using power recycling.

The following sections describe these principles in further detail.

11
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Figure 2.1: Michelson interferometer. This figure introduces some of the common nomen-
clature for the ports and optics of the Michelson interferometer. ETM stands for ‘end test
mass.’

2.2 The Michelson Interferometer

Contemplating the effect of a gravitational wave on a ring of test particles (figure 1.1), it
is easy to imagine constructing a Michelson interferometer (figure 2.1) with its beamsplitter
in the center of the circle and with two of the test particles forming the end mirrors of the
Michelson. More importantly, the Michelson allows us to separate the differential motion
of the two arms from the common motion, which is indistinguishable from laser frequency
changes.

If we assume a perfect (lossless, 50/50) beamsplitter, the transmission and reflection
coefficients for the Michelson are:

tM =
1

2
(rx exp{i2φx} − ry exp{i2φy}) (2.1)

rM =
1

2
(rx exp{i2φx}+ ry exp{i2φy}) (2.2)

where r{x,y} are the amplitude reflectivities of the x- and y-arm mirrors, and φ{x,y} are the
phases accumulated as the light travels from the beamsplitter to end mirrors. It is useful
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Figure 2.2: Phasor diagram of the fields at the output port due to the two arms of the
Michelson. Differential motion of the mirrors at the ends of the arms causes equal but
opposite rotation of the two phasors, which modulates the amplitude of the resultant electric
field at the output port (EAS).

to change our variables to express these quantities in terms of the differential and common
reflectivies and phases. Making the substitutions

φ− = φx − φy φx = φ+ + (1/2)φ− (2.3)

φ+ = (φx + φy)/2 φy = φ+ − (1/2)φ− (2.4)

and

∆r = rx − ry rx = r + (1/2)∆r (2.5)

r = (rx + ry)/2 ry = r − (1/2)∆r (2.6)

yields

tM = ei2φ+ (ir sinφ− + (∆r/2) cosφ−) (2.7)

rM = ei2φ+ (ir cosφ− + (∆r/2) sinφ−) (2.8)

The intent is for the arm reflectivities to be identical (so ∆r → 0), and to operate near
the dark fringe (φ− → 0) so that the input field does not couple directly to the output port
(i.e. tM → 0). Given this configuration, there are two salient points concerning gravitational
wave detection:

� Variations of the differential phase φ− linearly couple to the field amplitude at the
output port. This can be seen via equation 2.7 or the phasor diagram in figure 2.2.
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� Variations of the common phase φ+ do not couple to the field at the output port, so
long as we operate near φ− = 0 and the contrast defect (∆r) is small.

The field at the output port is thus sensitive to suitably polarized graviational waves but
insensitive to laser frequency noise1.

Ultimately, we can not measure optical field amplitudes directly, because the field itself
oscillates at c/(1064 nm) ≈ 300 THz, much too quickly to measure directly. Instead we
measure the power, i.e. the envelope of the optical field. We compute the power at the
anti-symmetric and reflected ports by taking the squared magnitude of the field amplitudes.
Using PAS = PBS |tM |2 and PREFL = PBS |rM |2:

PAS = PBS
(
r2 sin2 φ− + (∆r/2)2 cos2 φ−

)
(2.9)

PREFL = PBS
(
r2 cos2 φ− + (∆r/2)2 sin2 φ−

)
(2.10)

The power transmitted through the Michelson at the dark fringe is the contrast defect,

cd =
PAS
PBS

=
1

4
(∆r)2 . (2.11)

The linear relationship between φ− and the electric field at the output port leads to a
quadratic relationship between φ− and the output port power. We will turn to the task of
recovering a linear signal in section 2.7, but first we will consider methods to magnify the
effect of a gravitational wave on φ−.

2.3 Resonant Cavities

One approach to increasing the phase imparted by the GW to the light in the arms of the
interferometer would be to arrange for the light to make multiple traversals of the arm length.
This could be in the form of a delay line (where the optical path makes several zig-zags down
the arm length in a definite number of bounces), or a resonant cavity (made by facing two
partially-transmissive mirrors at each other, resulting in an effective number of bounces).
Resonant cavities were chosen for the LIGO arms.

The basic setup of a Fabry-Perot cavity is shown in Figure C.1. Light entering the
cavity interfered with light already circulating in the cavity. If, after making a round-trip
through the interior of the cavity, the circulating light returns to its original phase (and
spatial distribution), constructive interference will occur and the light will resonate in the
cavity. If the mirrors have high reflectivity, then the light inside the cavity will survive for
many round-trips inside the cavity. Any deviation from the required 2π radians of round-trip
phase will be magnified on each bounce.

The theory of the Fabry-Perot cavity is derived in appendix C. For the purpose of this
chapter, we need only the fact that changing the intra-cavity phase results in a much greater

1An orthogonally polarized gravitational wave, whose strain ellipse is rotated 45◦, will modulate φ+ but
this detector sacrifices sensitivity to that polarization in order to gain common-mode noise immunity.
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change in the phase of the light reflected from the cavity; the ratio of these phase changes is
the phase gain, given by gφ = r′c/rc, where rc is the cavity reflectivity on resonance, and r′c
is its derivative with respect to changes in intra-cavity phase. The numerical values for rc
and r′c in terms of the individual mirror reflectivities (for a lossless cavity) are (as derived in
appendix C or given in [55]):

rc =
r1 − r2

1− r1r2

r′c =
(1− r1

2) r2

(1− r1r2)2 (2.12)

We typically work in the long wavelength approximation, in which we assume that the
gravitational wave strain (or cavity length) changes slowly compared to the time required
by light to travel from one mirror of the cavity to the other. Because light and gravitational
waves travel at the same speed, this requires that the GW wavelength be much longer than
the interferometer arm length.

2.4 Michelson with Fabry-Perot Arms

By replacing the end mirrors of our Michelson interferometer with Fabry-Perot cavities, the
sensitivity to phase differences increases by a factor of the phase gain.

We now have

tM = ei2gφφ+
(
rci sin gφφ− +

∆r

2
cos gφφ−

)
(2.13)

where ∆r now gives the difference between the reflectivites of the two arm cavities.
For Enhanced LIGO, the phase gain is approximately 140.

2.5 Power Recycling

The Michelson interferometer tuned to a dark fringe for the laser carrier sends most of the
laser power back towards the laser. Instead of discarding this power, it can be sent back
into the Faby-Perot Michelson interferometer. This is done by adding an additional mirror,
the power recycling mirror, that forms a resonant cavity with the rest of the interferometer.
Choosing the reflectivity of the power recycling mirror to match the effective reflectivity of
the rest of the interferometer makes this cavity critically coupled; ideally all of the laser
carrier is coupled into the interferometer and very little is reflected. Most of the light stays
in the interferometer until it is lost to scattering or absorption.

2.6 The Coupled Cavity Pole

The combination of the arm cavities and the power recycling cavity acts in some ways like a
single cavity with a much longer storage time than either the arms or the PRC individually.
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Figure 2.3: It is sometimes convenient to condense the two arms of the Power-Recycled
Fabry-Perot Michelson interferometer into a single ‘virtual arm’ for the purpose of analysis.
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Figure 2.4: Transfer function from laser intensity fluctuations incident on the interferometer
to laser intensity fluctuations inside the power recycling cavity. Fluctuations around the
laser carrier above the coupled-cavity pole are attenuated.
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This produces a filtering effect that will prove essential when we discuss DC readout later
on.

Because the two arm cavities are made to be as nearly identical as possible, and because
the Michelson is operated very close to the dark fringe, we can condense the two arm cavities
into a single cavity for the purpose of analysis (depicted in figure 2.3. In considering the effect
of amplitude or frequency perturbations of the input field, the power-recycled Fabry-Perot
Michelson can be considered as a three mirror cavity.

It is useful to regard the cavity as acting as a linear operator on the input fields. To find
the transfer function of the coupled cavity, we can simply substitute the cavity reflectivity
function rc(φ) given in equation C.6 into itself, with suitable substitutions. When this is
done, it is found that the transfer function from fields at the interferometer input to the field
just inside the PRC can be well described by a single pole at low frequency, the coupled cavity
pole. There is no closed-form solution for the exact value of the coupled-cavity pole[56], but
a very good approximation results if we first compute the reflectivity of the shorter cavity
on resonance, and substitute this into the expression for the cavity pole of the larger cavity.
Doing this, we find

fcc ≈
1

2π
ν0 log

(
r3 − r1

1− r1r3

r2

)
(2.14)

where fcc is the frequency of the coupled cavity pole, ν0 is the free spectral range of the arm
cavity, and r{1,2,3} are the reflectivities of the ITMs, ETMs, and recycling mirror, respectively.

The coupled cavity pole in Initial/Enhanced LIGO is approximately 1 Hz. Astoundingly,
this means that any amplitude or phase noise around the laser carrier (itself oscillating at
300 THz!) will be attenuated by 1/f above 1 Hz (see figure 2.4), making the carrier light
circulating in the interferometer some of the ‘quietest’ light available anywhere. One of the
motivations of DC Readout (chapter 5) is to exploit this effect fully.

2.7 Interferometer Sensing and Control

The power-recycled, Fabry-Perot Michelson optical configuration (collectively referred to as
“the interferometer”) described above exhibits the desired sensitivity to gravitational waves
and immunity to common mode noise. However, it only does so when the Fabry-Perot cavities
are held on resonance, and the Michelson is held to the dark fringe. The need to sense the
state of the interferometer and to use feedback control to keep it at the desired operating
point is known as interferometer sensing and control (ISC). The initial LIGO sensing and
control scheme is described in [57] and [58]. A pedagogical introduction is provided in [59].

The control aspect has not yet been mentioned. To allow actuation on the optics, the
test masses are each equipped with five small magnets (four on the face and one on the side)
which fit into solenoids mounted to the suspension structure. This electromagnetic drive
allows forces to be exerted on the optics to control their position and orientation.

The initial LIGO detectors were designed to use, as much as possible, proven technologies.
The proven technique for sensing the length/frequency mismatch of an optical cavity was
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Figure 2.5: In the basic Pound-Drever-Hall setup, a phase modulator is used to produce RF
sidebands well outside of the cavity bandwidth. The light reflected from the cavity is incident
on a photodiode, the signal from which is demodulated to produce an error signal indicating
the mismatch between cavity length and laser carrier frequency. Through feedback, the
cavity can be ‘locked’ to the resonance. The technique can be generalized to sense and
control much more complex interferometers.

the Pound-Drever-Hall (PDH) technique[60, 61], sometimes called reflection-locking, which
can be used to lock the frequency of a laser to the length of a cavity, or vice versa.

2.7.1 The Pound-Drever-Hall Technique

In the basic PDH setup, the laser light incident on a resonant cavity is first phase-modulated
at a frequency well outside of the bandwidth of the cavity, such that the phase-modulation
sidebands are nearly anti-resonant in the cavity when the carrier is resonant. The light
reflected from the cavity is directed onto a photodiode and an error signal is produced by
demodulating this photodiode signal. The basic setup is depicted in figure 2.5.

The phase modulation may be expanded in terms of sidebands using the Jacobi-Anger
expansion (see section E.1):

exp {iΓ cos Ωt} =
∞∑

n=−∞

(in) Jn(Γ) exp{inΩt} (2.15)

= J0(Γ) + iJ1(Γ)eiΩt − iJ−1(Γ)ei−Ωt + · · · (2.16)

From this expansion we see that phase modulation at a frequency Ω results in the creation
of an infinite number of sidebands around the laser carrier, spaced at multiples of Ω, and
whose amplitudes are given by the Bessel functions. The magnitude of the modulation (Γ,
in radians) is known as the modulation depth. We typically use a small modulation depth, so
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Figure 2.6: (a) Power buildup inside a resonant cavity relative to the incident power, as
a function of cavity detuning (deviation from resonance). (b) The Pound-Drever-Hall error
signal as as a function of detuning (in watts relative to the incident power and the modulation
depth). The dashed lines indicate the region in which PDH provides a usable error signal
with which to lock the cavity. The cavity modeled here has parameters similar to the initial
LIGO arm cavities.

that only the first-order sidebands are significant. These first-order sidebands are displaced
from the carrier by the modulation frequency ±Ω and have amplitude J1(Γ).

Upon reflection from a cavity the phases of the carrier and the two sidebands will be ro-
tated. This phase rotation converts the phase modulation to amplitude modulation, which
is observed by the photodiode. Typically, the laser frequency or the cavity length is ad-
justed to hold the carrier on resonance. Near the resonance, there is a very large change
in reflected phase for a small change of detuning (mismatch between the cavity length and
laser frequency); the RF sidebands, on the other hand, are typically far from resonance and
experience very little phase change. As a result, a small perturbation from resonance will
turn the cavity into an FM-to-AM converter. The resulting amplitude modulation can be
sensed by a photodiode and demodulated to produce an error signal indicating how far the
cavity is from resonance. The PDH error signal is depicted in figure 2.6.

2.7.2 Generalization of the PDH Technique

To sense and control the entire Power-Recycled, Fabry-Perot Michelson interferometer, the
PDH scheme can be generalized to sense all degrees of freedom by providing one or more
pairs of RF sidebands, and sensing and demodulating the light at various interferometer
ports. In the remainder of this dissertation, however, we are concerned only with sensing the
differential arm degree of freedom (DARM), which contains the gravitational wave signal.
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2.8 Noises

No discussion of detector operation is complete without consideration of the noises which
limit detection. The noise sources relevant to laser interferometer gravitational wave detec-
tors are articulated in Rai Weiss’s original design study[14] and Rana Adhikari’s dissertation[47].
It is often useful to divide noises into displacement noises (which correspond to real displace-
ment of the mirrors or intra-cavity phase modulation) and sensing noises (which arise in the
sensing of the interferometer state). Displacement noises include:

� seismic noise – this refers to any motion of the mirrors due to local ground motion.
Below ∼ 40 Hz, the initial/enhanced LIGO noise floor is entirely limited by seismic
noise (the so-called ‘seismic wall’).

� thermal noise – thermally excited motion in the test mass suspensions and the high-
reflectivity coatings produces displacement noise[62, 63], which currently limits the
sensitivity in the range 40 - 100 Hz.

� quantum radiation pressure noise – the Poisson statistics of the light circulating in
the arm cavities generates a white-noise random force, producing a 1/f 2 displacement
spectrum. This noise source has not yet been observed, since its influence is masked
by the other low-frequency noises.

� technical radiation pressure noise – variations in light intensity create varying
radiation pressure forces.

� residual gas noise – any residual gas in the vacuum enclosure will displace the optics
through Brownian motion, in addition to creating spurious phase modulation of the
light.

Sensing noises include:

� shot noise – white noise due to Poisson statistics of light arriving at the detection
photodiode. This is the limiting noise source at high frequency (f ∼>200 Hz).

� dark noise – This is the name given to any electronics noise present when there is no
light incident on the photodetectors. The electronics are generally designed such that
dark noise is never limiting.

Some difficult-to-categorize noises:

� upconversion – for instance, the magnetic actuation system appears to suffer from
Barkhausen noise. Large actuations lead to random noise due to the random, quantized
flipping of magnetic domains. The result is that large actuations at low frequency lead
to elevated noise at higher frequencies. Nonlinear effects such as this are lumped into
the category of ‘upconversion’.
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� cross-couplings – Imperfections in the diagonalization of the control system lead to
noise in one degree of freedom being impressed on another. For example, actuation on
the angular degrees of freedom can lead to perturbations of the differential arm length
via imperfect angular actuation. As a result, there is the hazard of the angular control
signal contaminating the gravitational wave channel with noise. One way to cope with
this is to steeply cut off feedback of the offending control signal below the detection
band.

2.9 Heterodyne Shot Noise

I conclude this chapter with a discussion of the shot-noise-limited sensitivity of a detector
using heterodyne readout.

When a constant optical power P is incident upon a photodetector, we expect to observe
Poisson shot noise in the resulting photocurrent. This shot noise has a white (flat) power
spectrum, with amplitude spectral density

√
2Phν, where hν is the energy of an individual

photon.
In the heterodyne readout system, the power on the photodiode is not constant; instead,

the power varies sinusoidally at a frequency 2fmod due to the beat between the upper and
lower RF sidebands. At any given instant, a measurement of the rate of photon arrival
will return a value from the Poisson distribution with mean P/(hν), which has standard
deviation

√
P/(hν). A measurement of power therefore will give P ±

√
hνP , where P

is varying sinusoidally with time. This is an example of cyclostationary noise; a sample
realization is depicted in figure 2.7. When considering a long time series (t � 1/fmod),
the signal will appear to have a noise floor determined by its average power. On closer
examination, however, we see that the noise comes in bursts.

The bursty nature of this noise becomes a problem when we consider demodulation.
Comparing the demodulation waveforms (cos 2πfmodt and sin 2πfmodt) to the envelope of the
noise, we see that one demodulation quadrature systematically samples the highest variance
portions of the timeseries, while the other quadrature sames the lowest variance portions
(see figure 2.7). The result[64] is that the shot noise ASD in a demodulated signal is√

2hνP̄

(
1

2
− 1

4
cos 2θ

)
(2.17)

where P̄ is the average power on the photodiode and θ is the demodulation phase.
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Figure 2.7: (a) Model of shot noise in the presence of sinusoidal power modulation, as
occurs in optical heterodyne detection. The photodiode sees a power modulation at 2fmod
(white) due to the beat between the upper and lower modulation sidebands at fcarrier±fmod.
The gray levels represent the 1σ, 2σ, · · · , 5σ ranges for a Poisson distribution. The blue dots
are a sample realization of this noise. (b) Subtracting the mean from (a) leaves only the
noise; its bursty nature is obvious. Shown in black and red are the I and Q demodulation
waveforms, respectively. It is clear that the in-phase demodulation (I) samples regions of
the time series with higher variance than the quadrature phase (Q). This leads to a higher
variance (shot noise level) in the I signal and a lower one in the Q signal relative to what one
would expect from a näıve assumption based on the average power considered over a whole
period of the waveform.



Chapter 3

DC Readout

The initial LIGO detectors used RF heterodyne detection, inspired by the Pound-Drever-Hall
technique, to sense all interferometer length degrees of freedom and most angular degrees of
freedom. During Enhanced LIGO, we changed the sensing of the gravitational wave channel
(DARM) to a form of homodyne detection called DC readout. In this chapter I explain the
motivation for and theory behind DC readout.

3.1 Principle of DC Readout

A homodyne readout system differs from a heterodyne system by using a local oscillator at
the same (optical) frequency as the field being measured. A typical homodyne detection
system combines a local oscillator (LO) field and a signal field via two different ports of a
beamsplitter (depicted in figure 3.1(a)). The two PD signals are subtracted to recover the
signal. This arrangement suffers from a number of technical difficulties[65], including the
need to control the phase of the LO beam, and to maintain the alignment of the signal and
LO beams.

DC readout1 creates the homodyne local oscillator by putting a small offset into the
Michelson or DARM degree of freedom, moving the interferometer slightly off of the dark
fringe. The resulting carrier light at the interferometer output port acts as a local oscillator.
This differs from the typical homodyne arrangement in that the two fields are automatically
coincident2 The principle disadvantages of DC readout over the 2-port homodyne arrange-
ment are that DC readout requires introducing an intentional microscopic offset of the arms,

1The name ‘DC readout’ probably came about simply in distinction to ‘RF readout’, with DC (from
‘direct current’) being a reference to its baseband nature. It is also kind of a pun since ‘direct conversion’ is
another name for homodyne detection.

2It is no longer necessary to use two photodiodes, but doing so allows greater power handling capacity,
and allows for the formation of a diagnostic ‘nullstream’. The nullstream is formed from the difference of
the two PD signals and ideally contains only the uncorrelated component of the PD signals. The sum of the
two PD signals provides the intended signal.

23
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Figure 3.1: Left: a traditional ‘balanced photodiode’ homodyne detection arrangement.
Right: DC readout with two photodiodes.

which can increase noise couplings, and that DC readout provides little control of the phase
of the local oscillator.

One way to intuitively understand DC readout is that simply moving away from the
quadratic point of the fringe (depicted in figure 3.2), a linear relationship from DARM
variations to power variationsis introduced. The frequency domain picture of the fields at
the output port in both heterodyne and homodyne readouts is depicted in figure 3.3; we
see that, in homodyne readout, the baseband signal at the photodiode is a result of a beat
between the (no longer completely suppressed) carrier and the sidebands impressed by the
gravitational wave. 3

The true beauty of DC readout is that it exploits the filtering action of the compound
interferometer to produce the local oscillator; any fluctuations in the amplitude or frequency
of the input laser field are attenuated by the coupled cavity pole before reaching the output
port.

3We might ask how phase modulation induced in the arms is converted to amplitude modulation at the
AS port. The answer is that the Michelson rotates the carrier by 90 degrees due to the i in the Michelson
transmission (equation 2.7).
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Figure 3.2: Power at the output port (PAS) relative to the interferometer input power (PIN),
as a function of the DARM offset, in picometers (1 pm = 10−12 m). Left: The DARM fringe
differs from the PBS sin2 kx of a simple Michelson since PBS itself depends on the DARM
offset. For comparison recall that the full fringe width (from one resonance to the next) is
λ ≈ 10−6 m. Right: Detail. For small offsets, the fringe appears quadratic. DC readout
operates with an intentional static DARM offset in order to create a linear relationship
between DARM perturbations and PAS. The small but nonzero minimum power at zero
offset is the contrast defect.

3.2 Motivation for DC Readout

The RF readout technique was used successfully in initial LIGO to achieve the instruments’
design sensitivity. A number of reasons, outlined below, motivated the switch to DC readout
with an Output Mode Cleaner (OMC):

Improved Noise Couplings

The combination of the power recycling cavity and the arm cavities acts as a single resonant
cavity with an effective linewidth of approximately 1 Hz around the laser carrier. Intensity
and frequency noise around the laser carrier are reflected from the interferometer. The RF
sidebands, which are not resonant in the arms, experience no such filtering in the band of
interest. DC readout exploits this filtering by using the carrier light that has circulated in
the interferometer as the local oscillator. The result is that coupling of noises on the input
beam to the gravitational wave readout can be greatly reduced.

Spatial Overlap

Imperfect spatial overlap of the signal beam (resonant in the arm cavities) and the RF
sideband beam (resonant in the power recycling cavity) reduced the optical gain, elevating
the shot-noise-limited noise floor. For instance, a measurement in 2003 found only half
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the expected optical gain[66]. This was alleviated in part through the use of a thermal
compensation system (TCS), which projected light from a CO2 laser onto optics to adjust
their effective radii of curvature, compensating for thermal lensing. By the start of S5
in 2005, no elevation in the shot noise level was observed[26]. However, spurious fields still
caused problems by producing a large signal in the uncontrolled quadrature of the heterodyne
readout (AS I); left uncontrolled, this signal would saturate the photodiode electronics. This
was partially mitigated by an electronic servo which cancelled this signal in the photodiode
head.

Both DC readout and an OMC mitigate problems with the spatial overlap of the LO and
signal beams. In DC readout, the local oscillator and the signal beams are resonate in the
same cavities, so spatial overlap comes naturally. With either DC or RF readout, an OMC,
matched to the spatial mode of the signal beam, can be used to select the signal beam and
the part of the LO with good spatial overlap.

Excess Power

To cope with the excess power due to higher-order modes at the interferometer output port,
initial LIGO split the light at the detection port onto four detection photodiodes. Scaling
the interferometer input power would require a commensurate increase in the number of
photodiodes at the output port and their associated electronics. An output mode cleaner
reduces the power that needs to be detected.

Homodyne SNR Advantage

Homodyne detection confers a fundamental improvement in signal-to-noise ratio compared to
RF readout at shot-noise-limited frequencies by a factor

√
3/2 (for the same power circulating

in the interferometer). The extra noise in heterodyne detection is a result of cyclostationary
shot noise[64] due to the interference between the upper and lower RF sidebands.

Squeezed Vacuum Injection

Squeezed vacuum injection is an attractive means to decrease the photon quantum noise in
future interferometers by manipulating the quantum state of the vacuum field that enters
the interferometer through the output port. Squeezed vacuum injection is more feasible
in conjunction with homodyne detection than with RF readout, since it requires squeezing
in only the audio band rather than at both audio and RF frequencies[67, 68]. Shot noise
reduction via squeezed vacuum injection has been demonstrated at GEO[69] and an effort
is currently underway to implement it at LIGO Hanford[70].

3.3 Implementation of DC readout

The Enhanced LIGO optical plant is depicted in figure 3.4. The initial LIGO configuration
was modified by adding an output mode cleaner (described in the next chapter) and DC
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optical frequency -rf +rf-gw +gw

optical frequency -rf +rf-gw +gw

HETERODYNE (RF)

HOMODYNE (DC)

Figure 3.3: Depiction of the fields in DC and RF readouts. (a) In RF readout, the laser
carrier is suppressed by operating the Michelson on a dark fringe for the carrier. Differential
phase modulation in the arms becomes amplitude modulation of the (suppressed) carrier,
depicted as the audio-frequency sidebands at ±fgw. The photodiode sees a beat between the
GW signal and the RF sidebands. In homodyne readout, a carrier-frequency local oscillator
is introduced–in DC readout this is done by introducing a microscopic asymmetry between
the two arms. The RF sidebands are no longer needed and are removed by the output mode
cleaner. The GW-induced sidebands appear as amplitude modulation on the carrier, which
is sensed directly by the photodiodes.
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photodiodes. A beamsplitter directs 97% to this new path and the remaining 3% to the
old RF heterodyne output chain, which was still used for lock acquisition and automatic
alignment. An additional computer system was added to acquire the signals from the DC
photodiodes and to control the OMC.

3.3.1 Interferometer Lock Acquisition

Initial lock acquisition of the Enhanced LIGO interferometers is the same as in Initial
LIGO[71]. Once the interferometer is locked using the heterodyne readout schemes, the
DARM offset is introduced to allow carrier light to be transmitted to the output port. The
Output Mode Cleaner is then locked to this carrier light. Once the OMC is locked to the
carrier, control of DARM is transferred to the DC readout system. After this transition, a
few other changes are made to engage the OMC alignment servoes and to put the readout
electronics into low noise mode. At this point the interferometer has reached its operation
configuration and astrophysical data-taking (“science mode”) begins.

3.4 Calculation of the Optical Gain

The ratio of signal produced (in Watts) to displacement of DARM (in meters) is the optical
gain. In DC readout, we can find the optical gain for slow DARM variations by simply taking
the derivative of the power at the anti-symmetric port with respect to changes in DARM.

From the prior chapter, take the expression for the power at the output of a Michelson:

PAS = PBS
(
rc

2 sin2 φ− + (∆r/2)2 cos2 φ−
)

(3.1)

Taking the derivative with respect to φ−, we find

dPAS
dφ−

= 2PBS
(
rc

2 − (∆r/2)2) cosφ− sinφ− (3.2)

Immediately we see that any contrast defect (∆r 6= 0) will diminish the optical gain. As-
suming r � ∆r, we can neglect the contrast defect and get simply

PAS = PBSrc
2 sin2 gφkx (3.3)

where k = 2π/λ is the wavenumber, x is the DARM displacement, and gφ is the phase gain.
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Taking the derivative, we find the optical gain

SDC =
∂PAS
∂x

(3.4)

= 2PBSrc
2 sin(gφkx) cos(gφkx)gφk (3.5)

= 2rcgφk
√
PBSPAS cos(gφkx) (3.6)

= 2rc
′k
√
PBSPAS cos(gφkx) (3.7)

The cosine term is very near unity and can be neglected. Also, the phase gain dies off with
the cavity pole; and PBS is related to the input power PIN via the power recycling gain gcr

2.
Putting this together, we get:

SDC(f) = 2gcrrc
′k
√
PINPAS

(
1 + i

f

fc

)−1

(3.8)

We see that the optical gain scales with the square root of both input power and the
power at the AS port (assuming that the power recycling gain gcr remains constant, which
is approximately true for small offsets). From this we can conclude several properties of DC
readout immediately:

� Because the optical gain and the shot noise ASD both scale with
√
PAS, the shot-noise-

limited sensitivity is insensitive to the particular DARM offset we use.

� The sensitivity of the detector improves with the square root of the input power.

� The frequency response of the interferometer is the same in DC readout as in RF
readout, up to a scaling factor. (Both are shaped simply by the cavity pole.)

3.5 Selecting the DARM Offset

The particular DARM offset used to implement DC readout must satisfy a number of con-
ditions. On one hand, the DARM offset cannot be too small:

� The LO field should be of much greater magnitude than the contrast defect field, i.e.
we must have rc

2 sin2 φ− � (∆r/2)2 cos2 φ−, i.e. tanφ− � (∆r)/(2r). If this condition
is not met, then the SNR will suffer from the contrast defect shot noise contribution.

� The phase offset must be sufficiently large that the response to a normal range of
DARM motion remains linear. In particular, the DARM offset must be much larger
than any expected DARM excursion. The observed residual DARM motion is depicted
in figure 3.5; we use 0.1 pm as an upper limit on the residual DARM motion.

� The power on the detection photodiode must be large enough such that the shot noise
exceeds the electronics noise of the readout.
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On the other hand, there are also upper limits to the magnitude of the DARM offset,
including:

� The power loss at the AS port must be sufficiently small such that the power recycling
gain is not diminished excessively. Excess power loss will lead to diminished shot-noise-
limited SNR.

� The power on the detection photodiodes cannot be too high. Too much power on the
photodiodes usually produces excess noise or reduced quantum efficiency, or will even
burn the photodiode.

� Larger offsets generally increase all of the (laser and oscillator) noise couplings and
increase the magnitude of optical spring effects. To keep noise couplings small, offsets
should generally be kept as small as possible.

� The cavity detuning should be small compared to the cavity pole to avoid losing phase
gain. In practice, all of the other criteria will become limiting before this one.

Several of these criteria are examined in greater detail below. In practice, the space of
allowed offsets is explored emirically; colloquially, we turn the knobs in whatever direction
makes the noise go down. During Enhanced LIGO, we operated with a DARM offset of
approximately 10 picometers.

3.5.1 Decrease in Arm Power Due to Off-Resonance Operation

The decrease in buildup for a cavity operated off-resonance goes like (2F/π)2φ2, where φ is
the cavity detuning. For F = 220 and φ = (2π/1064 nm)(10 pm), the fractional power loss
is only 7× 10−5.

3.5.2 Decrease in Power Recycling Gain Due to Intentional Offset

Allowing power to escape the power recycling cavity (PRC) through the AS port effectively
increases the losses of the PRC, diminishing the power recycling gain.

The carrier power in the PRC is given by

PBS = PIN

∣∣∣∣ tRM
1− rRMrIFO

∣∣∣∣2 (3.9)

where tRM is the amplitude transmissivity of the recycling mirror, rRM is its reflectivity, and
rIFO is the amplitude reflectivity of the rest of the Fabry-Perot Michelson interferometer.
The power-recycling cavity is designed to be critically coupled, so rIFO ≈ rRM .

With a DC offset in place, the reflectivity of the Michelson becomes rM = rIFO cosφ−,
so we can write

PBS(δx) ≈ PIN
TRM

(1−RRM cos (2 · 137 · k · δx))2 (3.10)
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Figure 3.5: DARM motion. The lower trace shows the residual motion of DARM after
stabilization by the DARM control loop. The upper trace shows the ‘calibrated’ DARM, in
which the effect of the control loop has been removed by multiplying by (1 + G), where G
is the open loop gain; this can be interpreted as ‘the motion that would be there if there
were no control loop.’ The control loop reduces the RMS DARM motion by ten orders of
magnitude in order to hold the interferometer within the linear regime around the operating
point. The DARM offset used to implement DC readout must be significantly larger than
the RMS residual motion (∼ 10−14 m) to avoid nonlinear effects.

The loss of power recycling gain becomes significant for large offsets. For a 10 pm offset, the
reduction in power recycling gain is only 1%, but for a 50 pm offset it grows to 20%.

3.5.3 Nonlinearity of the DC Error Signal

Although we operate sufficiently far from the dark fringe that the linear coupling of residual
DARM motion to output power is dominant, sufficiently large motion could produce second-
order coupling.

To find the nonlinear contribution, we can expand the power at the AS port to include
the quadratic term, and then we can compare the quadratic term to the linear term. Here it
is easiest to simply work in terms of the phase difference at the beamsplitter, φ. Expanding
the fringe around the phase offset φ0,

sin2 φ ≈ sin2 φ0 + 2(cosφ0 sinφ0)δφ+ (cos2 φ0 − sin2 φ0)(δφ)2 + · · · (3.11)

where δφ = φ− φ0, we find that the ratio of the quadratic term to the linear term is

cos2 φ0 − sin2 φ0

2 cosφ0 sinφ0

≈ 1

2
cotφ0. (3.12)
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We are interested in the frequency domain contribution of the quadratic part. The spectrum
of (δφ(t))2 is the autoconvolution of the spectrum of δφ(t). In practice, most of the spectral
power in δφ(t) is at very low frequency (below 1 Hz). Rather than actually compute the
autocorrelation, it suffices in practice to multiply the amplitude spectral density of δφ(t)
by twice the standard deviation δφRMS =

√
〈(δφ(t))2〉 to estimate the amplitude spectral

density of (δφ(t))2:
δφ(f) ∗ δφ(f) ≈ 2δφRMSδφ(f) (3.13)

Using this we can estimate the spectrum of the quadratic contribution as

quadratic

linear
≈ δφRMS cotφ0. (3.14)

DARM motion of 0.1 pm RMS is equivalent to a δφRMS of

δφRMS = δxRMS × gφ × 2π/λ (3.15)

≈ 0.1× 10−12 m× 137× 2π/λ (3.16)

≈ 80× 10−6 radians (3.17)

while the static DARM offset of 10 pm becomes

φ0 ≈ 10× 10−12 m× 137× 2π/λ (3.18)

≈ 8× 10−3 radians. (3.19)

and the ratio of the quadratic contribution to the linear contribution is

quadratic

linear
≈ δφRMS cotφ0 ≈

φRMS

φ0

≈ 1

1000
. (3.20)

The ratio of the quadratic contribution to the linear contribution is approximately equal
to the ratio of the RMS DARM motion to the static DARM offset. For a reasonable DARM
offset, the quadratic contribution is a factor of 1000 below the linear contribution. We
would need to worry about fringe wrapping before the quadratic contribution would become
significant; the nonlinear response of DC readout due to fringe curvature is negligible.



Chapter 4

Output Mode Cleaner

4.1 Introduction

The optical fields in the interferometer are intended to exist in only the fundamental Gaus-
sian spatial mode. A critically coupled resonant cavity, the input mode cleaner, is used to
attenuate any higher order spatial modes produced by the laser before the field is incident
on the interferometer. Despite having an essentially pure input beam, imperfections in the
interferometer optics leads to the production of higher order spatial modes in the inter-
ferometer; this effect is particularly egregious for the RF sidebands in the power recycling
cavity[72]. As a result, the output beam (depicted in figure 4.1) is no longer in the pure
Gaussian mode, but also contains spurious higher order modes.

The spurious higher order spatial modes in the output beam are detrimental to inter-
ferometer performance as they generally produce no useful signal, but contribute additional
photon shot noise, increase the power that needs to be detected, and exacerbate noise cou-
plings. To mitigate these effects, an output mode cleaner (OMC) was installed at the output
port. This critically-coupled optical filter cavity attenuates higher order spatial modes before
the beam is detected by a pair of photodiodes. In DC readout, the OMC is also used to
remove the RF sidebands, which are still needed in the interferometer to sense other degrees
of freedom, but would only be detrimental to the DC readout signal.

4.2 Physical Design of the Cavity

A four-mirror bow-tie arrangement was chosen for the mode cleaner design1, depicted in
figure 4.2a. This non-colinear design prevents direct reflection of rejected light back into the
interferometer. A design with an even number of mirrors was preferred so that odd-parity
transverse modes are degenerate, reducing the density of higher-order-mode resonances. A
sufficiently high angle of incidence of the beam on the mirrors is necessary to minimize the

1The Enhanced LIGO OMC design and construction was lead by Sam Waldman as part of LIGO’s
Interferometer Sensing and Control (ISC) group.

34
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Figure 4.1: Image of the beam spot at the L1 output port taken using a CCD camera. This
image is saturated in the central portion but emphasizes the spurious higher order modes
surrounding the fundamental Gaussian, including contributions from both the carrier and
the 25 MHz sidebands.

effects of small-angle scattering, subject to the constraint that too great an angle of incidence
will introduce excessive astigmatism to the beam.

The cavity was constructed by rigidly mounting the cavity optics and photodetectors
to a baseplate, similar2 to the LISA optical bench design[75]. The baseplate is a slab of
Corning ULE glass 450mm × 150mm × 39mm; components were bonded using Optocast
3553LV-UTF-HM UV-cure epoxy.

Two of the cavity mirrors are outfitted with position actuators: a fast, short-range (∼< 0.1
µm) PZT, and a slow, long-range (≈ 20µm) thermal actuator consisting of a 1 inch long
segment of aluminum tube warmed by a resistive heater.

To isolate the mode cleaner from environmental disturbances, the optical bench was
hung from an actively-damped double-pendulum suspension system[76, 77], which was in
turn suspended by an in-vacuum active isolation system[44, Chapter 5].

The photodiodes were also mounted on the OMC baseplate, and read out by in-vacuum
preamplifiers. The output from the mode cleaner was split via a 50/50 beamsplitter and
directed to two Perkin Elmer 3mm diameter InGaAs photodiodes (part number C30665GH),
with measured quantum efficiency > 0.95 at 1064 nm. The photocurrent was converted to
voltage across 100Ω transimpedance. Subtraction of the signals from the two photodiodes
produces a diagnostic “nullstream” containing the anti-correlated component of the PD
signals. The rigid mounting of the PDs to the OMC baseplate reduces the possibility of
beam motion coupling to photocurrent through photodiode nonuniformities, and the in-
vacuum preamplifiers reduce the liklihood of electronic or triboelectric noises.

2One important difference is that the LIGO OMC uses an epoxy adhesive to attach the optics to the
baseplate, while the LISA optical bench uses hydroxide-catalysis bonding[73, 74].
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(a) Schematic of OMC bench (b) Photograph of installed OMC and suspension

Figure 4.2: (a) Diagram illustrating the design of the monolithic OMC bench; (b) Photograph
of the installed output mode cleaner, suspension, and seismic isolation platform. The OMC
is located in a dedicated vacuum chamber, separated from the main vacuum enclosure by a
septum window, allowing rapid venting cycles during commissioning.

A photograph showing the installed OMC, suspension, and in-vacuum seismic isolation
platform is presented in figure 4.2b.

4.3 Requirements

The OMC is required to sufficiently filter the light present at the output port such that
contributions from the RF sidebands and higher-order spatial modes become negligible. To
exclude the RF sidebands, the cavity length is chosen such that the RF sideband frequencies
are anti-resonant in the cavity, which yields minimum transmission.

Table 4.1: Designed and measured properties of the Hanford and Livingston output mode
cleaners.

parameter design H1 L1 units
perimeter (p) 1.042 1.077 1.016 m
beam waist (w) 477 496 463 µm
Finesse (F) 400 360 360
FSR 287.7 278.3 295.2 MHz
cavity pole 360 390 410 kHz
g-factor 0.739 0.725 0.722
HOM freq shift 69.4 67.2 71.8 MHz
transmission 1 ≥0.95 ≥0.90
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Figure 4.3: Photograph of the Output Mode Cleaner used at Livingston (ex situ). Only one
of the two DC photodiodes is installed in this photo. Photometry by Sam Waldman; this
diagram has document number D0901817.

4.4 Choosing the OMC Finesse

All else being equal, we want the best possible filtering capability from the OMC.
The transmission of a lossless critically-coupled cavity is given by

T =
1

1 + 4
π2F2 sin2 φ

(4.1)

where F is the cavity finesse and φ is the cavity’s detuning from resonance. Since the cavity
will be locked to resonance for the laser carrier, to find the attenuation of other modes, we
set φ to the detuning of these modes.

The maximum attenuation of a mode is given by (4/π2)F2.
After filtering by the OMC, we want the shot noise contributions from unneeded modes

to be negligible, and the contribution from noises on these fields to also be negligible. Almost
any cavity would be sufficient to reduce excess shot noise contributions. The need for a high
finesse OMC comes from the need to eliminate audio frequency noises carried on the RF
sidebands and higher-order spatial modes.

Consider the contribution of intensity noise on the RF sidebands. Any residual intensity
noise on the RF sidebands will contribute directly to the DC readout signal. Assume that the
carrier has about 100 mW power and that the RF sidebands have about the same amount
of power, and assume that the laser intensity noise is 10−7 RIN. The shot noise RIN on
100 mW is (per equation E.12)

√
2hν/P ≈ 2 × 10−9. Thus we need to attenuate the RF

sidebands by at least a factor of 100.

https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=4713
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The RF sidebands will not be exactly anti-resonant in the cavity but will actually lie at
about 0.1fsr away from the carrier. Thus the attenuation is diminished by approximately
sin−2(0.1π) ≈ 10. So we need attenuation of 1000. But we really want at least a factor of
10 margin, so we’ll want maximum attenuation of 10000. This means we need a finesse of
at least 160.

On the other hand, higher finesses lead to greater net power loss as the beam travels
through the cavity, as the intra-cavity loss is multiplied by each effective roundtrip in the
cavity. To choose the finesse, we assume a roundtrip intra-cavity power loss of 100pm and
set the constraint that the net power efficiency of the OMC should exceed 99% (not actually
achieved). This leads to the design choice of a finesse of 400.

4.5 Choosing the OMC Length and Geometry

The cavity length is chosen to provide adequate attenuation of the RF sidebands, and its
geometry (g-factor) is chosen to sufficiently attenuate higher-order modes. The optimal g-
factor depends on the specific details of the frequency and spatial spectrum of modes at the
output port. These depend strongly on the details of the interferometer optics, alignment,
and thermal state.

To deal with these unknown factors, we designed the OMC using a model in which the
power in each higher order mode (of order n) was proportional to 1/n2 and the RF sidebands
had their nominal power. The designed and as-built properties of the output mode cleaner
cavities are given in Table 4.1. One disadvantage of the chosen design is that the 4-th order
mode is nearly degenerate with the fundamental mode. We did experience problems with
accidental degeneracy in one of the mode cleaners, which was addressed by changing the
operating temperature of the thermal actuator (which had a small coupling to the effective
radius of curvature of the mirror). The next version of the output mode cleaner will be
designed with a slightly different g-factor to avoid this problem.

4.6 OMC Feedback Control Systems

The mode cleaner was controlled and the DC readout signals were acquired using a prototype
of the advanced LIGO real-time digital signal processing system, consisting of a Linux-based
computer equipped with analog-to-digital and digital-to-analog converters and interfaced to
other systems via reflected memory over a fiber ring and EPICS over ethernet, operating
at 32768 samples per second (Hz) The LIGO Realtime Code Generator[78, 79] allowed fast
prototyping and implementation of complex servos. All servos involving the OMC were
implemented using this digital system.
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in phase

180 degrees
out of phase

no first-order response
at maximum

Figure 4.4: Cartoon view of dither locking. The dither locking technique allows a system to
be locked to a quadratic operating point. For example, dither locking is used to control the
OMC cavity length, where, near resonance, transmission is a quadratic function of cavity
displacements. A sinusoidal modulation is injected into the parameter we wish to tune (i.e.
cavity length), and the output (i.e. transmitted light intensity) is demodulated at the same
frequency, producing an error signal. The figure shows the phase-flip that occurs as the
system moves through the quadratic point. At the quadratic point, the error signal is zero,
while on either side it attains nonzero values with opposite signs.

4.6.1 Length Sensing and Control (LSC)

The cavity length must be controlled to maintain the resonance of the laser carrier. To
sense the mismatch between the laser carrier frequency and the cavity length, we modulate
the cavity length by a small displacement at high (audio) frequency and monitor the trans-
mitted light intensity for a signal at the same frequency. Because cavity transmission is a
quadratic function of the frequency/length mismatch, there will be no first-order response
in the transmission when the laser light is perfectly resonant in the cavity. If, on the other
hand, the cavity is slightly off resonance, there will be linear dependence of the transmitted
intensity on the modulation of the cavity length; a cartoon of this effect is shown in figure 4.4.
Because the sign of this linear coupling changes as the cavity goes through resonance, the
signed amplitude of the modulation in the transmitted light provides an error signal for the
cavity tuning. Effectively, we sensethe first derivative of the transmission with respect to
cavity length.

Modeling the Dither Locking

Suppose f(x) is a function we wish to maximize; in this case, f gives the power transmitted
through the OMC as a function of length offset. We let x = x0 + A cosωt, where A is the
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amplitude of the dither and ω is its frequency. We can expand f as a power series around
x0:

f(x) ≈ f(x0) + f ′(x0) (x− x0) + f ′′(x0) (x− x0)2 + · · · (4.2)

≈ f(x0) + f ′(x0)A cosωt+ f ′′(x0)A cos2 ωt+ · · · (4.3)

The amplitude of the cosωt term is proportional to the first derivative of f at the current
operating point. (There are also contributions from higher derivatives, but we assume the
lower derivatives dominate.)

Noise limits

Suppose the OMC has coefficient of finesse F and P watts on the photodiode. The dither
amplitude is A and dither frequency is ω. What is the sensing noise limit?

The background is Gaussian white shot noise, equally distributed into the two demodu-
lation quadratures. So the noise floor of the demodulated signal is (1/

√
2)
√

2hνP .
The transmission of the OMC goes like T (x) = 1/ (1 + Fx2) which has first derivative

T ′(x) = 2Fx/ (1 + Fx2)
2

= −2Fx+O(x2). Thus the optical gain is −2FA watts per meter.
The fast PZT actuator is dithered at 10 kHz and this signal is synchronously demodulated

in the transmitted light. The bandwidth of the servo is about 100 Hz.

4.7 Input Beam Alignment Sensing and Control (ASC)

In addition to controlling the cavity length to keep the carrier resonant, we must control
the pointing of the beam incident on the OMC. Aligning the input beam to the OMC is a
significant problem, since the OMC can only clean the light insofar as we can identify the
mode we want to keep.

The decomposition of a given optical field into Hermite-Gauss eigenmodes is dependent
upon a choice of origin and spot size. The OMC cavity will select the projection of the
incident field onto its eigenmode. The optics directing the interferometer output beam to
the OMC

Several OMC alignment schemes were implemented and utilized.

4.7.1 QPD Alignment

The simplest alignment control simply uses the two quadrant photodiodes (QPDs) mounted
on the OMC breadboard. These are simply photodiodes whose surfaces are divided into four
quadrants. By subtracting the power seen on one half of the QPD face from the power seen
on the other half, we can measure the position of the incident beam.

Alignment servos based on the QPDs have the advantage of being very robust and not
requiring that the OMC already be locked, and so are ideal for initial alignment of the OMC
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Figure 4.5: The sum of a gaussian and a first-order higher order mode resembles a displaced
gaussian. A basic dither alignment scheme, which maximizes the power transmitted through
the OMC, would operate near point B, rather than point A.

before locking the cavity. The QPD alignment, however, has no notion of the ideal DC
pointing of the beam and is sensitive not just to the carrier, but also the RF sidebands.

4.7.2 Dither Alignment

A second alignment scheme is to dither the two steering mirrors each in pitch and yaw,
demodulate the OMC transmitted signal at these frequencies, and feed back to the mirrors–
exactly analogous to the operation of the OMC length control system.

The basic dither alignment scheme has some attractive features, but does not work prop-
erly in the presence of spurious higher order modes–the exact problem which motivates the
use of the OMC in the first place.

Dither alignment works maximizes the power transmitted through the OMC; because this
is a quadratic maximum of transmission versus pointing, the linear coupling of beam jitter
to the transmitted intensity is nulled. However, this technique cannot distinguish between
the optical field coming from the interferometer arms, and any higher order modes of the
carrier resonant in the PRC. If there is carrier power in the TEM01 mode, this servo will
misalign the input beam slightly, to convert the incident TEM01 mode into the TEM00 mode
of the cavity. (The conversion of TEM01 to TEM00 via beam displacement is depicted in
figure 4.5.)

4.7.3 Drumhead Dither OMC Alignment System

From the experience with basic dither alignment, it is clear that what is needed is some
alignment system which can specifically detect the arm cavity mode. To accomplish this, we
‘tag’ the light in the arm cavity by modulating the arm length at high frequency and looking
for this modulation in the light transmitted through the OMC.
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Excite the test-mass
drumhead mode (9 kHz)

Dither the "tip tilt" mirrors
at low frequency (~3 Hz)

detect power in 
drumhead mode

demodulate at
dither frequency

Figure 4.6: The ‘Drumhead dither’ OMC alignment system.
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The system was implemented as follows:

1. One of the arm cavity lengths is modulated at high frequency, 9 kHz. Intuitively,
this modulation ‘tags’ the carrier light emerging from the arm. The modulation is
accomplished with a small drive by feeding the mechanical drumhead mode of the test
mass. (This gives rise to the nickname of the method, ‘drumhead dither’.)

2. The spectral power of the 9 kHz line in the OMC photodiode signal is measured by
bandpassing the signal around 9 kHz, squaring the result, and then low pass filtering.

3. The four degrees of freedom of the two beam steering mirrors are modulated (dithered)
at a frequency slow compared to the low pass filtering in step (2).

4. The measured power in the 9 kHz line is demodulated at the steering mirror dither
frequencies, producing alignment error signals which are fed back to the mirrors.

This system is depicted in figure 4.6.
It has been pointed out [80] that even the drumhead dither alignment scheme is not

optimal in the sense of producing the best shot-noise-limited SNR.

4.8 Scattering

Viewed from the output port, the interferometer appears almost perfectly reflective. Any
light scattered (i.e. retroreflected) by the output optics at a small angle could scatter into
the interferometer mode, reflect off of the interferometer, joining (and interfering with) the
main interferometer signal and LO beam. Any modulation of the path length between the
main interferometer and the backscatterer will change the interference condition, producing
intensity variations in the OMC transmitted beam and contaminating the DARM readout.

Measuring the OMC Scattering Reflectivity

The backscattering reflectivity of the OMC can be experimentally measured by intention-
ally modulating the path length between the interferometer and the OMC. This produces
phase modulation in the backscattered field. This phase-modulated field reflects from the
interferometer and combines with the local oscillator field.

The backscattered beam has an electric field amplitude of

Es = aE0 exp

{
i
2A

λ
(2π) sin Ωt

}
(4.4)

where A is the amplitude (in meters) of motion of the scatterer, Ω is the frequency of motion,
and a is the amplitude reflectivity of the scattering source (the scattering coefficient). This
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Figure 4.7: Measurement of effective OMC backscattering reflectivity. With the interferom-
eter operating in low-noise mode, we excited (modulated) the position of the OMC in the
direction of the incident beam, thus modulating the path length between the interferometer
and the OMC. This produces the characteristic ‘scattering shelf’ spectrum in the power at
the OMC photodiodes. Integrating the area under the shelf and dividing by the DC power
gives the effective backscattering reflectivity. (The photocurrent has been corrected for the
suppression of the DARM control loop.)

is phase modulation with a modulation depth of Γ = 4π(A/λ) radians, assuming normal
incidence on the scatterer. The photodiode detects the power in the resulting field, which is

P = |Et + Es|2 (4.5)

= |Et|2 + |Es|2 + 2 Re EtEs (4.6)

= |E0|2 + 2 Re EtEs (4.7)

where Et = (1−a)E0 is the field that’s transmitted rather than scattered. Using the Jacobi-
Anger identity, Es can be expanded in terms of sinusoids to find the power spectrum of the
photodiode signal:

P = |E0|2 + 2 Re EsEt
∗
∞∑

n=−∞

inJn(Γ) exp inΩt (4.8)

= |E0|2 + 2|E0|2a(1− a) Re
∑

inJn(Γ) exp inΩt (4.9)
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We are interested not only in the case of small modulation depth (i.e. small motion of the
scatterer), but also very large modulation depths, greater than the wavelength of the light,
which produces many higher order harmonics. Spectrally, this looks like a comb of delta
functions at integer multiples of Ω, whose amplitudes are given by bessel functions JN(Γ)
with N = f/Ω. Any noise on the carrier will get superimposed on each of these spikes,
smoothing out the observed spectrum.

Large motion of a backscatterer produces a characteristic ‘shelf’ feature in the PD spec-
trum (c.f. figure 4.7). This is because the amplitude of Bessel functions JN(Γ) dies off very
steeply with N after N > Γ, creating the characteristic ‘scattering shelf’. The cutoff (‘knee’)
frequency therefore occurs when N ≈ Γ; the knee frequency may be calculated as follows:

fknee = ΩNknee (4.10)

= ΩΓ (4.11)

= 4πΩ(A/λ) (4.12)

Another way of seeing this is to consider the (time dependent) phase induced by the
scatterer and take its derivative to find the maximum frequency shift due of the backscattered
light:

φ = Γ sin Ωt (4.13)

finstantaneous = dφ/dt = ΩΓ sin Ωt (4.14)

max finstantaneous = ΩΓ (4.15)

which gets the same result. An excitation of amplitude A and frequency Ω has maximum
velocity v = AΩ. This can be used to eliminate both A and Ω from the knee frequency:

fknee = 4π(v/λ) (4.16)

Of course, we are more interested in determining the backscattering reflectivity than
details of the resulting spectrum. There are two principle ways to recover the scattering
reflectivity: (1) Because

∑
JN(Γ)2 over all N equals 1, we can integrate the power spectrum

of the photodiode signal to directly measure 2|E0|2a(1− a). We can then divide by the DC
term (|E0|2) to get the scattering coefficient. (2) We can simulate the scattering process in
the time domain, find the spectral density of the resulting signal, and fit the model to the
observed spectrum.

This procedure was carried out using the actuators in the table supporting the OMC
to produce modulations in the direction of the incoming beam of 16 microns at 0.3 Hz and
33 microns at 0.3 Hz; the resulting OMC transmitted spectra are shown in figure 4.7 along
with a quiescent spectrum for reference. (The experiment was repeated with modulations
in orthogonal directions; as expected, the effect was much less than the modulation in the
beam direction.)
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Figure 4.8: The control screen for the Length Sensing and Control subsystem at Livingston.
The control screen depicts signal flow in a generally left-to-right manner. Photodiodes at
the anti-symmetric (AS), pick-off (PO), and reflected (REFL) ports are indicated on the
extreme left. These signals are combined via an input matrix to form the DARM, MICH,
PRC, and CARM degrees of freedom. These signals are processed through an array of filter
banks defining the control filters. Finally, the signals pass through an output matrix and
are then directed to the individual optics.
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4.9 Beam Diverter

When the interferometer loses lock, the stored power must be dumped somewhere. Typically,
due to the presence of the power recycling mirror, the stored power comes out the output
port. This high-power transient is sufficiently strong to burn the detection photodiodes. In
order to prevent this, one of the steering mirrors is used as a fast shutter. It is able to zero
the transmission through the OMC in approx 2 ms.

4.10 The Front End

To achieve the touted SNR improvement of DC readout it is imperative that the signal not
be lost to optical losses, non-optimal photodiode quantum efficiency, or electronics noise.

4.10.1 Photodiodes

Sub-optimal photodiode efficiency counts as a loss just like any other optical loss.
The OMC photodiodes are configured in a reverse-biased, photoconductive arrangement.

An ideal photodiode in such a configuration will allow one charge carrier to cross the junction
for each incident photon. The ratio of photocurrent to incident power on the photodiode is
its responsivity. The ratio of a photodiode’s actual responsivity to the ideal is its quantum
efficiency. At 1064 nm the ideal responsivity is

qe
hν

=
qeλ

hc
≈ 0.86 Amps/Watt (4.17)

where qe ≈ 1.6× 10−19 C is the electron charge.
One lesson (re-)learned during Enhanced LIGO is the need to measure the characteris-

tics of every individual noise-sensitive component installed in the final machine rather than
relying on measurements of test samples or typical values. The photodiodes we originally
installed turned out to have quantum efficiency ∼< 0.60 while the test articles of the same
part number had quantum efficiency within a few percent of unity. Clearly there had been
some change in the manufacturing process that resulted in a greatly diminished quantum
efficiency. Even for parts which do not show such a dramatic systematic change, character-
istics of individual parts come from some distribution, and by measuring a batch of parts,
the lowest noise components can be hand picked.

In September 2009 we replaced the bad phototdiodes. The replacement photodiodes
are Perkin Elmer 3mm InGaAs diodes, part number C30665GH. The measured quantum
efficiency was consistent with unity [81].

4.10.2 Electronics

An optical power of 100 mW on the readout photodiodes will produce a photocurrent of i =
qeλ/(hc) · 100 mW = 86 mA, which in turn has a shot noise floor of

√
2qei ≈ 500 pA/

√
Hz.
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Across 100 Ω transimpedance, this becomes 50 nV/
√

Hz. The noise floor of the readout
electronics must be below this level and not be polluted by any baseband 1/f flicker noise.

The main strategy is to aggressively amplify the electronic signal as close to the photodi-
odes as possible, so that noises added downstream become insignificant. To eliminate even
triboelectric effects, the first preamp stages are placed in-vacuum. The in-vacuum preamps
consist of active filter stages with two zeros at 8 Hz and two poles at 80 Hz, for a factor of 100
amplification at 100 Hz. This is followed by two more pole-zero pairs in satellite amplifiers
on the floor outside the vacuum chamber, for a total gain of 10,000 before the long run to
the racks.



Chapter 5

DC Readout Performance and Noise
Couplings

The coupling of noises from the laser source and RF oscillators to the gravitational wave
readout channel differ considerably in RF and DC readouts. In addition, the combination
of DC readout with an OMC introduces a greater sensitivity to beam motion (jitter). These
couplings are of primary interest in designing the optical readout of a gravitational wave
detector.

In this chapter, I sketch the technique for calculating expected noise couplings analytically
and numerically, and I will present measurements of these noise coupling measurements made
on the two Enhanced LIGO interferometers. I compare the expected and achieved shot-noise-
limited sensitivity, verifying that the fundamental and technical shot noise improvements due
to homodyne detection and the OMC are realized.

5.1 Sensitivity

The primary figure of merit of a gravitational wave detector is its noise floor, calibrated as a
strain spectral density; the noise floor is often referred to as simply the sensitivity (despite
a lower noise floor indicating better sensitivity). When evaluating DC readout in Enhanced
LIGO, we can begin by looking at the noise floor: do we understand the achieved sensitivity?
At low frequencies (f ∼< 200 Hz), the interferometer noise floor is limited by displacement
noises which will be independent of any readout, while at high frequencies, the noise floor is
set by shot noise. The shot-noise-limited sensitivity of a power-recycled interferometer using
DC readout is given by a small number of parameters:

� the length of the arm cavities (L = 3995 m)
or, equivalently, the free spectral range (ν0 = c/(2L))

� the input power to the interferometer (PIN)

� the power recycling gain (g2
cr)

49
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� the arm cavity finesse (F = 220)

� the input and output efficiency (ε)

� the laser wavelength (λ = 1064× 10−9 m)

where we lump all losses due to absorption, scattering, or imperfect mode-matching, and the
photodiode quantum efficiency, into the efficiency ε.

The predicted curve is produced by dividing the amplitude spectral density of the shot
noise on the detection photodiode (Ashot) by the optical gain of the interferometer (SDC).
The DC optical gain is (as derived earlier) simply the derivative of the power at the output
port with respect to changes in differential arm length, evaluated at the operating DARM
offset:

Ashot(f) =
√

2h(c/λ)PAS (5.1)

SDC(f) = 2
√
εPINPAS gcr r

′
c k (1 + if/fc)

−1 (5.2)

where fc = ν0/(2F) is the cavity pole, h is Planck’s constant, and c is the speed of light.
This expression for SDC is in the single-pole approximation, which is valid for frequencies
much lower than the arm cavities’ free spectral range (f � ν0), and for frequencies above
the test mass suspension’s pendulum resonance (which may be increased due to radiation
pressure).

Combining these two expressions gives the noise floor due to shot noise, calibrated in
meters; dividing by the arm length L gives the noise floor in strain:

xshot(f) =
1

2π

√
λhc

2εPIN

1

gcr r′c

∣∣∣∣1 + i
f

fc

∣∣∣∣ (5.3)

hshot(f) = (1/L) xshot(f) (5.4)

The shot noise seen at the photodiode has a white spectrum; the entire shape of the shot
noise when calibrated as a displacement or strain comes from the calibration (i.e. the optical
gain) which in turn is shaped only by the cavity pole. Interferometers using signal recycling
will have a more complicated response function.

5.1.1 Measured and Expected Sensitivity

The measured detector noise floors, calibrated as a displacement amplitude spectral density
(m/
√

Hz), along with the expected performance based on equation 5.4 and measured detector
parameters, are depicted in figure 5.1. The measured spectra were taken near the time of the
detectors’ best performance in summer 2010. The parameters used in the model are given
in table 5.1.

The comparison reveals that the achieved performance is as expected. However, some
comments are in order: The H1 detector was able to operate with about twice as much input
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Table 5.1: Interferometer parameters used in the shot noise model.

parameter symbol H1 L1
input power PIN 20.27 W 11.65 W
arm cavity pole fc 83.7 Hz 85.6 Hz
finesse Farm 224 219
power recycling gain gcr

2 59 41
carrier fraction after phase modulation J0(Γ)2 0.94 0.95
input optics 0.82 0.75
interferometer mode-matching 0.92 0.92
output faraday isolator transmission 0.94 0.98
DC readout pickoff fraction 0.953 0.972
OMC mode-matching 0.70 0.95
OMC transmission and PD quantum efficiency 0.95 0.95
net power efficiency ε 0.42 0.56

power as the L1 detector, and had a power recycling gain approximately 40% better than
L1’s; from this we would expect considerably better shot noise level at H1. However, the H1
detector also experienced anomalously low transmission of the arm cavity mode through the
output mode cleaner which contributed to a power efficiency (ε) much lower than desired.
The poor OMC transmission was due to some combination of poor mode-matching, and high
cavity losses which appeared near the end of the science run. These anomalous losses are
not understood and are, as of the time of writing, under active investigation.

5.2 Laser and Oscillator Noise Coupling Mechanisms

To compute the frequency response of the interferometer and the expected laser and oscillator
noise couplings, we first calculate the amplitudes of the static fields at all points in the
interferometer, and then we compute the propagation of small GW signal or noise fields
through the interferometer. In general, the small amplitude fields due to GW waves or noises
appear in the photodiode signals by beating against the strong static fields, i.e. the laser
carrier or the RF sidebands. In other words, the strong laser carrier field or RF sidebands
act as local oscillators not just for the intended GW-induced sidebands, but audio-frequency
(AF) sidebands introduced through other mechanisms too, including AF sidebands that
originate on the light at the input to the interferometer. These noises originating at the
input are the subject of this section.

Generically, we refer to any spectral line as a ‘sideband’. For the purpose of analysis,
sidebands are divided into radio-frequency (RF) sidebands and audio-frequency (AF) side-
bands. The distinction is not actually the frequency of the lines but their magnitude; RF
sidebands have some finite amplitude, while audio-frequency sidebands are infinitessimal.
When the electric field is incident upon a photodiode, the photodiode will see a beat signal
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Figure 5.1: Shot noise limited sensitivity of the Livingston and Hanford detectors. The
uncertainty in the measured displacement spectra is ∼ 10%, and in the modeled curves is
∼ 20%.
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Figure 5.2: Schematic diagram of the laser carrier and RF sidebands, and their associated
audio-frequency sidebands.

between every pair of sidebands. In our formalism we make the approximation that the
product of any two audio-frequency sidebands is zero. Audio-frequency sidebands are used
simply as test fields to evaluate linear transfer functions. They produce signals at PDs by
beating against the finite-amplitude RF sidebands.

As detailed in the preceeding chapter, the state of the LIGO interferometer is determined
by sampling the electric field at various ports using photodiodes. Pairs of RF sidebands at
several distinct frequencies are introduced at the input to the interferometer; interference
between these various fields allows the state of the interferometer to be determined. Around
the laser carrier, there are two pairs of RF sidebands, each produced through phase modu-
lation: the resonant sideband at ∼25 MHz, which enters the interferometer and emerges at
the output port; and the non-resonant sideband at ∼61 MHz, which is mostly reflected by
the power recycling mirror.

For an intuitive understanding of the noise couplings to DC readout, we will consider
only the resonant sideband, an ignore the residual non-resonant sideband. In numerical
simulations, both are included. The arrangement of RF sidebands is depicted in figure ??.

Sidebands are typically created in pairs around a modulated the parent field; and, when
incident on a photodiode, they are most conveniently treated in pairs too. Instead of con-
sidering the amplitudes of upper and lower sidebands separately, we can instead use a basis
where we quantify the sidebands as some amount of amplitude modulation (AM) and some
amount of phase modulation.

Optickle

Optickle[82] is an interferometer simulation tool developed by Matt Evans and implemented
in Matlab. Optickle uses the first-order approximation described above, and also simulates
the effect of optomechanical couplings due to radiation pressure. Optickle was used to
make predictions of the laser and oscillator noise couplings in Enhanced LIGO. Optickle was
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extended to include the effects of couplings due to servo controls systems by Lisa Barsotti,
Nicolás Smith, and myself.

5.2.1 Laser Noises

The Michelson-based design of laser interferometer gravitational wave detectors is attractive
due to its high common mode noise rejection. A Michelson interferometer with identical arms
would completely isolate the output port from common-mode noises (i.e. noise introduced
at the input port). Any asymmetries between the arms will introduce couplings of noises at
the input port to the output port. Some such asymmetries are unintentional, such as the
difference in finesse or reflectivity of the arms; intentional DARM and MICH asymmetries
are introduced in order to allow the local oscillator (RF or carrier) to read the output port.

Laser Intensity Noise

Coupling of laser intensity noise to the output port is one of the easiest couplings to under-
stand. The dominant mechanims (in the absence of radiation pressure effects) are:

� Below the coupled-cavity pole (fcc ≈ 1 Hz), carrier power fluctuations are transmitted
directly to the output port, attenuated only by the ratio PAS/PIN . Above the coupled
cavity pole, transmission of AM on the carrier is attenuated by 1/f .

� The resonant RF sidebands and any modulation they carry reaches the output port
attenuated only slightly, since the Michelson is arranged (via the Schnupp asymmetry)
to conduct the RF sidebands to the output port. Because the RF sidebands are not
resonant in the arms, noise on the RF sidebands is not attenuated by the coupled-cavity
pole; instead they see a much lower finesse power recycling cavity and transmission is
essentially flat in the band of interest. Once reaching the output port, however, the
RF sidebands are strongly attenuated by the OMC.

At low frequency, the carrier contribution dominates; at higher frequency the residual RF
sidebands dominate. This is depicted in figure 5.3.

Laser intensity noise creates a varying radiation pressure force in the arm cavities, which
in turn causes displacement noise. To distinguish this effect from the inherent quantum
radiation pressure noise[83], we refer to this as technical radiation pressure noise. For iden-
tical arm cavities, the effect would be entirely common mode. Differences in arm cavity
finesse and (especially) the intentional differential detuning of the arm cavities produce a
(potentially large[84]) coupling of technical radiation pressure noise to DARM.

Laser Frequency Noise

Frequency modulation of a field incident on a photodiode will produce no signal; in order
for frequency modulation of the interferometer input field to couple to the DC readout
photodiode signal, the frequency modulation must be converted to amplitude modulation
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Figure 5.3: Direct contributions of amplitude modulation of the laser carrier and RF side-
bands to DC readout, in the absence of radiation pressure. The carrier contribution is shaped
by the coupled cavity pole. The RF contribution is due to residual off-resonance transmis-
sion through the OMC. Interference between the two coupling mechanisms creates a dip in
the total coupling at the crossover frequency.
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as the fields travel from the interferometer input to its output. FM to AM conversion is
accomplished by rotating sidebands differentially or by rotating the parent carrier, which
occurs due to asymmetries between the arms, including the intentional DARM offset (for
DC readout), the intentional Michelson (Schnupp) asymmetry, and differences in finesse and
losses in the two arms.

5.2.2 Oscillator Noises

Reduced coupling of noises from the RF oscillator is one of the motivations for implementing
DC readout. Despite not relying on the RF sidebands directly, behavior of the RF oscillator
is still able to enter into the DC readout signal through control loop cross-couplings, leakage
of RF sideband power through the OMC, and amplitude modulation of the laser carrier
induced via AM on the RF oscillator.

Oscillator AM

Amplitude fluctuations of the RF oscillator produce a fluctuating modulation depth; when
the RF oscillator signal fluctuates upwards, more power is diverted from the carrier into the
RF sidebands. The result is somewhat similar to laser AM, except that carrier AM and RF
AM are anti-correlated instead of correlated.

Unlike laser AM, oscillator AM does not produce equal relative intensity noise (RIN)
variations of the carrier and sidebands; this is simply because oscillator AM results in equal
and opposite changes of power in the carrier and sideband rather than linear scalings of
both. The sideband RIN per oscillator AM is given by

SB RIN

OSC AM
= 2Γ0

J ′1(Γ0)

J1(Γ0)
= Γ0

J0 − J2

J1

(5.5)

where Γ0 is the nominal modulation depth, Jn(z) is the nth Bessel function, and J ′n(z) =
(∂/∂z)Jn(z) is the derivative of the Bessel function.

Oscillator Phase Noise

Phase noise on the RF oscillator produces phase noise on the resulting RF sidebands, but
does not affect the laser carrier. Its direct coupling to DC readout is therefore quite small;
to couple to DC readout, the phase noise sidebands must be converted to AM through
Michelson asymmetries, and then survive attentuation by the OMC.
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5.3 Laser and Oscillator Noise Coupling Measurements

Laser and oscillator noise couplings were measured at both the H1 and L1 detectors1, at a
selection of DARM offsets. In this section I explain how the measurements were made and
discuss the results.

5.3.1 Laser Noise Coupling Measurements

The LIGO laser source contains an intensity stabilization servo (ISS) which reduces the
relative intensity noise (RIN) of the laser power before the laser enters the interferometer.
Injecting an excitation into the error point of this servo impresses intensity noise onto the
beam. The laser intensity noise coupling was measured by taking synchronous swept-sine
transfer functions from a monitor photodiode just after the ISS and the DARM readout.

The laser frequency is stabilized to the mean length of the two arms (CARM) by a high-
bandwidth analog servo, the common mode servo. Frequency modulation can be induced by
injecting into the error point of this servo. Unlike with the ISS, there is no separate witness
sensor to provide a direct measurement of the induced laser frequency modulation. Instead
we must make a calibration of the common mode servo error point. The frequency noise
coupling is to be calibrated in terms of Hz of frequency noise before the stabilizing action of
the common mode servo, so we must account for the suppression of the loop. The calibration
was done by porting the calibration of DARM to CARM, as follows:

1. Drive the position of one of the end test masses (ETMs) with a sinusoidal modulation
at some probe frequency (f = 7300 Hz was used). In the absence of loops, this would
produce equal DARM and CARM motion.

2. Measure the response in the DARM and CARM readouts. The CARM readout channel
is REFL I, which senses the mismatch between the laser carrier frequency and the
CARM length.

3. Apply the DARM calibration. This includes compensation for the DARM control loop.

4. Compensate for the frequency noise suppression of the common mode loop by multi-
plying by 1 + G where G is the (complex) open loop gain of the common mode loop
at the probe frequency.

5. Equate the calibrated DARM and loop-corrected CARM. This gives a calibration for
CARM in meters at the probe frequency.

6. Multiply by δν/δL = ν/L = c/(λL) to convert from meters to Hz.

7. Assume a model for the CARM to REFL I transfer function to propagate the calibra-
tion to other frequencies. This transfer function is simply the coupled-cavity pole[47,
eq. 3.5].

1Measurements at Hanford were made by Nicolás Smith.
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Discussion

In general, the measured laser noise couplings are much higher than the expectations from
the Optickle models. The most likely explanation for this disagreement is that the Optickle
models include only plane-wave effects; there is no modeling of higher order spatial modes,
imperfect mode-matching, etc. The experience with the difficulty of designing an effective
alignment servo for the OMC demonstrates the importance of these higher-order modes.
Any deviation from perfect alignment of the interferometer itself or the beam into the OMC
will lead to coupling of spurious higher-order modes from the power-recycling cavity into the
OMC, leading to excess laser noise coupling. These modes are not resonant in the arms so
would not experience filtering by the coupled-cavity pole, leading to a broadband increase in
the coupling, as observed. To explore this hypothesis, more modeling should be conducted,
using a tool which can model higher-order spatial modes.

5.3.2 Oscillator Noise Coupling Measurements

To measure oscillator noise couplings we temporarily switched the source of the 25 MHz
oscillator from the Wenzel crystal oscillator to a general purpose (IFR 2023A) RF function
generator, which accepts phase and amplitude modulation inputs. The measurements were
made by connecting a spare DAC output to the modulation input of the IFR function
generator and then taking synchronous swept-sine transfer functions from the modulation
drive to the DC readout with the interferometer in its running configuration.

To calibrate the oscillator AM transfer function, we configured the interferometer op-
tics (by misaligning unneeded mirrors) to send a fraction of the input light directly to the
OMC and locked the OMC to one of the RF sidebands. Taking the transfer function in
this configuration allowed a direct measurement of the AM imposed on the RF sidebands2.
To calibrate the oscillator PM transfer function, a curve with the same shape as the AM
calibration was used, but with the DC value determined by the front panel setting of the
phase modulation depth on the function generator. This was checked separately at a few
individual frequencies by connecting the output of the function generator directly to an RF
spectrum analyzer.

The measured oscillator AM coupling is shown in figure 5.6. The level of the coupling
is well described by the Optickle model. Phase noise coupling measurements are given in
figure 5.7, compared with measurements made in initial LIGO’s RF readout[85]. We see a
distinct (factor of 10) advantage of DC readout over RF readout.

5.4 Beam Jitter Noise

Beam jitter is perhaps the most important new noise source introduced in the DC readout
system. The cavity converts motion of the incident beam into amplitude modulation, which

2Thank you to Robert Ward for suggesting the technique.
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Figure 5.8: Example of linear and bilinear beam jitter coupling in the L1 OMC. Left: the
light incident on the OMC shows motion at ∼ 130 Hz (arbitrary units). Center: the incident
light contains intensity modulations at ∼ 0.87 and ∼ 1.6 Hz (units: log10(δP/P )). Right:
the light transmitted through the OMC contains intensity modulations at 130 Hz, 130±0.87
Hz, and 130 ± 1.6 Hz (units: log10(δP/P )). (The sources of the incident beam motion and
intensity fluctuations have not been identified.)

pollutes the readout. In the ideal case, this would be a quadratic effect, but the presence of
spurious higher order modes introduces both linear and bilinear contributions.

We have several means of controlling the beam jitter contribution to the readout. In
practice, we utilize all of them:

� Remove mechanical resonances and increase isolation. Several prominent beam-jitter
peaks in the readout spectrum were removed by replacing a fixed steering mirror with
a suspended one; and by adding blade-springs to the steering mirrors for additional
vertical isolation.

� Cancel the motion. Motion at the 60 Hz power-line frequency is introduced via mag-
netic coupling to the magnets used to actuate on the suspended steering mirrors. We
implemented a feed-forward correction using signals derived from a magnetometer lo-
cated just outside the vacuum chamber.

� Place steering optics where their coupling to beam jitter is small. Beam propagation
geometry can magnify the effects of optic motion to beam motion. For a given amount
of optic jitter, the coupling to readout noise can be reduced by proper design of the
mode-matching telescope. This constraint is at odds with the desire for maximum
controllability of the input beam pointing. In practice the requirement is that sufficient
actuation range be provided, and that the optics be well separated in Gouy phase to
create a non-degenerate control matrix.
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� Reshape the beam. Linear beamjitter coupling arises due to the presence of carrier-mode
junk light in the HG01 mode incident on the mode cleaner. The transmission of this
light through the OMC is linearly dependent on the position of the incident beam. By
introducing offsets into the interferometer’s global angular sensing and control (ASC)
system[86], this HG01 mode light can be cancelled out, nulling the linear sensitivity
to beam motion. During Enhanced LIGO this was found to be a highly effective
technique, but it was not automated.

An example of the observed beam jitter coupling is shown in Figure 5.8. A prominent
spectral line at ∼ 130 Hz appears in quadrant photodiode (QPD) signal, indicating relative
motion in yaw between the incident beam and the OMC. This line also appears in the signal
of the light transmitted through the OMC, indicating some linear coupling of beam jitter to
transmission. The transmitted spectrum also contains sidebands around the 130 Hz line at
separations of ±0.875 Hz and ±1.6 Hz which arise due to gain modulation.



Chapter 6

Conclusion

Over the last several decades, the state of the art of gravitational wave detection has advanced
to the point where we are likely to discover gravitational waves with the detectors currently
under construction.

Enhanced LIGO successfully demonstrated the viability of DC readout as a low noise in-
terferometer readout technique. The DC readout system (including the output mode cleaner)
in Enhanced LIGO alleviated the problems experienced with the heterodyne readout in ini-
tial LIGO, allowed us to increase the interferometer input power (increasing the detectors’
sensitivity), and delivered the expected shot-noise-limited performance. The dual Enhanced
LIGO goals of both increasing the detector sensitivity and gaining early experience with
Advanced LIGO technologies were achieved.

During Enhanced LIGO we identified OMC alignment as a particularly important and
unexpectedly subtle aspect of the OMC system, and identified and implemented an effective
alignment system. We also gained valuable experience in the mitigation of beam jitter
coupling.

Measurements of the couplings of laser and oscillator noises reveal that the couplings are
generally improved over RF readout. Comparison of measured laser noise couplings with
simple plane-wave models reveals that more sophisticated models (most likely incorporating
higher-order spatial modes) are necessary to explain the measured couplings. The effect
of spurious higher order modes will be mitigated in Advanced LIGO through the use of
geometrically stable cavities, better optics, and improved thermal compensation; however,
to the extent that the design relies on achieving the noise couplings predicted by a simple
plane-wave model, I expect a long period of commissioning in order to achieve it.
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ary shot noise and its effect on the sensitivity of interferometers. Physical Review A,
43(9):5022–5029, May 1991.

[65] Kirk McKenzie, Malcolm B. Gray, Ping K. Lam, and David E. McClelland. Technical
limitations to homodyne detection at audio frequencies. Appl. Opt., 46(17):3389–3395,
June 2007.

[66] Peter Fritschel. Shot noise and optical gain of the H1 interferometer. Technical Report
T030004-00-D, LIGO Laboratory, January 2003.

[67] J. Gea-Banacloche and G. Leuchs. Squeezed states for interferometric gravitational-
wave detectors. Journal of Modern Optics, 34(6):793–811, 1987.

[68] Simon Chelkowski, Henning Vahlbruch, Karsten Danzmann, and Roman Schnabel. Co-
herent control of broadband vacuum squeezing. Physical Review A, 75(4):043814+,
April 2007.

[69] J. Abadie, et al. A gravitational wave observatory operating beyond the quantum shot-
noise limit. Nature Physics, advance online publication, September 2011.

[70] Daniel Sigg, Nergis Mavalvala, David McClelland, Ping K. Lam, Roman Schnabel,
Henning Vahlbruch, and Stan Whitcomb. Proposal for a squeezed H1 interferometer.
Technical Report T070265-D, LIGO Laboratory, October 2008.

[71] M. Evans, N. Mavalvala, P. Fritschel, R. Bork, B. Bhawal, R. Gustafson, W. Kells,
M. Landry, D. Sigg, R. Weiss, S. Whitcomb, and H. Yamamoto. Lock acquisition of a
gravitational-wave interferometer. Opt. Lett., 27(8):598–600, April 2002.

[72] Andri M. Gretarsson, Erika D’Ambrosio, Valery Frolov, Brian O’Reilly, and Peter K.
Fritschel. Effects of mode degeneracy in the LIGO livingston observatory recycling
cavity. J. Opt. Soc. Am. B, 24(11):2821–2828, November 2007.

[73] Simon Ressel, Martin Gohlke, Dominik Rauen, Thilo Schuldt, Wolfgang Kronast, Ulrich
Mescheder, Ulrich Johann, Dennis Weise, and Claus Braxmaier. Ultrastable assembly
and integration technology for ground- and space-based optical systems. Appl. Opt.,
49(22):4296–4303, August 2010.

[74] E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson,
S. Rowan, H. Ward, and G. Cagnoli. Hydroxide-catalysis bonding for stable optical
systems for space. Classical and Quantum Gravity, 22(10):S257–S267, May 2005.

http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JASMAN000096000001000207000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JASMAN000096000001000207000001&idtype=cvips&gifs=yes
http://dx.doi.org/10.1103/PhysRevA.43.5022
http://dx.doi.org/10.1103/PhysRevA.43.5022
http://dx.doi.org/10.1364/AO.46.003389
http://dx.doi.org/10.1364/AO.46.003389
http://www.ligo.caltech.edu/docs/T/T030004-00.pdf
http://dx.doi.org/10.1080/09500348714550751
http://dx.doi.org/10.1080/09500348714550751
http://dx.doi.org/10.1103/PhysRevA.75.043814
http://dx.doi.org/10.1103/PhysRevA.75.043814
http://dx.doi.org/10.1038/nphys2083
http://dx.doi.org/10.1038/nphys2083
http://www.ligo.caltech.edu/docs/T/T070265-D/T070265-D.pdf
http://dx.doi.org/10.1364/OL.27.000598
http://dx.doi.org/10.1364/OL.27.000598
http://dx.doi.org/10.1364/JOSAB.24.002821
http://dx.doi.org/10.1364/JOSAB.24.002821
http://dx.doi.org/10.1364/AO.49.004296
http://dx.doi.org/10.1364/AO.49.004296
http://dx.doi.org/10.1088/0264-9381/22/10/018
http://dx.doi.org/10.1088/0264-9381/22/10/018


72

[75] L. d’Arcio, J. Bogenstahl, M. Dehne, C. Diekmann, E. D. Fitzsimons, R. Fleddermann,
E. Granova, G. Heinzel, H. Hogenhuis, C. J. Killow, M. Perreur-Lloyd, J. Pijnenburg,
D. I. Robertson, A. Shoda, A. Sohmer, A. Taylor, M. Tröbs, G. Wanner, H. Ward, and
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Appendix A

Table of Abbreviations

abbrev. meaning
40m Caltech 40-meter prototype interferometer
AF audio frequency
AM amplitude modulation
AS antisymmetric (output) port
ASC angular sensing and control
BS beamsplitter
CARM common arm length
CM common mode
DARM differential arm length; the gravitational wave readout channel
DC direct current (i.e. zero frequency)
ETM end test mass
FSR free spectral range
FWHM full width, half max
GW gravitational wave
IFO interferometer
ISC interferometer sensing and control
ISS intensity stabilization servo
ITMX input test mass, X arm
LHO LIGO Hanford Observatory
LIGO Laser Interferometer Gravitational-wave Observatory
LISA Laser Interferometer Space Antenna
LISO program for linear simulation and optimization of analog electronic circuits
LLO LIGO Livingston Observatory
LSC length sensing and control
LSC LIGO Scientific Collaboration
LSU Louisiana State University
MC mode cleaner
MICH Michelson interferometer
MIT Massachusetts Institute of Technology
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OMC output mode cleaner
PD photodiode
PM phase modulation
PRC power recycling cavity
PSL pre-stabilized laser
PZT lead zirconate titanate; piezoelectric transducer
RF radio frequency
RIN relative intensity noise (δP/P )
RMS root mean square (i.e. standard deviation)
SNR signal-to-noise ratio
SQL standard quantum limit
TCS thermal compensation system
ULE Corning Ultra Low Expansion glass



Appendix B

Determination of LIGO Cavity
Lengths and Mirror Reflectivities

The lengths of cavities and reflectivities of mirrors in LIGO are all driven by a small number
of design decisions. This section is intended to be a brief and friendly derivation of some of
these values. Definitive references are [55] or [57]; A more general reference is [16].

As in the preceeding sections, I simply use the plane-wave approximation for fields in-
side cavities. This introduces certain inaccuracies, as, for example, I ignore Gouy phase.
Nonetheless, comparison of the values derived here to the actual LIGO design shows good
agreement.

It is useful to draw a distinction between macroscopic and microscopic lengths. Macro-
scopic lengths are those derived here and used in detector engineering, with magnitudes
ranging from kilometers down to centimeters or millimeters. Microscopic lengths are those
on the order of the wavelength of light and smaller, sometimes much smaller. Microscopic
lengths are never determined explicitly; instead they are controlled by servo systems to hold
cavities on resonance. When we say that a cavity is a certain macroscopic length, we retain
the freedom to adjust the microscopic length to attain resonance.

B.1 Arm Length

How big a detector can you build? The physical length of the detector’s arms sets the
conversion between displacement and strain. Simply making the arms longer will make any
fixed displacement noises into smaller strain noises–so we want the arms as long as possible.
How big one can build is usually a result of geography, money, and politics. LIGO got

L+ = 4000 meters (B.1)

where L+ = (1/2)(Lx + Ly) is the average arm length.
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The cavity length determines the free-spectral-range:

ν0 ≡
c

2L+

≈ 37.5 kHz (B.2)

B.2 Bandwidth

In the Fabry-Perot Michelson interferometer design, there is a trade-off between the detec-
tor’s sensitivity and its bandwidth.1 As the storage time in the arm becomes longer and
longer (either by making the arm longer, or by increasing its finesse), the sensitivity to
gravitational waves increases commensurately. However, sensitivity to waves whose period
is shorter than the storage time of the arm is attenuated. Thus there is a trade-off between
sensitivity and bandwidth. One must choose a bandwidth. LIGO chooses:

fc = 90 Hz (B.3)

Together, the free spectral range and the arm cavity pole determine the cavity finesse:

F =
fFSR
2fc

≈ 210 (B.4)

B.3 Test Mass Reflectivities

Knowing our desired finesse allows us to choose the mirror reflectivities. The finesse is
uniquely determined by the fraction of circulating power that remains in the cavity after
each roundtrip, which is given by a product of the mirror reflectivities and rL =

√
1− L

where L represents losses due to scattering, absorption, etc.

F ≈ − π

log r1r2rL
(B.5)

This relation fixes the product r1r2, leaving the ratio r1/r2 as a free parameter. This ratio
determines the coupling of the cavity, from maximally over-coupled (r2 → 1), to critically
coupled (r1 = r2), or to cavity at all (r1 → 1). How do we choose the coupling? Intuitively,
we want to couple as much light as possible into the cavity. In one point of view, this is so
there is as much light as possible present inside the cavity to be phase modulated by the
gravitational wave. The power gain inside the cavity is given by

g2 =
1− r1

2

(1− r1r2)2

1Advanced LIGO will include an additional mirror, a signal recycling mirror [87] at the output of the
interferometer, forming an additional resonant cavity at the anti-symmetric port. This cavity allows the
interferometer DC sensitivity to be increased without decreasing its bandwidth.
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To maximize this, we want r1 as small as possible, so we make the ETM as reflective as
possible. It turns out that maximal over-coupling is the way to go. The best super-polished
mirrors we could buy have transmissivities of 10 ppm, which gives

r2 =
√

1− 10× 10−6 ≈ 0.999995 (B.6)

Solving equation 1, we find:
r1 ≈ 0.985 (B.7)

B.4 Power Recycling and the Recycling Mirror

With the Fabry-Perot Michelson interferometer tuned to the dark fringe, all of the light not
lost in the arm cavities is reflected back towards the laser source. To send this light back
into the interferometer, we add a power recycling mirror, which forms a resonant cavity with
the FP Michelson. We choose the reflectivity of the recycling mirror to make the cavity
critically-coupled for the carrier.

With the Michelson on a dark fringe, the Michelson reflectivity is given by the cavity
reflectivity on resonance:

rc =
r1 − r2rL
1− r1r2rL

(B.8)

where rL represents losses in the arm cavity.
We choose:

rRM
2 = 0.97 (B.9)

The recycling mirror transmission is chosen to match the losses of the rest of the system.

B.5 Power Recycling Cavity Length

We need to have some radio-frequency sidebands in order to implement the heterodyne
scheme that is used to control most of the interferometer. Its frequency is chosen to be
several tens of MHz, and to be approximately2 anti-resonant in the arm cavities. We choose:

fRF ≈ 24.5 MHz

The RF sidebands must fit in the power recycling cavity. The resonant conditions for
the carrier and for the sideband in the PRC are slightly different. Because the carrier is
resonant in the (strongly over-coupled) arm cavities, it sees a sign flip in reflection from the
arms that is not seen by the sideband. The carrier is actually anti-resonant in the PRC
until the arms come into resonance and this extra sign flip comes into play. The minimum

2If the sideband were perfectly anti-resonant in the arms, then the first harmonic would be resonant,
which is undesirable.
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length of the PRC that satisfies this requirement occurs when the carrier accumulates π
radians more phase than the lower sideband over a round-trip traversal of the cavity. The
upper sideband, in turn, acquires π radians more than the carrier, putting it 2π above the
lower sideband, making them simultaneously resonant. The carrier gets its final π radians
on reflection from the over-coupled arm.

Instead of relying on intuitive arguments, we can write down equations for the conditions
of resonance:

exp {i(2l/c)ω0} = −1 (B.10)

exp {i(2l/c)(ω0 ± ωrf )} = +1 (B.11)

Solving these3, we find a nice relationship between the cavity length and the RF wavelength
λrf = c/frf ≈ 12 meters:

2l+ = λrf

(
m+

1

2

)
where m is any integer. The length corresponding to m = 0 is inconveniently short, so we
choose m = 1, giving a power recycling cavity length of:

l+ = 9.18 meters

The PRC length is set to allow simultaneous resonance of the carrier and sidebands in
the power recycling cavity.

B.6 The Schnupp Asymmetry

Now that we have the RF sidebands resonant in the recycling cavity, we need to get them
to the output port.

A Michelson with identical arms has no frequency selectivity; in principle even white light
would experience bright and dark fringes. Introducing an offset breaks this degeneracy, as
the offset allows higher frequency waves to accumulate more phase than slower frequencies.
Introducing a macroscopic difference in the arm lengths separates the carrier fringes from
the sideband fringes. In the longer arm, now, the lower sideband accumulates less phase
than the carrier, and the upper sideband accumulates a bit more. When the beams from
the two arms recombine, the phase difference now depends on the frequency. With such
an asymmetry, the Michelson can be simultaneously reflective of the carrier and partially
transmissive of the sidebands.

How much sideband transmission do we need? The Michelson is acting as the second
mirror in a resonant cavity. If we want to have perfect transmission of the sideband to the
output port, then the power recycling cavity must be critically coupled for the sideband.

3Remember the multivaluedness of the logarithm, i.e. log 1 = i2πn for all integers n.
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This occurs when the Michelson transmission of the sideband is equal to the transmissivity
of the RM. This scheme for getting the sideband to the “dark” port is attributed to Lisa
Schnupp, and the offset is called the Schnupp asymmetry.

The Michelson reflectivity for the sideband is:

rM = cos
2πfrf l−

c
(B.12)

(The fringe of the lower sideband lags that of the carrier, and the upper sideband leads
the carrier. But because the carrier itself is on a dark fringe, the transmission of both the
upper and lower sidebands turns out to be the same.)

Solving rM
2 = 0.97 in order to match the RM, we find a Schnupp asymmetry of

l− = 34 cm (B.13)

The Schnupp asymmetry sets the coupling of the RF sidebands to the antisymmetric port.



Appendix C

Fabry-Perot Cavities

In this appendix I derive the basic properties of Fabry-Perot cavities [88, 89] in the plane wave
approximation. Excellent references with further detail include [90], [91], and the general
optics reference [92].

C.1 Fabry-Perot Field Equations

We begin by writing down the relationships between the fields at each interface. For sim-
plicity, we treat each mirror as a single (thin) interface. Let r1 and t1 be the amplitude
reflectivity and transmissivity for the input mirror, and r2 and t2 describe the output mir-
ror. I use the phase convention where transmission through a mirror conveys 90◦ of phase,

Figure C.1: Fabry-Perot cavity. When used as an arm cavity, the two mirrors are known
as the input (ITM) and end (ETM) test masses. Here E0 indicates the amplitude of the
incident electric field, Er the reflected field, E+ the forward-going intra-cavity field, etc.
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i.e. a factor of i in the amplitude:

E+ = it1E0 + r1E− (C.1)

E− = r2e
i2φE+ (C.2)

Et = it2e
iφE+ (C.3)

Er = r1E0 + it1E1 (C.4)

Solving these equations algebraically for Er and Et in terms of the incident field E0, we find
the transmission and reflectivity of the cavity:

tc ≡
Et
E0

=
−t1t2 exp iφ

1− r1r2 exp i2φ
(C.5)

rc ≡
Er
E0

=
r1 − (r1

2 + t1
2) r2 exp i2φ

1− r1r2 exp i2φ
(C.6)

where φ = (2π/λ)L is the phase accumulated by the field as it travels from the first mirror
to the second mirror. This phase depends on both the laser wavelength and the distance
between the mirrors:1

φ = π(ν/ν0) (C.7)

ν0 = c/(2L) (C.8)

where ν = c/λ is the laser frequency, L is the cavity length, and ν0 is the free spectral range,
which describes the spacing between adjacent resonances.

C.2 The Cavity Pole

It is often useful to write the cavity reflectivity in the form of a rational transfer function,

rc(s) =
∞∏

n=−∞

s− zn
s− pn

(C.9)

where s = iω, {zn} are the zeroes of rc(s), and {pn} are the poles. To find the poles and
zeroes, make the substitution φ = −is/(2ν0) and solve for the zeroes of the numerator and
denominator of equation C.6 separately. We find:

pn = −ωfsr (log (r1r2) + in) ∀n ∈ Z (C.10)

zn = +ωfsr (log (r1/r2) + in) ∀n ∈ Z (C.11)

1There is an additional contribution to the phase, the Guoy phase shift, due to geometric effects; this is
described in chapter 4. Also note that some references use the round-trip phase rather than the one-way
phase used here.
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Figure C.2: Pole-zero map of the cavity amplitude reflectivity. Poles are designated with
× and zeros with ◦; r1 is the amplitude reflectivity of the input coupler, and r2 is the
amplitude reflectivity of the output coupler. Losses can be lumped into r2. Notice that
the free spectral range (angular frequency ωfsr) sets the scale of the entire diagram, and the
function is periodic in iω: there is an infinite line of poles and an infinite line of zeros. Two
limiting cases are worth considering: (1) A critically-coupled cavity has r1 = r2, which brings
the line of zeros onto the imaginary axis. On resonance, iω travels through these zeros and
the cavity reflectivity vanishes. This models the desired behavior of mode cleaner cavities.
(2) A maximally over-coupled cavity has r2 = 1, in which case the line of poles and line of
zeros are equally spaced from the imaginary axis. This models the LIGO arm cavities. The
cavity’s amplitude transmission has the same poles as the reflectivity but no zeros.

where ωfsr ≡ 2πν0. The location of the poles and zeroes are illustrated in figure C.2.
Because this function is periodic in iω, we can in many circumstances regard the laser

carrier as having a frequency ν = 0 rather than ν = nν0 for some very large n.

C.3 Phase Gain

Our interest in using Fabry-Perot cavities as the arms of a gravitational wave detector is in
having the light traverse the length of the arm multiple times, multiplying the effect of any
optical path length perturbations caused by a GW. We can derive the magnitude of this
phase gain by examining how the phase of the light reflected from the cavity changes as the
intra-cavity phase φ changes, for small variations from resonance.
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Suppose z(t) = A(t) exp{iφ(t)} is an arbitrary complex-valued function with amplitude
A(t) and phase φ(t). By taking the logarithm before taking the derivative, we can separate
the amplitude and phase:

∂

∂t
log z(t) =

(
∂

∂t
logA(t)

)
+ i

(
∂

∂t
φ(t)

)
=

1

z(t)

∂

∂t
z(t) (C.12)

This gives us an expression for the rate of change of the phase of a function:

∂

∂t
arg z(t) = Im

1

z(t)

∂

∂t
z(t) (C.13)

We can find the phase gain of a Fabry-Perot cavity by applying this expression to the
cavity reflectivity as a function of intra-cavity phase, rc(φ):

gφ = Im
r′c
rc

(C.14)

where r′c(φ) ≡ (1/2)(∂/∂φ)rc(φ); the factor of 1/2 is to convert from round-trip phase to
one-way phase. Because the derivative of the amplitude of rc vanishes on resonance, we can
simply take the magnitude of r′c/rc rather than the imaginary part. Explicitly taking the
derivative of equation C.6, we find

r′c(φ) =
1

2

d

dφ
rc(φ) = −i(1− r1

2) r2 exp 2iφ

(1− r1r2 exp 2iφ)2 (C.15)

Conventionally the symbol r′c (as in [55]) indicates the magnitude of this expression at
resonance (φ = 0):

r′c =
(1− r1

2) r2

(1− r1r2)2 (C.16)

Another way to calculate the phase gain is to use the rational transfer function expression,
equation C.9. To model the situation near resonance, we need only consider the nearest pole
and zero:

rc(s) ≈
s− z0

s− p0

=
s− ωfsr log (r1/r2)

s+ ωfsr log (r1 · r2)

Recall that the phase at frequency ω imparted by a pole at frequency ωc is arctan (−ω/ωc); a
zero at the same frequency subtracts this same phase. For a maximally over-coupled cavity
(i.e. with r2 = 1), the cavity pole and cavity zero are equal and opposite, so contribute
equal phase (arctan is odd). Use ω = 2ν0φ to express the detuning phase φ as an equivalent
detuning frequency.

Changing the one-way phase of the arm by φ results in a phase change of

φr = 2 tan−1

(
2ν0

φ

ωc

)
(C.17)
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where ωc ≡ 2πfc is the cavity pole and F = (1/2)(ν0/fc) is the cavity finesse (which will be
introduced in section C.5). Taking the derivative, we find the phase gain:

gφ =
1

2

dφr
dφ

=
2ν0

ωc

[
1 +

(
2ν0φ

ωc

)2
]−1

=
2F
π

[
1 +

(
ω

ωc

)2
]−1

(C.18)

The phase gain on resonance is 2ν0/ωc = 2F/π ≈ 140. This phase gain decreases as we
detune the cavity further from resonance, but it is not seriously diminished until the cavity
detuning approaches the cavity pole.

C.4 Intra-Cavity Power Buildup

The power buildup in the cavity is given by

P+

PIN
=
|E+|2

|E0|2
=

T1

1− 2r1r2 cos 2φ+ (r1r2)2 (C.19)

which may be re-written (using the identity cos 2φ = 1− 2 sin2 φ) as

P+

PIN
=

g2

1 + F sin2 φ
with F =

4r1r2

(1− r1r2)2
and g =

t1
1− r1r2

(C.20)

where F is the coefficient of finesse and g is the amplitude gain.
The form of this expression is often referred to in the literature as an Airy function,

though it is distinct from the well-known special function of the same name. Making the
small angle approximation sinφ ≈ φ we see that each resonance is locally Lorentzian.

C.5 Finesse (F)

The tightness of the resonance is quantified as the finesse (F), which is defined as the ratio
of the cavity free spectral range to the full-width-half-max of the resonance,

F ≡ ν0

νFWHM

=
1

2

ν0

fc
(C.21)

where the FWHM is given by twice the cavity pole (fc). The finesse is related to the
coefficient of finesse (F ) by

F =
π

2

1√
arcsin(1/F )

≈ π

2

√
F (C.22)

where the approximation holds for high-finesse cavities.
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Figure C.3: Power transmission coefficients for three critically-coupled cavities.

The finesse (F) of an optical cavity is analogous to the quality factor (Q) of an oscil-
lator. The Q factor is the ratio of the frequency of an oscillator to its full-width-half-max
bandwidth; to compute finesse, the free spectral range (spacing between resonances) is used
instead of the oscillator frequency.

C.6 Impedance Matching

From the point of view of a beam incident upon a cavity, the cavity is either under coupled,
critically coupled, or over coupled. This coupling is determined by the comparison of the
transmissivity of the input coupler compared to all other losses in the system. For a two-
mirror, lossless cavity, the cavity is under coupled if t1 < t2, critically coupled if t1 = t2, and
over coupled if t1 > t2.

C.6.1 Critically-Coupled Cavities

Maximum power is transfered into a critically coupled cavity; no power is reflected. In this
case, the prompt reflection from the input coupler is exactly canceled by an equal-amplitude,
opposite-phase leakage beam from the field inside the cavity. Because an (ideal) critically
coupled resonator is perfectly transmissive for light at the resonant frequency, they are used
as filter cavities.

The transmission of power through a filter cavity may be found by multiplying equation
?? by the output coupler power transmissivity T = t1

2 = t2
2:

Tc =
1

1 + F sin2 φ
=

{
1 at resonance (maximum transmission)

1/(1 + F ) at anti-resonance (minimum transmission)
(C.23)

where we see that the (coefficient of) finesse quantifies the attenuation of non-resonant modes
(in addition to the width of the resonance).
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(a) Critically coupled cavity. Note that r = 0 on
resonance. Cavities of this type are used as filter
cavities.

−1 0 1

−1

0

1

(b) Maximally over-coupled cavity. Note that r =
−1 on resonance. Cavities of this type are used
for the LIGO arms.

Figure C.4: Reflection coefficients for two cavities, plotted on the complex plane, over a
free spectral range 0 ≤ φ < π. The x axis represents the real part, and the y axis the
imaginary part of the cavity reflection coefficient. The dots are spaced with uniform ∆φ.
They appear more closely spaced when the phase of the cavity reflectivity changes slowly;
they appear sparsely spaced where the reflected phase changes quickly, as the cavity goes
through resonance.
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The power buildup inside a critically-coupled two-mirror cavity is simply the inverse of
the mirror transmission:

g2 =

(
t1

1− r1r2

)2

=
t2

(1− r2)2 =
1

T

This can also be seen from a very simple argument: if the power emerging from the output
coupler is equal to PIN , then the power inside the cavity must be PIN/T .

C.6.2 Over-Coupled Cavities

The LIGO arms are strongly over-coupled cavities. A lossless maximally over-coupled cavity
(i.e. with t2 = 0) acts as a perfect reflector.

For high-finesse, highly-overcoupled cavities, the cavity power buildup g2 is approximately
equal to the square root of the coefficient of finesse, or (2/π) times the finesse:

g2 ≈
√
F ≈ 2

π
F (C.24)

This can be seen by setting r2 = 1 and using
√
x ≈ 1 + (x− 1)/2 for x ≈ 1:

g2

∣∣∣∣
r2→1

=
1− r2

1

(1− r1)2 =
1 + r1

1− r1

≈
2
√
r1

1− r1

=
√
F

∣∣∣∣
r2→1

(C.25)

Another useful approximation is:

g2 ≈ 4

T1



Appendix D

The Optical Spring

When detuned from resonance, the power circulating within a Fabry-Perot cavity varies lin-
early with small deviations from that detuning. This gives rise to a displacement-dependent
force, which can be described via a spring constant. This effect is called the optical spring
1. Optical springs has been observed and studied in several experiments [93].

For frequencies that are slow compared to the cavity pole, we can calculate the behavior
of the spring using a quasi-static approximation, simply using the derivative of the power
buildup versus cavity detuning.

The power circulating in a cavity is:

P+

PIN
=

g2

1 + F sin2 φ
(D.1)

where PIN is the incident power, P+ is the forward-circulating power, g2 = (t1)2 / (1− r1r2) is
the power buildup on resonance, F = 4r1r2/ (1− r1r2)2 is the coefficient of finesse2, and φ is
the one-way phase detuning of the cavity, which is related to cavity length x as φ = (2π/λ)x.

For a given power circulating in the cavity, the radiation pressure force due to the intra-
cavity power on each of the mirrors is f = 2P/c. We can find the spring constant by taking
the derivative:

k ≡ −∂f
∂x

= − ∂

∂x

2P

c
= −2

c

∂φ

∂x

∂P

∂φ

Working out the derivative, we find:

1This is the longitudinal optical spring; an angular optical spring also arises, due to interactions between
off-center radiation pressure and cavity geometry [45].

2The finesse (F) is related to the coefficient of finesse (F ) via F ≈ π
2

√
F .
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∂

∂φ
P+ = −2Fg2 cos(φ) sin(φ)(

1 + F sin2 φ
)2PIN (D.2)

= −2Fg2PINφ+O
(
φ3
)

(D.3)

Putting it all together, we get:

k = 2Fg2

(
2PIN
c

)(
2π

λ

)
cos(φ) sin(φ)(
1 + F sin2 φ

)2 (D.4)

≈ 2Fg2

(
2PIN
c

)(
2π

λ

)
φ

(1 + Fφ2)2 (D.5)

≈ 2Fg2

(
2PIN
c

)(
2π

λ

)
φ+O

(
φ3
)

(D.6)

where, of course, φ = (2π/λ)δx, where x is the (one-way) detuning length. If a mirror is
displaced by (δx), the spring constant is:

k ≈ 64F2g2PIN
cλ2

(δx)

Putting in some numbers for the Enhanced LIGO arms:

F = 220

g2 = 137

PIN = 400 Watts

λ = 1064 nm

δx = 5 pm
k ≈ 2500 N/m

For comparison, the mechanical restoring force has a spring constant of approximately

km = mω2 ≈ (10.5 kg) (2π · 0.75 Hz)2 ≈ 230
N

m

It can also be handy to put Eq. D.5 into terms of the unitless detuning parameter
δγ =

√
Fφ, where δγ ≡ δ

γ
, where δ is the cavity detuning (in radians/sec), and γ is the

line-width (cavity pole) in the same units. If we further assume that the cavity is strongly-
overcoupled, we can use the relations g2 =

√
F = 2

π
F = 4/T1. With these substitutions (and

λ = 2πc/w0), we recover expression (3.14) given in Thomas Corbitt’s thesis [94]:

K0 ≈
64PINw0

T 2c2

δγ(
1 + δ2

γ

)2 (D.7)
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Coupled oscillators

Consider a system of two masses, connected to each other via a spring with spring constant
k1 and each connected to the wall via a spring of spring constant k0. (Later, k0 will represent
the pendula by which the optics are suspended, and k1 will represent the optical spring.)

↦ ↦

By inspection, the equations of motion are:

mẍ1 = −k0x1 + k1(x2 − x1) (D.8)

mẍ2 = −k0x2 − k1(x2 − x1) (D.9)

which may be written in matrix form as

ẍ =
1

m

[
−(k0 + k1) k1

k1 −(k0 + k1)

]
x (D.10)

Because of the form of the matrix3, we can immediately see that it has eigenvectors corre-
sponding to common and differential motion, with eigenvalues {−k0,−(k0 + 2k1)}.

Applying this diagonalization, we find:

ẍ′ =
1

m

[
−k0 0

0 −(k0 + 2k1)

]
x′ where x′ =

[
1 1
1 −1

]
x

The presence of the coupling k1 only affects the differential mode.
The mechanical (force to position) transfer function of the differential mode of a detuned

resonant cavity is shown in figure D.1, both using the analytic formulism developed above
and using a numerical model implemented with Optickle.

3The matrix

[
a b
b a

]
has eigenvectors

(
1
1

)
and

(
1
−1

)
with eigenvalues (a+ b) and (a− b).
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Figure D.1: The optical spring effect: As a cavity is detuned from resonance, the resonance
of the differential mode deceases. This figure compares the resultsof a numerical (Optickle)
model with analytic results. The units of the y-axis are 20 log10(displacement/force); the
x-axis is Hz; color indicates cavity detuning in picometers.



Appendix E

Additional Notes

E.1 The Jacobi-Anger Identity

Taking the generating function of the Bessel functions

exp

{
1

2
z
(
t− t−1

)}
=

∞∑
m=−∞

tmJm(z) (E.1)

we can make the substitution t = exp{iωt′}. This gives the Jacobi-Anger expansions, which
are useful for expanding sinusoidal phase modulation in terms of sidebands around the
carrier:

eiΓ cos Ωt =
∞∑

n=−∞

(in) Jn(Γ) exp{inΩt} (E.2)

eiΓ sin Ωt =
∞∑

n=−∞

Jn(Γ) exp{inΩt} (E.3)

E.2 Comparison of Phase Modulation (PM) and Am-

plitude Modulation AM)

Suppose we have a signal consisting of a carrier (at frequency ω and with unit amplitude)
and two sidebands, of amplitudes a (lower) and b (upper), separated from the carrier by a
frequency Ω:

E(t) = (1 + a exp(−iΩt) + b exp(iΩt)) exp(iωt) (E.4)
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To find the power in this signal, we take the modulus squared, P = E∗E where * is the
complex conjugate:

P =
(
1 + |a|2 + |b|2

)
+ (a∗ + b) exp(−iΩt) + (a+ b∗) exp(iΩt)

+ (ab∗) exp(−2iΩt) + (a∗b) exp(2iΩt)

(E.5)

The condition for the 1Ω variation in the power to vanish is a = −b∗, i.e. the real parts of
the amplitudes of the sidebands must be opposite, and the imaginary parts must be equal.
So we can extract the amplitude and phase modulation indicies:

mAM = (a+ b∗)

mPM = (a− b∗)
(E.6)

What is the condition for the 2Ω signal to vanish? With just two sidebands, it will always
be present (though at second order in the sideband amplitude). In true phase modulation, the
2Ω signal is cancelled by the interaction of (the infinite number of) higher-order sidebands.
As best I can tell, there is no simple arrangement of this cancellation other than via a magical
property of the Bessel functions.

E.3 Comparison of Phase Modulation (PM) and Fre-

quency Modulation (FM)

There is not really any difference between phase modulation and frequency modulation.
Frequency modulation with modulation depth mFM [Hz] at a frequency f [Hz] has the form

y(t) = exp {iωt} exp

{
i

∫ t

0

2π mFM <
{
ei2πft

′
}
dt′
}

(E.7)

where ω [radians/second] is the carrier frequency. We can simply do the integral and get:

y(t) = exp {iωt} exp

{
i

1

f
mFM <

{
iei2πft

}}
(E.8)

which is just phase modulation at frequency f [Hz] with modulation depth (i/f)mFM (in
radians). The relation between phase modulation and frequency modulation is therefore:

mPM =

(
i

f

)
mFM

The i signifies a phase shift of 90 degrees in the modulation (turning cos to sin).
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Figure E.1: The scattering matrix S gives the amplitudes of the outgoing fields b1 and b2 in
terms of the in-going fields a1 and a2.

E.4 Calibration

The calibration of the LIGO interferometers into real units (of mirror displacement or gravi-
tational wave strain) during Initial LIGO is described in [95]; the Enhanced LIGO procedure
was essentially the same. An alternate calibration procedure using radiation pressure is de-
scribed in [96].

E.5 Only the Signal Field Matters

Suppose we have two electric fields incident on a photodiode: the signal field As and the
local oscillator field ALO. The power seen by the photodiode is

|As + ALO|2 = |As|2 + |ALO|2 + 2ReAs
∗ALO

In the small-signal regime, |As| << |ALO|. The signal on the photodiode is proportional to
AsALO while the shot noise is proportional to

√
|As|2 + |ALO|2 ≈ ALO. The detected SNR

is independent of the local oscillator strength.

E.6 Optical Phase Conventions

In writing down the relationships between optical field amplitudes upon reflection from or
transmission through a mirror, we must first choose a phase convention. What happens to
the phase of the field upon reflection? Upon transmission? For a real mirror, made up of
many layers of dielectric coating on both sides of a thick substrate, and given particular
reference points at which to compute the fields, the phases upon reflection and transmission
depend on all of this structure. But for tractability, and for no real loss of modeling fidelity,
we can discard the particulars as unknown ‘microscopic phase’ and adopt instead an idealized
model of a mirror that has the right power reflectivity and transmission and does not violate
conservation of energy. There are two such conventions in common use. We can call them
the “engineers’ convention” and the “physicists’ convention.”

The complex reflection and transmission coefficients are encoded in the S-matrix, which
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gives the amplitudes of the fields going out of some optical element in terms of the fields
going in (depicted in figure E.1).

In the physics convention, transmission through a mirror conveys no phase; reflection
from one direction is real and positive (+r), but reflection from the other direction gives a
minus sign (−r). The physics convention essentially models a mirror as a single dielectric
boundary. The S-matrix for the physics convention is:

Sphysics =

(
−r t
t r

)
(E.9)

In the engineering convention, reflection from either side of a mirror has the same real,
positive reflectivity (+r), but transmission through the mirror gives a phase of 90 degrees,
a coefficient of it, giving an S-matrix of:

Sengineering =

(
r it
it r

)
(E.10)

The (initial) LIGO test masses actually have amplitude reflectivity coefficients close to
−1 at the high-reflectivity (HR) side, so that the electric field on the surface of the optic on
the high-power side is very near zero.

E.7 Gaussian Beams

The general picture of Gaussian beams is shown here:
It is convenient to introduce the complex beam parameter q. In terms of q:

1

q(z)
=

1

R(z)
− i λ

πw2(z)
(E.11)

where R(z) is the radius of curvature of the phase fronts at a position z along the optical
axis, and w(z) is the spot size at that location. We can also write: q(z) = izR + (z − z0).

For a mode to resonate in an optical cavity, the spherical surface of the mirrors must
match the spherical phase front of the beam at the location of the mirror.

Suppose mirror 1 has curvature R1 and coordinate z1, and similarly for mirror 2. We
would like to solve for the waist location and Rayleigh range.

References: Kogelnik and Li [97], Siegman [90], [98, 91].

E.8 Laser Modes

The eigenmodes of an optical cavity formed from spherical lenses are the Hermite-Gauss
(if the cavity has rectangular symmetry) or Laguerre-Gauss (for axial symmetry) modes.
The amplitude distribution at the beam waist is a Gaussian multiplied by a Hermite or
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Laguerre polynomial. These are exactly the same familes of functions as the energy eigenstate
wavefunctions of the simple harmonic oscillator in quantum mechanics.

E.9 Shot Noise

The root-mean-square of a Poisson process with current I and quantum q measured over a
bandwidth of ∆f is

σ =
√

2qI∆f

Here I could be the electric current in Amps (=Coulombs/second) and q the charge of an
electron. For light incident on a photodiode, the photon shot noise can be considered as an
energy current, with I ← P being the DC power, and q ← hν being the energy per photon.

The amplitude spectral density of this process is white, with amplitude
√

2qI in units of
[I] per square root of Hz. For power P , the shot noise amplitude spectral density is

shot noise ASD =
√

2hνP [Watts/
√

Hz] (E.12)

which gives a relative intensity noise of
√

2hν/P .
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