

Why must there be gravitational waves?

Newton's puzzle:
"instantaneous action at a distance"

General Relativity

Spacetime itself is a medium

Geometry carries information

Gravitational Waves

Changes of matter in one part of space affect geometry elsewhere

Gravitational Waves in Action

Two massive, compact

objects in orbit deform space (and any object in it) with a frequency which is twice the

orbital frequency

The stretching is described by a dimensionless strain, $h = \Delta L / L$

h is inversely proportional to the distance from the source

On a small planet in a spiral galaxy far far away...

How can we measure these waves?

Use a Michelson interferometer

Automatically compares orthogonal geodesics using light beams

So what's the catch?

Doing the math...

A wave's strength is characterized by its strain

$$h = \Delta L / L$$

We can calculate the expected strain at Earth for, say, an orbiting binary system;

$$|h| \approx 4\pi^2 GMR^2 f_{orbit}^2 / c^4 r \approx 10^{-21} \left(\frac{R}{20 \text{km}}\right)^2 \left(\frac{M}{M_{\odot}}\right) \left(\frac{f_{orbit}}{400 \text{Hz}}\right)^2 \left(\frac{10 \text{Mpc}}{r}\right)$$

If we make our interferometer very big, say 4,000 meters long, then

$$\Delta L = h \times L \approx 10^{-21} \times 4,000 \, m \approx 10^{-18} \, m$$

How Small is 10⁻¹⁸ Meter?

One meter, about 40 inches

Human hair, about 100 microns

Wavelength of light, about 1 micron

Atomic diameter, 10⁻¹⁰ meter

Nuclear diameter, 10⁻¹⁵ meter

LIGO sensitivity, 10⁻¹⁸ meter

A New 'Sense'- A New Universe

Gravitational Waves will provide complementary information, as different from what we know as sound is from sight.

Coincidence

local environments uncorrelated

•Amplitude discrimination

half- and full-length IFO's share Hanford site

1:2 ratio required for true signals

Source triangulation

± 10 ms time of flight

~ arcminute directionality

Source polarization

■ Worldwide Network:

- > We coordinate observations and share data with TAMA and GEO
- We are just finalizing similar agreements with VIRGO
- AIGO is still in planning stage; AIGO personnel currently share in LIGO operation

Seismic Isolation System

Tubular coil springs with internal constrained-layer damping, layered with reaction masses

Isolation stack in chamber

Core Optic Suspensions

LIGO

Core Optics

Advanced LIGO

10x increase in sensitivity; 1000x in volume!

Vacuum Equipment

Vacuum requirements: Particulates

- □ Particles absorb laser power, producing heat & optic distortion
- □ Particles also scatter power, producing phase noise (interference)
- □ A single 10 micron particle on a critical optic surface can limit Advanced LIGO performance
- □ Particles in the vacuum system MOVE AROUND
- □ HEPA- and ULPA-filtered environments critical to keeping cleaned surfaces clean
- □ Need to control not only airborne but shed particles from tools, clothing, etc.
- □ ISO-STD-14644 (formerly FED 209(E)) is referenced in requirements for clean ambient environments and processes
- □ Air environments are normally sampled with air particle counters
- □ IEST-1246D governs requirements for end item surface-resident particles
- □ Surface particulates may be sampled by liquid transfer, air suction/filter sampling, adhesive transfer, or other means
- □ LIGO will cooperate in finding the most effective and cost-effective means to insure compliance

LIGO

Vacuum requirements: Hydrocarbons

- Laser beams in AdLIGO will be concentrated to ~ megawatt intensity
- □ Small absorption by contaminant film causes heating (& distortions)
- Invisible HC films can carbonize or break down, leading to thermal runaway
- Vacuum bake mitigates volatile residues, but...
- Won't succeed unless surfaces are as clean as possible to start with
- □ Emphasis is to insure removal of mill and fab residues
- □ NVR (Non Volatile Residue) requirements also reference IEST-1246D
- □ Parts can be tested, for example, by rinsing with solvent followed by evaporation & mass assay; or by FTIR analysis
- Alternatives (demonstrated equivalent) may be proposed

Cleanliness Certification

- Adopting good practices and training staff is the most important component of the program; you cannot "test-in" cleanliness
- LIGO has experience working with vendors to make and keep clean large and complex fabrications, efficiently and economically
- We would like to know your capabilities and experience