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Abstract. Searching for gravitational waves triggered by electromagnetic astronomical
observations has several benefits: prior information about the source location enhances detection
efficiency, and the use of time coincidence implies analysis of only a small stretch of data
which allows sophisticated analysis with high computational costs. During postprocessing,
knowledge about the source enables accurate reconstruction of the source parameters, leading
to an astrophysical interpretation. In this paper, we present a triggered search pipeline called
RIDGE and we demonstrate the search for gravitational waves from Sco X-1, in which X-ray
bursts occur frequently, using simulated data. In the analysis, we consider the optimum network
combination for Sco X-1.

1. Introduction

Currently, several interferometric gravitational wave (in short, GW) detectors around the
world such as LIGO, VIRGO, GEO600, TAMA300 [1] have been taking data. Interferometric
gravitational wave (GW) detectors are based on a Michelson interferometer. The quadrupole
nature of a GW produces differential changes in the arm lengths of the detectors, being detected
as changes in the interference fringe pattern. The data from GW detector preserve both
amplitude and phase information. Therefore, it is possible to combine data streams from
networks of detectors coherently. The coherent network approach enables us not only to enhance
detection efficiency, but also to reconstruct parameters of a GW such as the waveform and the
direction to the source [2]. Triggered searches involve looking for gravitational waves from sources
such as gamma-ray bursts, magnetars, X-ray bursts, supernovae, blazars etc that also have an
observable signature. Having an electromagnetic observation in coincidence with a potential GW
signal allows for much higher confidence in the signal and has other important benefits as well:
the time coincidence implies that only small data stretches need to be analyzed, which allows
us to use algorithms with a high computational cost and to ignore long-term non-stationary
behavior of detector noise. Knowing the source location enables accurate recovery of GW signal
parameters, which are essential for astrophysical interpretation. Applying the triggered search,
we consider the detection of GWs from Sco X-1 which is the low-mass X-ray binary with the
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Figure 1. Left:The detector response as a function of time since September 12 (JST), 2007. H1
is the 4 km LIGO Hanford detector, L1 is the LIGO Livingston detector, and V1 is the VIRGO
detector. Right: ROC curve at 13 hours. The blue line is for the LIGO only network and the
red curve is for the LIGO-VIRGO network.

strongest X-ray emission [3]. In Sco X-1, strong X-ray bursts occur frequently [4], and GWs
can be emitted along with the X-ray bursts. Besides searching for GWs associated with the
X-ray bursts, we look for bursts even during the quiet phase of Sco X-1 by monitoring Sco X-1.
When monitoring Sco X-1, the sensitivity of each GW detector to the direction of Sco X-1 varies
in time because of the rotation of the earth. In this paper, we show results of Monte Carlo
simulations with some networks of detectors for the detection of GWs from Sco X-1 using the
coherent network analysis pipeline “RIDGE”, which we have developed, and evaluate the effect
of the network quantitatively. We also discuss which networks of detectors are effective for a
long-term observation of Sco X-1 so as to provide maximum coverage with enhanced detection
efficiency, by minimizing intervals where the network is“blind”.

2. Overview of RIDGE pipeline

RIDGE is a fully coherent network analysis pipeline described in Ref. [5]. The pipeline consists
of two main components, data conditioning, and generation of detection statistics. The aim
of the data conditioning is to whiten the data, so as to remove frequency dependence and any
instrumental artifacts in the data. In RIDGE, the data are whitened by estimating the noise
floor using a running median [6], and narrow-band noise artifacts arising from sources such as
power line interference, and mirror/suspension resonant modes are removed [7]. The resulting
conditioned data is passed on to the next step consisting of the generation of a detection statistic.
The generation of this statistic is based on maximum likelihood. The GW response of any one
detector is a linear combination of the two unknown polarization waveforms h (t) and hy(t)
arriving at the detector from a certain direction on the sky. It was shown that the problem of
inverting a set of detector responses to obtain h4 (t) and hy(t) is an ill-posed one [8]. In RIDGE,
the maximum likelihood is regularized by Tikhonov regularization to solve the problem [8]. The
detection statistic is calculated using the regularized maximum likelihood at every sky location.

3. Monitoring Sco X-1
The detector response is a function of time and geographical location of the detector. Because
of the rotation of the earth, the detector response is a periodic function with a 24 hour period.
The left plot in figure 1 shows the detector response of LIGO and VIRGO to the direction of
Sco X-1 as a function of time since September 12 (JST), 2007. Here, the value of the detector
response is defined by summing the squared antenna patterns for the two GW polarizations h,
hx. From this figure, for the LIGO only network, the value of the squared antenna pattern
exceeds 0.5 for about 33% of the time during a day. If VIRGO is added to this network, this
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network coverage increases to 63% . To study the effect of the addition of VIRGO to the LIGO
network quantitatively, we carried out Monte Carlo simulations. For the detector noise PSD,
we used the design sensitivity curves for the LIGO and Virgo detectors as given in [1] and kept
the locations and orientations the same as the real detectors. Gaussian, stationary noise was
generated (2000 sec) at a sampling frequency of 16384 Hz. To simulate instrumental artifacts,
we added sinusoids with large amplitudes at (54, 60, 120, 180, 344, 349, 407) Hz. The injected
signals corresponded to a single source located at Sco X-1. We assumed that the h4(t) and
hy(t) waveforms were both sine-Gaussian signals defined by Asin(27f.t) exp(—t2/20%) where
the center frequency f. = 235 Hz, Q := 2w f.c = 9 and A is a constant value. The hy(t)
waveform is a circularly polarized version of h. (t) which has been shifted in phase by 7/2. The
signal strength is specified in terms of the root-sum-square (hrss) value. We use hrss values of
7 x 10722Hz~'/2. The right plot in the Fig.1 is the Receiver Operating Characteristic (ROC)
curve for the simulation at 13 hours after 2007/09/12 00:00 JST. It shows that the detection
probability at the false alarm rate of 0.01 Hz is improved from 0.2 to 0.6 by adding VIRGO to
the LIGO only network.

4. Discussion

We describe a coherent network analysis based approach to detect GWs associated with
electromagnetic observations and study the sensitivity of current detector network of GWs from
Sco X-1 with some network combinations. To monitor Sco X-1 with a sensitive detector response
for a long period, it is essential to add VIRGO to the LIGO-only network. The LIGO-VIRGO
network produces a detector response exceeding 0.5 for about 63% of a day. But even if the
LIGO-VIRGO network is used, periods of “blindness” to Sco-X1 still exists. One approach to
get rid of this blind periods is to add LCGT [9], which is a proposed cryogenic Japanese detector.
We add LCGT-like detector whose sensitivity is 10 times worse than the design sensitivity (so
that its sensitivity is similar to LIGO, VIRGO), and carried out Monte Carlo simulations. The
simulation shows that the detector response of the LIGO-VIRGO-LCGT-like exceeds 0.5 for
about 92% of the time. This shows that the current geographical location and orientation of
LCGT is significantly benefitial to this search.
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